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Abstract. A new architecture, denoted spatial pyramid matching on the
semantic manifold (SPMSM), is proposed for scene recognition. SPMSM
is based on a recent image representation on a semantic probability sim-
plex, which is now augmented with a rough encoding of spatial infor-
mation. A connection between the semantic simplex and a Riemmanian
manifold is established, so as to equip the architecture with a similar-
ity measure that respects the manifold structure of the semantic space.
It is then argued that the closed-form geodesic distance between two
manifold points is a natural measure of similarity between images. This
leads to a conditionally positive definite kernel that can be used with
any SVM classifier. An approximation of the geodesic distance reveals
connections to the well-known Bhattacharyya kernel, and is explored to
derive an explicit feature embedding for this kernel, by simple square-
rooting. This enables a low-complexity SVM implementation, using a
linear SVM on the embedded features. Several experiments are reported,
comparing SPMSM to state-of-the-art recognition methods. SPMSM is
shown to achieve the best recognition rates in the literature for two large
datasets (MIT Indoor and SUN) and rates equivalent or superior to the
state-of-the-art on a number of smaller datasets. In all cases, the result-
ing SVM also has much smaller dimensionality and requires much fewer
support vectors than previous classifiers. This guarantees much smaller
complexity and suggests improved generalization beyond the datasets
considered.

1 Introduction

The ability of humans to assign semantic labels (i.e., scene categories) to images,
even at modest levels of attention [1], has motivated significant recent interest in
image classification in computer vision (e.g., [2–7]). A popular image representa-
tion for this problem is the bag-of-visual-features (BoF), an orderless collection
of features extracted from the image at the nodes of an evenly-spaced grid [3].
This is used to learn a mid-level theme representation, which provides an image
description at a higher level of abstraction. In many works [4, 8, 9], the mid-level
representation consists of a codebook of visual words, learned in a fully unsu-
pervised manner. The quantization of the BoF with this codebook produces a
bag-of-visual-words (BoW) histogram, which is fed to a discriminant classifier,
typically a variant of the support vector machine (SVM), for image classifica-
tion. It has been shown that augmenting the BoW representation with a rough
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encoding of spatial information [4] and a non-linear kernel [10] can substantially
boost recognition performance.

An alternative to the unsupervised theme space is to rely on predefined se-
mantic themes. A set of themes is defined, a classifier trained for the detection
of each theme, and each image fed to all theme classifiers. The image is finally
represented by the vector of resulting classification labels. These could be binary,
denoting presence/absence of the theme in the image, or graded, denoting the
posterior probability of the theme given the image [11]. Since the graded repre-
sentation contains all information necessary to derive the binary labels, it is the
only one considered in this work. When compared to BoW, these approaches
have several advantages. First, they produce a semantic theme space, i.e., a
theme space whose coordinate axes correspond to semantic concepts. This space
is usually denoted the semantic space (cf. [12]). It has been argued that relying
on representations close to human scene understanding is as important as pure
recognition accuracy [13]. Second, since the dimensionality of the semantic space
is linear in the number of themes, this representation is much more compact than
the high dimensional histograms required by BoW. Finally, while it has been ar-
gued that BoW lacks discriminative power [14], theme models are by definition
discriminant. Hence, besides being more compact, semantic themes usually en-
able a more discriminative encoding of image content. When compared to BoW,
the main limitation of the semantic theme representation is that theme models
can lack generalization ability. This follows from the limited number of training
images available per theme, much smaller than total training set size. The prob-
lem has been addressed in the literature, where different strategies have been
suggested to tackle the discrimination vs. generalization trade-off, by adapting a
general background model to the characteristics of each theme [15, 7]. A second
limitation is that the theme-based representation has not been explored as ex-
tensively as the BoW. Although it could potentially benefit from the extensions
developed for the latter, such as spatial information encoding and non-linear ker-
nels, these have so far not been explored extensively. In some cases, e.g., kernel
design, they are not straightforward, due to the fact that the semantic space is
a probability simplex .

Besides classification accuracy, the computational complexity of image rep-
resentations has been deemed increasingly important for image classification
in the recent past. This is partly due to the emergence of large-scale bench-
mark datasets, such as MIT Indoor [5] or SUN [16]. In BoW methods, where
recognition performance tends to increase with codebook size [17, 18], codebook
generation quickly becomes a computational bottleneck. This is compounded by
the need to train a kernelized classifier from a vast number of high dimensional
BoW histograms. Finally, by multiplying the dimensionality of the BoW feature
space by the number of spatial pyramid cells, the addition of the spatial pyramid
structure of [4] can render the classification problem computationally intractable.
Although the semantic space representation is much more compact than BoW,
its combination with spatial encoding mechanisms and large theme vocabularies
can also lead to large-scale learning problems. While in the BoW literature some
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authors have proposed explicit data embedding strategies [19, 20], which enable
the replacement of non-linear by linear SVMs, greatly reducing computation,
such embeddings are not yet available for theme-based representations.

Contribution. In this work, we address several of the current limitations of the
semantic theme representation by proposing extensions of spatial information
encoding, kernel design, and data embeddings compatible with image representa-
tion on a probability simplex . This is done through the following contributions.
In Section 3.1, we introduce the probability simplex as a statistical manifold and
leverage principles of information geometry to derive a novel non-linear kernel on
that manifold. We then adapt the spatial pyramid structure of [4] to the seman-
tic space. Following [4], we refer to this architecture, i.e., the combination of the
new kernel and the underlying semantic theme representation, as spatial pyramid
matching on the semantic manifold (SPMSM). In Section 3.2, we further show
that the Bhattacharyya kernel is an approximation to the geodesic distance on
this manifold. This leads to an explicit feature embedding, which enables the
use of linear SVMs on large-scale problems. Extensive experiments, reported in
Section 4, demonstrate that image classification based on the proposed SPMSM
has state-of-the-art performance on a number of datasets.

2 Mid-Level Theme Representation

We start by briefly reviewing the representation of [11]. This is based on a
predefined collection T of M themes (e.g., sky, grass, street). Learning is weakly
supervised from a training set of images Ij , each augmented by a binary caption
vector cj . Weak supervision implies that a non-zero entry at the i-th position
of cj indicates that theme i is present in image j, but a zero entry does not
necessarily imply that it is absent. Images are labeled with one or more themes,
which could be drawn from the set of scene category labels T or from another
label set (e.g., scene attributes). When theme labels are the image labels, cj

contains a single non-zero entry.
As in BoW, an image Ij is represented as a collection of visual features, in some

feature space X , i.e., Ij = {xj
i}Ni=1. These features are extracted fromN localized

image patches P j
i ,x

j
i = f(P j

i ). The generative model that maps an image to the
semantic space is shown in the inference part of Fig. 1: visual features are drawn
independently from themes, and themes are drawn from a multinomial random
variable of parameter vector sj ∈ [0, 1]M . The theme occurrences of image Ij
are summarized in the theme occurrence vector (oj1, . . . , o

j
M )

′
. The mutinomial

parameters in sj are inferred from {xj
i}Ni=1 as follows (the image index j is

omitted for brevity). First, the theme of largest posterior probability is found
per xi, i.e., t

∗
i = qb(xi) with

qb(xi) = argmax
t∈T

PT |X(t|xi) = argmax
t∈T

PX|T (xi|t)
∑

w PX|T (xi|w)
. (1)
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Fig. 1. Mapping of database images, represented by collections of visual features, to
points on the semantic simplex (here P

2)

This assumes equal prior probability for all themes, but could be easily extended
for a non-uniform prior. The mapping qb : X → T quantizes features into themes
in a Bayesian, minimum probability-of-error, fashion. The occurrences ot = |{i :
t∗i = t}| of each theme t are then tallied to obtain the empirical theme occurrence
vector. Finally, the MAP estimate of s, for a Dirichlet prior of parameter α, is

ŝ =

(
o1 + α− 1

∑
w(ow + α− 1)

, . . . ,
oM + α− 1

∑
w(ow + α− 1)

)′
(2)

where α acts as a regularization parameter. In the terminology of [11], ŝ is
denoted the semantic multinomial (SMN) of image I. This establishes the desired
mapping Π : XN → P

M−1, I �→ s from an image represented in feature space
to an image represented as a point on the semantic (probability) simplex P

M−1.
Learning the mapping Π requires estimates of the theme-conditional distribu-

tions PX|T (x|t) from the available weakly-labeled image data. Since the theme
label of each visual feature is not known, this is done with resort to multiple
instance learning, based on the image formation model shown in the learning
part of Fig. 1: visual features extracted from all images labeled with theme t are
pooled into dataset Dt = {xj

i |c
j
t = 1}, which is then used to estimate PX|T (x|t).

The intuition is that visual features representative of the semantic theme are
more likely to occur in the training set and dominate the probability estimates.
In multiple instance learning terminology, Dt is the bag of positive examples for
theme t. Fig. 1 illustrates learning and inference on a three-category toy prob-
lem. Note that PM−1 serves as a new feature space for training a discriminant
classifier.
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3 Spatial Pyramid Matching on the Semantic Manifold

In this section we 1) introduce a statistical (semantic) manifold for image rep-
resentation, 2) derive a suitable image matching kernel from the principles of
information geometry and 3) augment the theme representation of the previous
section with a commonly used encoding of spatial information.

3.1 The Semantic Manifold

To design a kernel for the SMN representation, one pragmatic strategy would be
to choose a kernel which computes l2 distances in feature space [18, 9], e.g., the
classic RBF kernel. This, however, implicitly assumes a flat Euclidean geometry
and ignores the actual geometry of the SMN data on the semantic simplex. One
alternative that achieves better classification performance for BoW is the spa-
tial pyramid match kernel (SPMK) of [10, 4], which replaces the l2 norm by the
histogram intersection (HI) metric. This, and the introduction of computation-
ally efficient approximations [19], have made SPMK the prevalent kernel for the
BoW representation.

To design a kernel suited for the SMN representation, we study the semantic
simplex P

M−1 in more detail. Since SMNs are parameter vectors of multinomial
distributions, we equate similarity between two SMNs as the distance among
the two associated multinomial distributions. From information geometry, it is
known that PM−1 is a Riemannian manifold1 if endowed with the Fisher infor-
mation metric I (cf. [21, 22]). Hence, the distance among two SMNs s and s∗ can
be computed as the geodesic distance dI(s, s

∗) on this multinomial manifold.
Although geodesics are in general hard to compute, it is possible to exploit the
isomorphism F : PM−1 → S

M−1
+ , s �→ 2

√
s between the manifolds (PM−1, I)

and (SM−1
+ , δ), where SM−1

+ is the positive portion of a sphere of radius two and

δ denotes the Euclidean metric inherited from embedding S
M−1
+ in R

M . The
isometry enables the computation of dI as the arc on the great-circle connecting
F (s) and F (s∗) on the sphere, i.e.,

dI(s, s
∗) = dδ(F (s), F (s∗)) = 2 arccos(〈

√
s,
√
s∗〉) . (3)

Since P
M−1 is denoted the semantic simplex, we refer to (PM−1, I) as the asso-

ciated semantic manifold. It is worth mentioning that the Hellinger distance
dH(s, s∗) = 2 sin(dI(s, s

∗)/4) and the Kullback-Leibler (KL) divergence are
identical to dI up to second order as s → s∗ [23]. The KL divergence was
previously used as a similarity measure between SMNs, in a retrieval context
[12], but without exploring the connections to information geometry.

These connections are particularly important for kernel design, where the
metric determines the properties of the kernel. For example, the KL divergence
is not symmetric and does not guarantee a positive definite kernel [24]. On

1 A technical issue is to ensure, by (2), that SMN components are positive to guarantee
that PM−1 is actually a manifold [21].



364 R. Kwitt, N. Vasconcelos, and N. Rasiwasia

the other hand, it is known that 1) the negative of the geodesic distance −dI
satisfies all properties of a conditionally positive definite (cpd) kernel [22], and
2) cpd kernels can be used in any SVM classifier [25]. Consequently, we define
the semantic kernel on the semantic manifold as

k(s, s∗) := −dI(s, s
∗) s, s∗ ∈ P

M−1. (4)

As a matter of fact, the information-diffusion kernel of [26], specialized to the
multinomial family, is an exponential (squared) variant, i.e., exp(−d2I), of (4).
Given a smooth-parametrization of (4), we could also leverage the work of
[27], where the authors propose an adaption to SVM learning that optimizes
smoothly-parametrized kernels on the simplex. While the semantic kernel might
potentially benefit from those advances, we have not explored that direction in
this work.

Spatial Pyramid Encoding. It is now well established that augmenting the
BoW representations with a rough encoding of spatial information, by means
of a spatial pyramid [4, 28, 9], leads to significant gains in image classification.
The extension of this idea to the SMN representation is quite straightforward. It
suffices to compute a SMN for each of the spatial pyramid cells. Note that this
introduces a localized semantic representation, which captures many attributes
of human scene understanding. More precisely, the global SMN at pyramid level
0 captures the semantic gist of the image, e.g., “mostly about grass, sky, and
mountains”, while SMNs at higher levels localize this description to each spatial
pyramid cell, e.g., “mostly grass in bottom cells, mostly sky in upper cells, mostly
mountains in between”. In this way, spatial cells at finer grid resolutions are more
informative of local semantics and exhibit less ambiguity (cf. [13]). The structure
of the SMN representation and the procedure used to estimate SMNs also enable
the computation of the pyramid cell SMNs in a very efficient manner. In fact, it
suffices to compute the SMNs of the pyramid cells at the finest grid resolution.
The SMN of index n at the overlying pyramid level l can then be directly inferred
from its four child-cell SMNs {sl+1,4n+i}3i=0, at level l + 1, by computing the
convex combination sl,n = 1/4 · (sl+1,4n + · · · + sl+1,4n+3). In other words, the
SMN of one spatial pyramid cell at level l lies in the convex hull spanned by its
four child-cell SMNs at the next finer level. In total, there are 1/3 · (4L−1) SMNs
per image, for a spatial pyramid with L levels.

In order to incorporate spatial constraints in the classification, it is possible
to combine the semantic kernel with the spatial pyramid structure, in a way
similar to [4]. This consists of 1) assigning more weight to matches at finer
pyramid resolutions and 2) normalizing the geodesic distances at one pyramid
level by the number of grid cells at that level. Given two images Ia and Ib,
represented by their concatenated SMNs α and β, the semantic spatial pyramid
match kernel (SSPMK) is defined as

k(α,β) = −
L−1∑

l=0

wl

4l∑

n=0

dI(ϕl,n(α), ϕl,n(β)) (5)
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with wl := w̃lw̄l, where w̃l = 1/4l denotes the normalization weight at level l and
w̄l = 2−(L+l) denotes the corresponding matching weight. Note that we used
ϕl,n(α) = sl,n to denote the extraction of sl,n from a concatenated SMN vector
α. Since (5) is a weighted sum of semantic kernels, and the closure property for
weighted sums of positive definite kernels extends to the family of cpd kernels
[25], the SSPMK is a cpd kernel.

3.2 Data Embedding

Given the SMN representation, it remains to train an SVM classifier. For
small-scale datasets, it is feasible to learn a non-linear SVM, albeit the training
complexity is somewhere between quadratic and cubic [20]. In general, however,
non-linear SVMs do not scale well with training set size. On large-scale problems,
linear SVMs are overwhelmingly preferred due to their efficient (i.e., linear-time)
training algorithms. The question is how to rely on a linear SVM, but still some-
how exploit the power of the SSPMK. Ideally, it would be possible to derive an
explicit SMN embedding that preserves the advantages of the geodesic distance.
The training of a non-linear SVM for SMN classification could then be reduced
to training a linear SVM on the embedded features. Unfortunately, exact embed-
dings are rarely available. Although approximations are possible, these usually
entail a loss in recognition performance.

While a popular embedding exists for the HI kernel [19], it exploits the ad-
ditivity property of the kernel. Since the semantic kernel of (4) is not additive,
neither the embedding of [19], nor the embedding learning method of [20] are
feasible. One alternative, that we explore, is to replace the arccos term by a
first-order Taylor series around 0, i.e., arccos(x) ≈ π/2 − x + O(x)2. This leads
to the approximation of (4) by

k(s, s∗) ≈ −π + 〈
√
s,
√
s∗〉 s, s∗ ∈ P

M−1 . (6)

Notably, the dot-product on the right-hand side is the additive Bhattacharyya
kernel of [20]. Although, a linear approximation can be coarse, the ability to
immediately read the explicit data embedding φ(x) =

√
x is appealing, since it

entails almost no computational cost. Finally, taking the spatial pyramid struc-
ture into account, the extended embedding for the n-th SMN at pyramid level l
can be written as

φ(sn,l) =
√
wlsn,l . (7)

While the Bhattacharyya kernel has previously been used in image classification
(cf. [29]), its practical success now has another principled justification due to the
close relationship with the geodesic distance.

4 Experiments

In this section, we report on a number of experiments designed to evaluate the
classification accuracy of the proposed SPMSM architecture, i.e., the combina-
tion of the SMN representation of (2) and the SSMPK of (5).
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4.1 Datasets and Implementation

Three popular, yet rather small, benchmark datasets and two recent mid- to
large-scale datasets were used in our recognition experiments. The smaller ones
are the LabelMe [2], UIUC Sports [30] and 15 Scenes (N15) [3, 4] datasets.
For mid- to large-scale experiments, we used the MIT Indoor [5] scenes and
the SUN [16] dataset. We use the prevalent training/testing configurations in
the literature. Recognition rates on LabelMe, Sports and N15 were averaged
over three test runs with random training/testing splits. In the case of MIT
Indoor and SUN, the training/testing configurations are provided by the original
authors. All images were converted to grayscale and resized to have maximum
dimension of 256 pixels (while maintaining the aspect ratio).

The appearance representation was based on SIFT2 descriptors [31], com-
puted on an evenly-spaced 4×4 pixel grid. 128-component Gaussian mixtures of
diagonal covariance were used to model theme distributions, and mixture param-
eters estimated with the EM algorithm (initialized by K-Means++). We chose
a directed mixture parameter estimation approach in contrast to the hierarchi-
cal estimation procedure employed in [12, 11]. All experiments involving spatial
pyramids relied on three pyramid levels. Further refinements did not produce im-
provements, confirming the findings of [4]. For the tests on LabelMe, Sports, N15
and MIT Indoor, we used the LIBSVM [32] implementation of a C-SVM and a
1-vs-1 multi-class classification strategy. On feature embedding experiments, we
relied on LIBLINEAR [33] to train a linear SVM and switched from 1-vs-1 to
1-vs-all multi-class classification, for performance reasons. The SVM cost factor
C was determined by three-fold cross-validation on the training data, evaluated
at 20 linearly spaced positions of logC ∈ [−2, 4].

4.2 Evaluation

Semantic Kernel. The first set of experiments was designed to evaluate the
semantic kernel of (4). In all cases, the image representation was the SMN of (2).
We started with a comparison to two popular kernels in the literature: HI (kHI ),
and χ2 (kχ2 ). The kernel definitions are given in Table 1 for two input vectors
x,y ∈ [0, 1]M . It is worth noting that SVM training with one of these kernels
only requires tuning of the cost factor C, whereas RBF variants require tuning of
the kernel width as well. The table presents the recognition accuracies obtained
on Sports, LabelMe and N15. The semantic kernel achieves the highest average
rate on all datasets. This illustrates the benefits of adopting a kernel which is
tailored to the manifold structure of the semantic space.

Spatial Pyramid Encoding. We next considered the full SPMSM architec-
ture, by augmenting the semantic kernel with SPM. This was compared to the
standard implementation of SPM with the kernels of the previous experiment.
Results are listed in Table 1. Two conclusions are possible from the table. First,

2 LEAR impl.: http://lear.inrialpes.fr/people/dorko/downloads.html

http://lear.inrialpes.fr/people/dorko/downloads.html
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Table 1. Comparison of the semantic kernel to the HI (kHI) and the χ2 kernel (kχ2)
without and with SPM

Kernel Type
without SPM with SPM

Sports LabelMe N15 Sports Labelme N15

Proposed, see (4), (5) 79.1 84.7 79.1 83.0 87.5 82.3
kχ2 ,

∑
i

xiyi
(xi+yi)

78.6 84.6 78.9 81.6 86.2 81.0

kHI,
∑

i min(xi, yi) 77.8 84.1 78.6 81.8 87.0 82.0

the addition of the spatial pyramid structure does not change the relative per-
formances of the kernels: the gap in recognition performance between SPM with
kHI and SPMSM is similar to that between the HI (kHI ) and the semantic ker-
nel when omitting SPM. Second, the results are consistent with previous reports
on the benefits of spatial information encoding [4]. Comparing the results with
and without SPM shows that, for the SSPMK, this gain is around three to four
percentage points. In addition, we remark that training with a RBF kernel, op-
timizing the cost factor and kernel width on a 2-D grid, exhibits performance
similar to the worst result per kernel on each database of Table 1 (with and
without SPM). This underpins the assertion (cf. [34, 27]) that kernels which are
effective in Euclidean space (like RBF) are not necessarily effective in another
space, such as the semantic manifold.

Data Embedding. Finally, we evaluated the semantic kernel approximation
of Section 3.2 and the square-root embedding of (6). This was compared to the
popular HI kernel embedding of [19] and to a linear SVM without any embed-
ding, i.e., applied directly to the SMNs. The comparison to [19] was performed
against the sparse φ2 embedding3 (denoted as φs

2 in the original work) with ten
discrete levels. Table 2 lists the recognition rates on all datasets, without spatial
pyramid matching. A few conclusions are possible from the table. First, the ad-
vantages of using the kernel+embedding combination are not very significant for
small datasets. In fact, [19] underperformed the linear SVM without embedding
on semantic space, on all three small datasets. While the square-root embedding
outperformed the latter, the gains were relatively small. Second, a different pic-
ture emerges for the large datasets, where both embeddings outperformed the
SVM without embedding. Again, the square-root embedding achieved the best
performance, now with non-trivial gains over the two other approaches. Third,
the square-root embedding outperformed the embedding of [19], preserving the
advantages of the semantic kernel on all datasets. Finally, although there is a
drop in recognition rate when compared to Table 1, this drop is small (about one
to two percentage points). We believe that the computational savings associated
with a linear SVM far outweigh this slight loss in recognition performance.

Comparing to Bag-of-Words. This set of experiments was designed to com-
pare SPMSM to the combination of BoW and SPM, which can be considered a

3 Available from http://www.cs.berkeley.edu/~smaji/projects/add-models/

http://www.cs.berkeley.edu/~smaji/projects/add-models/
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Table 2. Comparison (without SPM) of the proposed feature embedding to that of
[19] and no embedding

Dataset
Embedding Variant

Maji & Berg [19] Proposed Without

Sports 76.9 77.8 77.1
LabelMe 83.0 84.3 84.0
N15 76.8 77.3 77.0
MIT Indoor 32.2 33.7 31.9
SUN 23.1 24.3 22.0

de-facto standard for image classification. However, the comparison turned out
not to be straightforward. For example, it is well known that the performance
of BoW methods increases with codebook size. This is, in significant part, due
to the associated increase in the dimensionality of the SVM that ultimately
classifies the images. In general, the performance of an SVM improves with the
dimensionality of its input, as long as the latter remains in a reasonable range.
The problem is that SPMSM and BoW+SPM can have very different SVM
dimensionalities.

Without the spatial pyramid structure, this dimensionality equals the number
of themes, for SMN, and the number of codewords, for BoW. With the spatial
pyramid, these numbers are multiplied by the number of spatial pyramid cells,
which is 21 for three pyramid levels. Since there are as many themes as scene
category labels, SPMSM has a fixed SVM dimensionality. On the other hand, it is
always possible to increase the codebook size of BoW. While this suggests using
SPMSM as a reference, its dimensionality is usually too low for BoW+SPM,
which performs quite poorly for codebook cardinalities equivalent to the number
of scene categories. An alternative would be to increase the dimensionality of
SPMSM, e.g., by replacing the hard assignment of (1) with a histogram of the
posterior probabilities PT |X(t|xi) for each theme t.

We have not considered such possibilities, simply measuring the recognition
rate of BoW+SPM for various values of the codebook size. The recognition rates
are shown in Table 3. Rates higher than those achieved by SPMSM are marked in
bold, whereas rates at equivalent dimensionality are underlined. It is clear that
BoW+SPM requires a much higher dimensionality than SPMSM, for equiva-
lent performance. For the datasets considered, the ratio of dimensionalities is
≈ 30. While this may not be a problem for the small corpora that are commonly
used in the literature, e.g., the eight category LabelMe or Sports datatsets, it
can be much more problematic for richer corpora, such as MIT Indoor or SUN.
Even on the modestly sized N15 dataset, SPM+BoW requires a codebook of
size 512 to guarantee a minor gain over SPMSM. This corresponds to a SVM of
512×21 = 10, 752 dimensional input, as opposed to the 15×21 = 315 dimensions
of SPMSM. From the trend in Table 3, the aforementioned threshold would likely
occur at 43, 008 dimensions for MIT Indoor. Since this exceeds the capacity of
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Table 3. Recognition rate of BoW+SPM, for varying codebook sizes. Results higher
than those achieved by SPMSM (shown at the bottom) are marked bold; results at equal
SVM dimensionality are underlined. Numbers in parentheses denote the percentage of
the training examples selected as support vectors.

Codebook
Dataset

LabelMe Sports N15 MIT Indoor

8 74.0 (74) 64.8 (87) 63.0 (89) 19.1 (98)
16 78.8 (75) 69.3 (88) 69.7 (89) 25.3 (98)
32 82.9 (75) 77.7 (88) 73.6 (89) 32.6 (98)
64 85.9 (75) 80.4 (89) 77.9 (89) 36.2 (99)
128 87.4 (77) 81.4 (90) 80.8 (90) 38.8 (99)
256 88.0 (79) 83.6 (91) 81.7 (91) 41.0 (99)
512 88.6 (82) 84.7 (92) 83.1 (93) 43.6 (99)

SPMSM 87.5(57) 83.0 (67) 82.3 (74) 44.0(95)

the SVM package that we have used in these experiments we could not even
confirm if BoW+SPM can actually outperform SPMSM (dimensionality 1, 407)
on this dataset.

Another factor that confounds the comparison of the two approaches is the
type of support vectors that they produce. In fact, the percentage of examples
that an SVM chooses as support vectors is a well known measure of the diffi-
culty of the classification, and the degree to which the classifier is “overfitting
to the dataset”, i.e., modeling the intricacies of the particular dataset where
performance is evaluated, rather than learning a truly generic decision rule.
The numbers in parenthesis in Table 3 show the support vector percentages of
BoW+SPM, for various codebook sizes, and SPMSM. Note that the percentages
are indeed higher for the datasets of lower recognition rate. It is also clear that,
on the harder datasets, the BoW+SPM SVM considers virtually every training
example a support vector. The fact that the SPMSM SVM achieves near equiv-
alent recognition rates with much smaller support vector percentages indicates
that the classification is much easier on the semantic manifold. Hence, SPMSM
is likely to generalize much better if applied to data collected from other sources.

In summary, on the large datasets considered, SPMSM has state-of-the-art per-
formance. On the remaining, its performance is superior to that of BoW+SPM,
by a large margin, for SVMs of equivalent dimensionality. On all datasets, it took
BoW+SPM a 30-fold increase in dimensionality to achieve results similar to those
of SPMSM, if at all. The percentages of examples selected as support vectors also
suggest that classification is much simpler on the semantic manifold, and that
SPMSM is likely to generalize better to unseen datasets. Computationally, since
SVM complexity is linear on the product of the number of support vectors and
dimensionality, the SPMSM SVM is significantly less challenging to implement.

Comparing to the State-of-the-Art. Finally, we compare SPMSM to the
state-of-the-art in the literature. An overview of the recognition rates of various
methods is given in Table 4. Note that a direct comparison of the different
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Table 4. Comparison to the state-of-the-art

Dataset State-of-the-Art Rate [%]

Sports
Li & Fei-Fei [30] 73.4
Proposed 83.0
Wu & Rehg [28] 84.3

LabelMe
Wang et al. [35] 76.0
Dixit et al. [7] 86.9
Proposed 87.5

N15
Lazebnik et al. [4] 81.2
Proposed 82.3
Dixit et al. [7] 85.4

MIT Indoor
Quattoni & Torralba [5] 25.0
Pandey & Lazebnik [36] 43.1
Proposed 44.0

SUN
Xiao et al. [16] 27.2
Proposed 28.9

dentaloffice 42.9 57.1 (14.2)
stairscase 30.0 35.0 (5)
children room 5.6 44.4 (38.8)
hospital room 35.0 35.0 (0)
closet 38.9 77.8 (38.9)
bar 22.2 38.9 (16.7)
warehouse 9.5 33.3 (23.8)
grocerystore 38.1 42.9 (4.8)
buffet 55.0 65.0 (10)
classroom 50.0 50.0 (0)
inside subway 23.8 71.4 (47.6)
corridor 38.1 57.1 (19)
jewelleryshop 0.0 27.3 (27.3)
prisoncell 10.0 45.0 (35)
operating room 10.5 31.6 (21.1)
pool inside 25.0 50.0 (25)
hairsalon 9.5 33.3 (23.8)
locker room 38.1 38.1 (0)
elevator 61.9 66.7 (4.8)
concert hall 45.0 55.0 (10)
restaurant kitchen 4.3 30.4 (26.1)
gameroom 25.0 30.0 (5)

livingroom 15.0 10.0 (-5)
bowling 45.0 75.0 (30)
tv studio 27.8 50.0 (22.2)
library 40.0 50.0 (10)
bakery 15.8 31.6 (15.8)
studiomusic 36.8 36.8 (0)
florist 36.8 73.7 (36.9)
gym 27.8 22.2 (-5.6)
cloister 45.0 80.0 (35)
greenhouse 50.0 70.0 (20)
waitingroom 19.0 19.0 (0)
bedroom 14.3 47.6 (33.3)
laboratorywet 0.0 40.9 (40.9)
winecellar 23.8 28.6 (4.8)
casino 21.1 57.9 (36.8)
office 0.0 38.1 (38.1)
fastfood restaurant 23.5 64.7 (41.2)
airport inside 10.0 10.0 (0)
laundromat 31.8 40.9 (9.1)
artstudio 10.0 25.0 (15)
subway 9.5 42.9 (33.4)
garage 27.8 55.6 (27.8)

bookstore 20.0 55.0 (35)
inside bus 39.1 60.9 (21.8)
auditorium 55.6 55.6 (0)
kindergarden 5.0 55.0 (50)
lobby 10.0 25.0 (15)
deli 21.1 15.8 (-5.3)
computerroom 44.4 50.0 (5.6)
videostore 27.3 36.4 (9.1)
movietheater 15.0 45.0 (30)
trainstation 35.0 75.0 (40)
museum 4.3 21.7 (17.4)
clothingstore 22.2 44.4 (22.2)
mall 0.0 20.0 (20)
kitchen 23.8 47.6 (23.8)
dining room 16.7 27.8 (11.1)
bathroom 33.3 33.3 (0)
church inside 63.2 68.4 (5.2)
meeting room 9.1 31.8 (22.7)
restaurant 5.0 30.0 (25)
nursery 35.0 47.4 (12.4)
toystore 13.6 40.9 (27.3)
shoeshop 5.3 21.1 (15.8)
pantry 25.0 65.0 (40)

Fig. 2.Detailed comparison of the recognition performance of SPMSM and the baseline
of [5] on MIT Indoor. The difference is given in parentheses. Scenes where SPMSM
performs worse are marked red (best viewed in color).

methods is not totally fair, since they differ along many dimensions, not just the
kernel. In fact, many of the BoW enhancements at the core of these methods could
be applied to the SPMSM. Nevertheless, the results of SPMSM classification are
excellent: to the best of our knowledge, the proposed classifier has the highest pub-
lished rates on the large- and mid-scale datasets (SUN andMIT Indoor), and one
of the small-scale ones (LabelMe). On MIT Indoor, it substantially outperforms
the baseline of [5], and does slightly better than the previous best approach of [36].
A detailed comparison to [5] is shown in Fig. 2. The improvements are distributed
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across all indoor scene categories: there are only 11 classes where SPMSM per-
forms at a similar or worse level. With respect to the remaining datasets, Sports
and N15, SPMSM outperforms the baseline and achieves results competitive with
the best in both cases. Note, for example, that the best method on N15 [7] specif-
ically addresses the generalization ability of theme models, through model adap-
tation techniques. Since these techniques could equally be used to improve the
theme models of SPMSM, the two methods are complementary, not competitors.
We plan to include model adaptation in SPMSM in future work.
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