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Abstract. Recent years have seen greater interest in the use of discrim-
inative classifiers in tracking systems, owing to their success in object de-
tection. They are trained online with samples collected during tracking.
Unfortunately, the potentially large number of samples becomes a com-
putational burden, which directly conflicts with real-time requirements.
On the other hand, limiting the samples may sacrifice performance.

Interestingly, we observed that, as we add more and more samples, the
problem acquires circulant structure. Using the well-established theory
of Circulant matrices, we provide a link to Fourier analysis that opens
up the possibility of extremely fast learning and detection with the Fast
Fourier Transform. This can be done in the dual space of kernel ma-
chines as fast as with linear classifiers. We derive closed-form solutions
for training and detection with several types of kernels, including the
popular Gaussian and polynomial kernels. The resulting tracker achieves
performance competitive with the state-of-the-art, can be implemented
with only a few lines of code and runs at hundreds of frames-per-second.
MATLAB code is provided in the paper (see Algorithm 1).

1 Introduction

Tracking is a fundamental problem in computer vision, with applications in video
surveillance, human-machine interfaces and robot perception. Even though some
settings allow for strong assumptions about the target [1, 2], sometimes it is
desirable to track an object with little a-priori knowledge. Model-less tracking
consists of learning and adapting a representation of the target online.

A very successful approach has been tracking-by-detection [3–7]. This stems
directly from the development of powerful discriminative methods in machine
learning, and their application to detection with offline training. Many of these
algorithms can be adapted for online training, where each successful detection
provides more information about the target.

Almost all of the proposed methods have one thing in common: a sparse
sampling strategy [3, 5–7]. In each frame, several samples are collected in the
target’s neighborhood, where typically each sample characterizes a subwindow
the same size as the target (illustrated in Table 1). Clearly, there is a lot of
redundancy, since most of the samples have a large amount of overlap. This
underlying structure is usually ignored. Instead, most methods simply collect a
small number of samples, because the cost of not doing so would be prohibitive.
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Table 1. Overview of the main differences between standard tracking-by-detection and
the proposed approach. The speed is for a 64× 64 window region. See text for details.

Storage Bottleneck Speed

Random Sampling
(p random

subwindows)

Features from
p subwindows

Learning algorithm
(Struct. SVM [4],
Boost [3, 6]...)

10 - 25 FPS

Dense Sampling
(all subwindows,
proposed method)

Features from
one image

Fast Fourier
Transform

320 FPS

The fact that the training data has so much redundancy means that we are
probably not exploiting its structure efficiently. We propose a new theoretical
framework to address this. We show that the process of taking subwindows of
an image induces circulant structure. We then establish links to Fourier analysis
that allows the use of the Fast Fourier Transform (FFT) to quickly incorporate
information from all subwindows, without iterating over them.

These developments enable new learning algorithms that can be orders of
magnitude faster than the standard approach. We also show that classification
on non-linear feature spaces with the Kernel Trick can be done as efficiently as
in the original image space.

1.1 Previous Work

We will briefly discuss tracking-by-detection, but also other works that are rel-
evant to our specific approach.

The literature on visual object tracking is extensive, and a full survey is out-
side the scope of this paper.1 Like other works in tracking-by-detection, our
contributions are focused on the appearance model, as opposed to the motion
model and search strategy. Many use established learning algorithms such as
Boosting [6, 3], Support Vector Machines (SVM) [5], or Random Forests [7], and
adapt them to online training. Recent works have focused increasingly on prob-
lems specific to tracking, such as uncertainty in the training labels. Some notable
examples use Semi-Supervised Learning [6] and Multiple Instance Learning [3]
(MILTrack) to handle this. Going even further, Hare et al. [4] propose Struck, an
online version of Structured Output SVM. This is closer to our work, since the
framework allows sample selection over the possible subwindows (argmax step).
However, in practice, the number of samples is still limited.

The idea of exploring subwindow redundancy has been noted before, but
mostly in the context of detection, not training. Lampert et al. [10] use branch-
and-bound optimization to find the maximum of a classifier’s response without
necessarily evaluating it at all locations. Alexe et al. [11] propose a method that
can efficiently find the most similar subwindows between two images, which is

1 We refer the reader to 2 reviews: [8] is more in-depth, while [9, Sec. 3] is more recent.
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a related problem. Although they are useful and provide interesting insights, it
may still be desirable to compute the responses at many locations, for example
to allow more robust mode seeking or to evaluate the quality of the response [12].
An alternative is to use linear classification in a first stage, and then non-linear
classification on promising locations [13, 14], but the results can be suboptimal.

Also closely related are adaptive correlation filters, rooted on classical signal
processing [15, 12]. Their response can be evaluated quickly at all subwindows
using the Fast Fourier Transform (FFT). It’s possible to perform training on
the Fourier domain as well, minimizing the error of the filter’s response at all
subwindows of the training images. The crucial detail is that they never actu-
ally iterate over the subwindows. The Minimum Output Sum of Squared Error
(MOSSE) filter [12] has been shown to be competitive with the methods outlined
before, but at a fraction of the complexity, and runs at impressive speeds.

Because they can be interpreted as linear classifiers, there is the question of
whether correlation filters can take advantage of the Kernel Trick to classify
on richer non-linear feature spaces. Patnaik and Casasent [16] investigate this
problem, and show that, given the Fourier representation of an image, many
classical filters cannot be kernelized. Instead, they propose a kernelized filter
that is trained with a single subwindow (called Kernel SDF). An ideal solution
would implicitly train with all subwindows.

We believe that the method we propose achieves this goal. We are able to de-
vise Kernel classifiers with the same characteristics as correlation filters, namely
their ability to be trained and evaluated quickly with the FFT.

1.2 Contributions

The contributions of this paper are as follows:

1. A theoretical framework to study generic classifiers that are trained with all
subwindows (of fixed size) of an image. We call this approach dense sampling.

2. Proof that the kernel matrix in this case has circulant structure, for unitarily
invariant kernels (Theorem 1).

3. Closed-form, fast and exact solutions (all running in O(n2 logn) for n × n
images) for:
(a) Kernel Regularized Least Squares with dense sampling (Section 2.4).
(b) Detection at all subwindows with generic Kernel classifiers (Section 2.5).
(c) Computation of a variety of kernels at all subwindows, including the

popular Gaussian and polynomial kernels (Section 3).

4. Finally, we propose a tracker based on these ideas. We show it is competitive
with state-of-the-art trackers, but has a simpler implementation and runs
many times faster. Source code is provided.

2 Learning with Dense Sampling

The core component in tracking-by-detection is a classifier. Each frame, a set of
samples is collected around the estimated position of the target; samples close
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Fig. 1. Example results for coke and surfer sequences, best viewed in color. High
values in the response map are red/opaque, low values are blue/transparent. Notice
the highly localized responses, except when the target is under occlusion.

to the target are labeled positive and the ones further away are labeled negative.
Updating the classifier with these samples allows it to adapt over time. Due to
computational constraints, only a handful of random samples are collected [3–7].

We propose a radically different approach. We intend to train a classifier with
all samples: we call this dense sampling. Counter to intuition, this allows a more
efficient training. The reason is that the kernel matrix in this case becomes highly
structured, and we can exploit it to our advantage.

2.1 Regularized Risk Minimization

We start with a general formulation, mostly to introduce notation. Given a set of
training patterns and labels (x1, y1), . . . , (xm, ym), a classifier f(x) is trained by
finding the parameters that minimize the regularized risk. A linear classifier has
the form f(x) = 〈w, x〉+b, where 〈·, ·〉 is the dot product, and the minimization
problem is

min
w,b

m∑

i=1

L (yi, f(xi)) + λ ‖w‖2 , (1)

where L(y, f(x)) is a loss function, and λ controls the amount of regularization2.
This framework includes the popular Support Vector Machine (SVM), which

uses the hinge loss L(y, f(x)) = max (0, 1− yf(x)). An alternative is Regu-
larized Least Squares (RLS), also known as Ridge Regression, which uses the

quadratic loss L(y, f(x)) = (y − f(x))
2
. It has been shown that, in many prac-

tical problems, RLS offers equivalent classification performance to SVM [17].
It is well known that the Kernel Trick [18] can improve performance further,

by allowing classification on a rich high-dimensional feature space. The inputs
are mapped to the feature space using ϕ(x), defined by the kernel κ(x,x′) =
〈ϕ(x), ϕ(x′)〉. The Representer Theorem [18, p. 89] then states that a solution
can be expanded as a linear combination of the inputs: w =

∑
i αiϕ(xi).

Then, RLS with Kernels (KRLS) has the simple closed form solution [17]

α = (K + λI)
−1

y, (2)

where K is the kernel matrix with elements Kij = κ(xi,xj), I is the identity
matrix, and the vector y has elements yi. The solutionw is implicitly represented

2 The bias term b is not important in practice, when finding the maximum response.
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by the vector α, whose elements are the coefficients αi. We will show that the
matrix inversion in Eq. 2 can be avoided entirely for our purposes.

2.2 Circulant Matrices

The main observation that will allow efficient learning is that, under suitable
conditions, the kernel matrix becomes circulant. An n×n circulant matrix C(u)
is obtained from the n×1 vector u by concatenating all possible cyclic shifts of u:

C(u) =

⎡

⎢⎢⎢⎢⎢⎣

u0 u1 u2 · · · un−1

un−1 u0 u1 · · · un−2

un−2 un−1 u0 · · · un−3

...
...

...
. . .

...
u1 u2 u3 · · · u0

⎤

⎥⎥⎥⎥⎥⎦
. (3)

The first row is vector u, the second row is u shifted one element to the right
(the last element wraps around), and so on.

The motivation behind circulant matrices is that they encode the convolution
of vectors, which is conceptually close to what we do when evaluating a classifier
at many different subwindows. Since the product C(u)v represents convolution
of vectors u and v [19], it can be computed in the Fourier domain, using

C(u)v = F−1 (F(u)�F(v)) , (4)

where � is the element-wise product, while F and F−1 denote the Fourier trans-
form and its inverse, respectively.

The properties of circulant matrices make them particularly amenable to ma-
nipulation, since their sums, products and inverses are also circulant [19]. We
never have to explicitly compute and store a circulant matrix C(u), because it
is defined by u. These operations often involve the Fourier Transform of u.

There are a couple of different definitions of C(u) that we will find useful
[19]. One is that the row i of C(u) is given by P iu, where P is the permutation
matrix that cyclically shifts u by one element. The matrix power in P i applies
the permutation i times, resulting in i cyclic shifts.

Alternatively, the elements of C(u) can be defined as cij = u(j−i) mod n. That
is, a matrix is circulant if its elements only depend on (j− i) mod n, where mod
is the modulus operation (remainder of division by n). To make some derivations
easier, all indexes are zero-based.

2.3 The Kernel Matrix with Dense Sampling

We introduce the concept of dense sampling. For a matter of clarity, we start with
one-dimensional images with a single feature (ie., the pixel value). This allows
more intuitive proofs with simpler notation. However, they are readily transfer-
able to the case of 2D images with multiple channels, such as RGB images, and
dense SIFT or HOG descriptors. Appendix A.3 presents more details.
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Given a single image x, expressed as a n×1 vector, the samples are defined as

xi = P ix, ∀i = 0, . . . , n− 1 (5)

with P the permutation matrix that cyclically shifts vectors by one element, as
defined earlier. Intuitively, the samples are all possible translated versions of x
(except at the boundaries, discussed in Section 4.1). We will now prove that the
resulting kernel matrix is circulant, and show under what conditions.

Theorem 1. The matrix K with elements Kij = κ(P ix, P jx) is circulant if κ
is a unitarily invariant kernel.

Proof. A kernel κ is unitarily invariant if κ(x,x′) = κ(Ux, Ux′) for any uni-
tary matrix U . Since permutation matrices are unitary, Kij = κ(P ix, P jx) =
κ(P−iP ix, P−iP jx) = κ(x, P j−ix). BecauseKij depends only on (j−i) mod n,
K is circulant.

Corollary 1. K as defined above is circulant for dot-product and radial basis
function kernels. Particular examples are the polynomial and Gaussian kernels.

This is an important property that allows the creation of efficient learning algo-
rithms. We will now focus on applying this knowledge to KRLS.

2.4 Efficient Kernel Regularized Least Squares solution

Theorem 1 is readily applicable to KRLS. We will define vector k with elements

ki = κ(x, P ix), ∀i = 0, . . . , n− 1 (6)

which compactly represents the kernel matrix K = C (k). Notice that k is only
n× 1, while the full K would be n× n.

Some operations on matrices of the form C(u), like multiplication and inver-
sion, can be done element-wise on the vectors u, if they are transformed to the
Fourier domain [19].

By applying these properties to Eq. 2 and Eq. 6, we obtain the KRLS solution:

α = F−1

( F(y)

F(k) + λ

)
, (7)

where the division is performed element-wise. A detailed proof is in Appendix A.1.
Note that the vector α contains all the αi coefficients. This closed-form solu-

tion is very efficient: it uses only Fast Fourier Transform (FFT) and element-wise
operations. We’ll see in Sec. 3 that k can also be computed quickly with the FFT.

For n×n images, the proposed algorithm has a complexity of only O(n2 logn),
while a naive KRLS implementation would take O(n4) operations. This is done
without reducing the number of samples, which would sacrifice performance.
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2.5 Fast Detection

The general formula for computing the classifier response for a single input z is

y′ =
∑

i

αiκ(xi, z). (8)

This formula is typically evaluated at all subwindows, in a sliding-window man-
ner. However, we can exploit the circulant structure to compute all the responses
simultaneously and efficiently. Using the properties discussed earlier, the vector
with the responses at all positions is given by

ŷ = F−1
(F(k̄)�F(α)

)
, (9)

where k̄ is the vector with elements k̄i = κ(z, P ix). We provide an extended
proof in Appendix A.2. Just like the formula for KRLS training, the complexity
is bound by the FFT operations and is only O(n2 logn) for 2D images.

3 Fast Computation of Non-linear Kernels

The proposed training procedure is fast, but the question of how to evaluate non-
linear kernels quickly for all subwindows (ie., compute k and k̄) still remains.
As of this writing, this is a topic of active research [10, 11, 16].

Linear kernels are usually preferred in time-critical problems such as tracking,
because the weights vector w can be computed explicitly. Non-linear kernels
require iterating over all samples (or support vectors). The work that comes
closest to the goal of efficiently computing non-linear kernels at all locations is
by Patnaik [20]. Unfortunately, it requires inputs that have unit norm, and the
normalization may discard important information.

In this work, we propose closed-form solutions to compute a variety of kernels
at all image locations, in an efficient manner that fully exploits the problem
structure. The formulas are exact, and simple to compute.

3.1 Dot-Product Kernels

Dot-product kernels have the form κ(x,x′) = g(〈x,x′〉), for some function g.
In this case, the compact representation k of the kernel matrix (Eq. 6) will be
denoted by kdp. Each element of kdp is given by

kdpi = κ(x, P ix′) = g
(
xTP ix′) . (10)

With slight abuse of notation, we will say that g can also be applied element-wise
to an input vector, so kdp can be written as kdp = g

(
CT(x)x′) .

Since CT(u) = C(F−1(F∗(u))) , with ∗ denoting the complex-conjugate, and
using the convolution property from Eq. 4, we obtain the solution

kdp = g
(F−1 (F(x)�F∗(x′))

)
. (11)
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Eq. 11 means that a dot-product kernel can be quickly evaluated at all image
locations, using only a few FFT and element-wise operations. In particular, for
a polynomial kernel,

kpoly =
(F−1 (F(x)�F∗(x′)) + c

)d
. (12)

3.2 Radial Basis Function Kernels

RBF kernels have the form κ(x,x′) = h(‖x− x′‖2), for some function h. The
corresponding k from Eq. 6 will be denoted by krbf.

krbfi = κ(x, P ix′) = h
(∥∥x− P ix′∥∥2

)
(13)

We can expand the norm, obtaining

krbfi = h
(
‖x‖2 + ‖x′‖2 − 2xTP ix′

)
. (14)

The permutation P i doesn’t affect the norm of x′ due to Parseval’s identity.
Since ‖x‖2 and ‖x′‖2 are constant w.r.t. i, Eq. 14 is in the same form as for

dot-product kernels. Following the same derivation as in Section 3.1, we arrive
at the general solution for RBF kernels

krbf = h
(
‖x‖2 + ‖x′‖2 − 2F−1 (F(x)�F∗(x′))

)
. (15)

In particular, we have, for the Gaussian kernel,

kgauss = exp

(
− 1

σ2

(
‖x‖2 + ‖x′‖2 − 2F−1 (F(x)�F∗(x′))

))
. (16)

For an n×n image, direct kernel computation at n2 locations would take O(n4)
operations, however the corresponding frequency-domain solution brings this
complexity down to only O(n2 logn).

The generic formulas we derived for each kernel will quickly compute the k
and k̄ terms in KRLS training (Eq. 7) and detection (Eq. 9). We expect them
to be of general interest, however, and be useful for other kernel methods.

3.3 The Linear Case

The simplest kernel function, κ(x,x′) = 〈x,x′〉, which is just the dot-product
in the original space, is worth investigating. It produces a linear classifier that
does not make use of the Kernel Trick, so we can compute w explicitly, instead
of implicitly as α. Plugging it into the KRLS equations, we obtain:

w = F−1

( F(x)�F∗(y)
F(x)�F∗(x) + λ

)
. (17)

This is a kind of correlation filter that has been proposed recently, called Min-
imum Output Sum of Squared Error (MOSSE) [12, 15], with a single training
image. It is remarkably powerful despite its simplicity.
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Table 2. Tracker precisions at a threshold of 20 (percentage of frames where the
predicted location is within 20 pixels of the ground truth). This threshold was used by
Babenko et al. [3]. The best precision for each sequence is highlighted in bold.

MILTrack Struck MOSSE MOSSE2 Proposed method

coke11 0.61 0.97 0.71 0.71 1.00

faceocc 0.46 0.96 0.21 1.00 1.00

faceocc2 0.69 0.95 0.53 0.93 1.00

surfer 0.98 0.97 0.37 0.99 0.99

sylvester 0.90 0.95 0.78 0.90 1.00

tiger1 0.83 0.94 0.26 0.30 0.61

tiger2 0.93 0.91 0.25 0.22 0.63

dollar 0.82 0.96 0.39 1.00 1.00

girl 0.31 0.95 0.83 0.99 0.59

david 0.56 0.92 0.77 0.34 0.49

cliffbar 0.89 0.44 0.37 0.56 0.97

twinings 0.98 1.00 0.20 1.00 0.93

Note, however, that correlation filters are obtained with classical signal pro-
cessing techniques, directly in the Fourier domain. As we have shown, Circulant
matrices are the key enabling factor to extend them with the Kernel Trick.

4 Experiments

We used the techniques described above to implement a simple tracking system.
Many obvious improvements, like failure detection, motion and uncertainty mod-
els (eg., particle filter), or feature extraction, were deliberately left out. This was
done to reduce the confounding factors to a minimum, and provide an accurate
validation of the learning algorithm.

From now on, we will assume two-dimensional images. A thorough proof is
given in Appendix A.3. In practice it means that the 2D Fourier transform can
replace the 1D FT in all the previous equations.

4.1 Pre-processing

The proposed method can operate directly on the pixel values, with no feature
extraction. However, since the Fourier transform is periodic, it does not respect
the image boundaries. The large discontinuity between opposite edges of a non-
periodic image will result in a noisy Fourier representation. A common solution
is to band the original n× n image (xraw) with a cosine (or sine) window:

xij =
(
xraw
ij − 0.5

)
sin(πi/n) sin(πj/n), ∀i, j = 0, . . . , n− 1 (18)

Values near the borders will be weighted to zero, eliminating discontinuities.
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4.2 Training Outputs

During training, we must assign a label to each sample. In tracking-by-detection,
samples near the target center are positive and others are negative. But since
the square loss of KRLS allows for continuous values, we don’t need to limit
ourselves to binary labels. The line between classification (binary output) and
regression (continuous output) is essentially blurred.

Given the choice of a continuous training output, we will use a Gaussian
function, which is known to minimize ringing in the Fourier domain [21]. The
output will be 1 near the target location (i′, j′), and decay to 0 as the distance
increases, with a bandwidth of s:

yij = exp
(− (

(i− i′)2 + (j − j′)2
)
/s2

)
, ∀i, j = 0, . . . , n− 1 (19)

The continuous labeling yields spatially smooth classifier responses, which results
in more accurate position estimates than binary labeling (Table 2).

4.3 Overview

The tracker follows a simple pipeline. A window of a fixed size (double the
target size) is cropped from the input image, at the estimated target location.
No feature extraction is performed, other than a cosine window on the raw
pixel values (Eq. 18). The target is located by evaluating Eq. 9 and finding the
maximum response. Eq. 7 is then used to train a new model (α and x).

To provide some memory, the new model is integrated by linearly interpolating
the new parameters with the ones from the previous frame. We found that this
scheme, adapted from the work of Bolme et al. [12], is enough for our purposes.
Future work will explore other ways to aggregate samples over time.

4.4 Evaluation

We compared the proposed method with several state-of-the-art trackers, on 12
challenging videos. We used available ground truth data to compute precisions.

The best way to evaluate trackers is still a debatable subject. Averaged mea-
sures like mean center location error or average bounding box overlap can yield
unintuitive results, for example penalizing an accurate tracker that fails for a
small amount of time more than an inaccurate tracker.

Babenko et al. [3] argue for the use of precision plots. The plots show, for a
range of distance thresholds, the percentage of frames that the tracker is within
that distance of the ground truth. These plots are easy to interpret. More accu-
rate trackers have high precision at lower thresholds, and if a tracker fails it will
never reach a precision of 1 for a large range. They are shown in Fig. 2.

The parameters are fixed for all videos to prevent overfitting. We tested our
tracker with a Gaussian kernel. A polynomial kernel with appropriate parameters
gives similar results, but the Gaussian kernel is easier to adjust, since it has only
one parameter with an intuitive meaning. The bandwidth of the Gaussian kernel



712 J.F. Henriques et al.

Algorithm 1 . MATLAB code for our tracker, using a Gaussian kernel
It is possible to reuse some values, reducing the number of FFT calls. An imple-
mentation with GUI is available at: http://www.isr.uc.pt/~henriques/

% Train ing image x( cu r r en t frame ) and t e s t image z ( next frame )
% must be pre−proce s sed with a co s i n e window . y has a Gaussian
% shape cen te r ed on the t a r g e t . x , y and z are M−by−N matr i c e s .
% Al l FFT operat ion s are standard in MATLAB.

funct ion a lpha f = training (x , y , sigma , lambda ) % Eq . 7
k = dgk (x , x , sigma ) ;
a lpha f = f f t 2 ( y ) . / ( f f t 2 ( k ) + lambda ) ;

end

funct ion re sponses = detection ( a lphaf , x , z , sigma ) % Eq . 9
k = dgk ( z , x , sigma ) ;
r e sponse s = r e a l ( i f f t 2 ( a lpha f .∗ f f t 2 ( k ) ) ) ;

end

funct ion k = dgk( x1 , x2 , sigma ) % Eq . 16
c = f f t s h i f t ( i f f t 2 ( f f t 2 ( x1 ) .∗ conj ( f f t 2 ( x2 ) ) ) ) ;
d = x1 ( : ) ’ ∗ x1 ( : ) + x2 ( : ) ’ ∗ x2 ( : ) − 2∗ c ;
k = exp(−1 / sigma ˆ2 ∗ abs (d) / numel ( x1 ) ) ;

end
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Fig. 2. Precisions plots for 6 sequences (percentage of frames where the predicted
location is within the threshold of the ground truth). Best viewed in color. See the
supplemental material for plots of the remaining sequences.
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is σ = 0.2, spatial bandwidth is s =
√
mn/16 for an m×n target, regularization

is λ = 10−2, and the interpolation factor for adaptation is 0.075.
We found that MOSSE [12] is tuned only for 64 × 64 images. However, to

provide a fair comparison, we made some improvements: regularization λ = 10−4,
spatial bandwidth proportional to target size (s =

√
mn/16), no failure detection

and no randomized initial samples. This is essentially our system with a linear
kernel (Sec. 3.3). We called it MOSSE2. All other parameters are the same as
with the Gaussian kernel. It has high accuracy on many sequences, but ours
shows equal or greater accuracy in 10 of the 12 sequences (see Table 2).

For non-deterministic trackers, we take the median of the precisions over 5
runs. The sequences twinings and cliffbar have large scale changes, so we
compare with versions of MILTrack [3], Online Ada-Boost (OAB) [3, Sec. 4] and
IVT [22] that track through scale. Even without a notion of scale, the proposed
method works well in these videos, as shown in Table 2.

Struck [4] achieves very good results (over 0.9 in most sequences), and out-
performs other trackers like MILTrack, OAB, SemiBoost [6] and FragTrack [23].
Still, it has lower accuracy than the proposed method because it optimizes
bounding box overlap. The proposed tracker is especially geared for high lo-
calization, because circulant matrix theory allows it to encode samples from all
locations. This includes, as negative samples, both distant distractors and small
displacements of the true target. The frequency-domain representation also al-
lows us to minimize ringing (Sec. 4.2), resulting in spatially smooth responses
(Fig. 1). This is not possible with unstructured random sampling.

Please note that the goal is not merely to show higher precisions. Indeed, every
tracker fails in at least one video. However, we can achieve very competitive
results with a much simpler and faster tracker. Most recent trackers rely on
heavy optimization methods, and manage budgets of support vectors or similar.
Our algorithm has only a few lines of code (Algorithm 1) and runs at hundreds
of frames-per-second. We also hope our theoretical analysis is of interest in itself.

5 Conclusion

We presented a theoretical framework to analyze and explore the consequences
of dense sampling in tracking-by-detection. The result is a collection of closed-
form, fast and exact solutions for online training, detection, and computation of
non-linear kernels. We expect this last contribution to find useful applications
outside of tracking. We also hope to have shown that some structures that occur
naturally in computer vision, such as Circulants, are still relatively unexplored.
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Appendix A.1: Dense Sampling KRLS Derivation

We will use the fact that K is circulant, replacing Eq. 6 in the generic KRLS
solution of Eq. 2. Observing that any identity matrix I is circulant, I = C(δ)

with δ = [1, 0, 0, . . . , 0]T , Eq. 2 becomes

α = (C(k) + λC(δ))
−1

y = (C(k+ λδ))
−1

y. (20)
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The properties of circulant matrices allow element-wise multiplication and in-
version in the Fourier domain [19]. Making use of these properties, and the fact
that F (δ) = �, where � is an n× 1 vector of ones,

α =
(
C
(F−1 (F(k) + λ�)

))−1
y = C

(
F−1

(
1

F(k) + λ

))
y. (21)

The division is performed element-wise. Using Eq. 4, we finally obtain

α = F−1

( F(y)

F(k) + λ

)
. (22)

Appendix A.2: Derivation of Fast Detection Formula

If we denote the test image by z, detection amounts to classifying all the shifted
test images zi = P iz. Each response is then given by

ŷi =
∑

j

αjκ(P
iz, P jx), (23)

since the training samples are xi = P ix (Eq. 5). Rewriting it in matrix notation,
the vector of all classifier responses is ŷ = C(k̄)α, where k̄ is the vector with
elements k̄i = κ(z, P ix). We can now apply the convolution property (Eq. 4):

ŷ = F−1
(F(k̄)�F(α)

)
. (24)

Appendix A.3: Generalization of Circulant Forms

For a matter of clarity, all of our derivations have assumed that the images are
one-dimensional. The 2D case, despite its usefulness, is also more difficult to ana-
lyze. The reason is that the 2D generalization of a circulant matrix, related to the
2D Fourier Transform, is a Block-Circulant Circulant Matrix (BCCM, ie., a ma-
trix that is circulant at the block level, composed of blocks themselves circulant).
All of the properties we used for circulant matrices have BCCM equivalents.

We will now generalize Theorem 1. A 1D image x can be shifted by i with
P ix. With a 2D image X , we can shift both its rows by i and its columns by i′

with P iXP i′ . Additionally, in an n2 × n2 matrix M composed of n× n blocks,
we will index the element i′j′ of the block ij as M(ii′),(jj′).

Theorem 2. The block matrix K with elements K(ii′),(jj′) = κ(P iXP i′ , P jXP j′)
is a BCCM if κ is a unitarily invariant kernel.

Proof. Because κ is unitarily invariant, we haveK(ii′),(jj′) = κ(X, P j−iXP j′−i′).
Since K(ii′),(jj′) depends only on (j− i) mod n and (j′− i′) mod n, K is BCCM.

K can now be constructed as C(K ′), where the n × n matrix K ′ has elements
kii′ = κ(X, P iXP i′), and C(·) constructs a BCCM. The relevant solutions can
then be re-derived with the 2D FT in place of the 1D FT.
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