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Abstract. We describe a method to construct a sparse lookup table
(LUT) that is effective in modeling the camera imaging pipeline that
maps a RAW camera values to their sRGB output. This work builds on
the recent in-camera color processing model proposed by Kim et al. [1]
that included a 3D gamut-mapping function. The major drawback in [1]
is the high computational cost of the 3D mapping function that uses ra-
dial basis functions (RBF) involving several thousand control points. We
show how to construct a LUT using a novel nonuniform lattice regression
method that adapts the LUT lattice to better fit the 3D gamut-mapping
function. Our method offers not only a performance speedup of an or-
der of magnitude faster than RBF, but also a compact mechanism to
describe the imaging pipeline.

1 Introduction

This paper is concerned with the color mapping process that is applied onboard a
camera; i.e. how RAW sensor values are mapped to their corresponding standard
RGB (sRGB) outputs. This work falls into the broader topic of radiometric cal-
ibration which is the process of recovering scene radiance (or sensor irradiance)
from image intensities. Radiometric calibration is a well-studied topic in the com-
puter vision field. Representative works include [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12].
The mapping between scene irradiance to image intensities is well-known to
be nonlinear and is generally modeled by a radiometric response function1 de-
noted as f . Existing methods used a variety of approaches to determine f (or
its inverse), including observing the changes in the image due to the exposure
change [2, 3, 4, 5, 6] or lighting change [7, 8], intensity distributions across edges
in single images [10, 11], and statistics from a collection of images [9].

While existing methods were overall effective in modeling the color mapping
process, some RGB colors could not be mapped well using the conventional model
based on per-channel tone-mapping. Recent work by Kim et al. [1] addressed
this issue by proposing to add a 3D gamut-mapping function in the imaging
pipeline. This new imaging model was shown to be significantly more accurate at

1 Also referred to as a camera response function or a tone-mapping function.
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Fig. 1. The in-camera color processing pipeline (adapted from [1]). One significant
performance bottleneck is the used of RBF to model the 3D gamut-mapping function.
RBF requires computing a distance to all control points in the RBF. Our contribution
is to replace several steps in the imaging pipeline with a single sparse LUT based on a
nonuniform lattice layout.

modeling the color mapping process than conventional approaches. In addition,
the introduction of the color-gamut mapping step made it possible to model
different picture styles (e.g. landscape, portrait, vivid, etc). Their model was
expressed as:

⎡
⎣
Irx
Igx
Ibx

⎤
⎦ =

⎡
⎣
fr(erx)
fg(egx)
fb(ebx)

⎤
⎦ , where

⎡
⎣
erx
egx
ebx

⎤
⎦ = h(TsTwEx). (1)

In this pipeline, the RAW sensor values Ex = [Erx, Egx, Ebx]
T are first white-

balanced by a 3×3 diagonal matrix Tw. Then the white-balanced RAW values,
defined in the camera’s color space, are transformed to the linear sRGB space by
a 3×3 matrixTs. The color mapping function h (R3 → R

3) is applied afterwards,
followed by a final compression by the radiometric response functions fc, c ∈
{R,G,B}. Figure 1 shows a diagram of this pipeline.

The work in [1] analyzed over 30 different cameras and found that the gamut-
mapping function, h, could not be accurately represented by a general param-
eterizable model or polynomial. Instead, scatter point interpolation via radial
basis functions (RBFs) was used to model h. While this was effective, it has a
noteable drawback in terms of computational cost because its evaluation requires
computing distances to all control points as illustrated in Figure 1. Although a
full-resolution look-up table (LUT) was also proposed in [1], their dense LUT
required significant memory (over 220MB) and hours to generate. The approach
in [1] is inherently deterministic given the input data. Xiong et al. [13] recently
proposed a probabilistic method that can potentially improve the accuracy of
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Fig. 2. An overview of lattice regression using uniform node placement. This example
is in 2D, but can be easily extended to 3D. The lattice a is defined in the input space.
Each lattice node, ai has a corresponding output value bi. The idea of lattice regression
is to compute the control points bi that interpolate the training-data based on a given
interpolation scheme which define the weights wij .

the gamut-mapping. Their work use local Gaussian processes [14] to learn the
mapping between the RAW and sRGB spaces based on training-data. Similar to
RBF, however, the procedure in [14] involves a k-nearest neighbor search which
requires the distances to the training-data to be computed.

In this paper, we propose a method to significantly speed up the in-camera
color mapping process. Specifically, we introduce a sparse 3D LUT which defines
a lattice of control points that are used to interpolate the gamut mapping. This
method requires no distance computation, but instead indexes directly to the
appropriate LUT cell based on the lattice’s structure as illustrated in Figure 1.
The general trade-off for using a LUT in lieu of a more complex function is a
reduction in accuracy due to the lower-resolution of the control points used for
interpolation in the LUT. To address this issue, we have developed an adaptive
lattice regression algorithm that modifies the lattice layout in a nonuniform
manner to produce a more accurate estimation of the color mapping function.
Moreover, we show that our nonuniform lattice regression method is effective
enough to combine the color transformations (Ts) and radiometric functions
(fc) into the LUT. Our nonuniform lattice regression method gives performances
comparable to the method based on the RBF, but requires a fraction of the time
to evaluate.

The remainder of this paper is organized as follows; Section 2 gives a brief
overview of the lattice regression and related work; Section 3 describes our
nonuniform regression algorithm; Section 4 demonstrates results obtained us-
ing our approach followed by the conclusion and discussion in Section 5.

2 Lattice Regression and Related Work

An efficient method to transform between color spaces is to use a sparse LUT [15].
Given a set of RGB colors x in an input color space and a set of points y in
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the output color space, a LUT is defined over the input color space as a lattice
a, which has vertices {a1, a2, ..., am}. This effectively divides the input color
space into cells with ai’s as a cell’s vertices. The corresponding values of the
output color space for the lattice a is denoted as b = {b1, b2, ..., bm}. The LUT is
applied in the following manner. An input point xi finds its corresponding cell
in a and then interpolates the output value ŷi. For linear interpolation, which
is commonly used, the output estimation ŷi =

∑m
j=1 wijbj, where wij ’s are the

interpolation weights satisfying that wij ≥ 0, wij = 0 if aj is not a vertex of
the cell containing xi,

∑m
j=1 wijaj = xi and

∑m
j=1 wij = 1. Figure 2 shows a

diagram (drawn in 2D for sake of simplicity) of this type of LUT.
The unknown variables in this approach are the lattice output points b which

must be computed based on a training sample pairs (xi, yi), i = 1, 2, .., n. As-
suming a fixed space lattice a and linear interpolation function, the output b can
be solved as [16]:

b̂ = argmin
b

n∑
i=1

(ŷi − yi)
2

= argmin
b

n∑
i=1

‖
∑
j

wijbj − yi‖22

= argmin
b

‖Wb− y‖22. (2)

where W is the weighting matrix with its i-th row being [wi1, wi2, ..., wim] and
y = [y1, y2, ..., yn]

T .
This basic approach assumes that the training-set is well distributed over the

input space. Garcia and Gupta [15, 17] suggested adding a second-order regu-
larization on b to achieve a smoother extrapolation when some cells contained
limited number of training samples.

Their proposed objective becomes [17]:

b̂ = argmin
b

‖Wb− y‖22 + λJK(b), (3)

where JK(b) = bTKb is the thin-plate regularizer with a m×m matrix K that
depends only on the type of interpolation basis function and lattice dimensions,
and λ is a weighting scalar.

The easiest design is to distributed ai’s equally in each dimension of the input
color space. While distributing ai equally enables a simple array-style access to
the cell needed to perform interpolation, it may waste vertex quota in the region
where the transformation is quite flat or allocate too few vertices in regions
where the transformation is complicated.

Nonuniform sampling strategies have been introduced. Most notable are Chang
et al. [18] and Monga et al. [19]. Although totally free placement of the latex ver-
tices enables the possibility of using less vertices, extra time is introduced during
evaluation for sub-volume access [20, 21]. Other approaches such as [18] tried
to resolve the sub-volume access using constrained vertices placement. However,
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Fig. 3. Our algorithm computes a node level transformation function that transforms
a regular lattice to a non-uniform lattice by moving the node levels along different
dimensions

these approaches required the space transformation function or its high resolu-
tion approximation to be known. In our case, only a sparse set of sample points
are known. Moreover, none of the above approaches mentioned can be easily
regularized, which is important in our setting.

We propose our own simple, but effective, nonuniform lattice regression scheme
based on the objective of reducing fitting error.

3 Nonuniform Lattice Regression

In our formulation, we use the term, node level, to denote how the lattice dimen-
sions are divided given the number of lattice nodes NL along each dimension.
We can think of each node level as being a grid line in the lattice structure.
Since the input and output spaces are normalized, the node levels for a given
dimension spread out in the range [0, 1]. For example, if NL is 6, the node levels,
ui, for a uniform lattice for a dimension will be 0, 0.2, 0.4, 0.6, 0.8, and 1. In our
approach, NL is the same for all three color channels., however, the algorithm
can be easily extended to have different NL for different channels.

The crux of our approach is to construct a node level transformation function,
g, using the smoothed error histogram of the sample points computed based on
the uniform lattice. For dimension c, the node level transformation function gc
transforms an input node level ui to another level along the lattice dimension,
i.e. we are determining how to adjust the lattice grids to reduce the overall
interpolation error of the lattice. In essence, the function gc maps the uniform
lattice node levels to the non-uniform lattice node levels (see Figure 3). The
details of our formulation are described in the following.

Uniform Lattice Initialization
Our algorithm first initializes a uniform lattice using the following equation:

b̂ = argmin
b

‖Wb− y‖22 + λS‖Sb‖22 + λAρ(b) + λKJK(b), (4)
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which is extended from Eq. 3 by adding a first-order derivative smoothness reg-
ularization ‖Sb‖22 and a boundary constraint ρ(b). This boundary constraint
extension is necessary since in our particular case, data samples are rare in
a large portion of the input color space especially near the boundary where
the color saturation level is very high. The first-order regularization matrix
S = [SR;SG;SB], where each row of N2

L(NL − 2)×m matrix Sc, c ∈ {R,G,B},
contains only three nonzero entries. Assuming nodes ai1c and ai3c are neigh-
bors to ai2c along dimension c, there exists one row in Sc with the nonzero

values −d(i3c,i2c)
d(i1c,i2c)+d(i3c,i2c)

, −d(i1c,i2c)
d(i1c,i2c)+d(i3c,i2c)

and 1 at corresponding positions re-

spectively, where d(i, j) is the distance between nodes ai and aj . The boundary
constraint ρ(b) =

∑
c∈{R,G,B}((b1)

2
c +

∑
i∈Υc

((bi)c − 1)2), where Υc is the set of

ai nodes whose c coordinates equal to 1. Operator (·)c extracts the c coordinate
of a vector or c column of a matrix. Here we also assume a1 represents the origin
[0, 0, 0]. In matrix form, ρ(b) =

∑
c∈{R,G,B} ‖Ac(b)c− ξ‖22, where Ac is composed

of standard unit row vectors corresponding to the elements of set Υc except the
last row being [1, 0, ..., 0] and ξ is vector [1, ..., 1, 0]T . Terms λS , λA, and λK are
weighting parameters.

Assuming denotations W̃c = [W ;λSS;λAAc] and ỹc = [(y)c;0;λAξ], Eq. 4
can be solved in closed form per dimension:

b̂c = (W̃T
c W̃c + λKK)−1W̃T

c ỹc. (5)

The matrix K is only constructed once and is used again when constructing
the nonuniform lattice. The matrix K only depends on the lattice size and the
interpolation function adopted for the smoothness constraint. We select tricubic
interpolation for the smoothness constraint to construct K (see [17] for details).

In Eq. 5, the weighting scalars λS = 0.1, λA = 0.01, and λK = 1e − 6 are
fixed in all our computations. We denote this initial uniform lattice as ao and
the corresponding output vertex set as bo, and W o is the weighting matrix of x
in ao.

Node Level Transformation Formulation
In our formulation, the node level transformation function gc can be best ex-
plained through its inverse function g−1

c that is constructed based on the error
histogram computed from the uniform lattice ao. The idea is that the error
histogram indicates locations where the non-uniformity is most prominent and
hence more dense lattice nodes are needed.

From the initial uniform lattice, we can compute each sample error as eoi =
‖(W o

i b
o)T − yi‖22 where W o

i is the i-th row of W o. The k-th bin (1 ≤ k ≤ Nbin,
where Nbin is the number of bins) of the normalized error histogram histc for
channel c ∈ {R,G,B} is computed as:

histc(k) =
1

Ec
·
∑
i∈Ωk

c

eoi , (6)



562 H.T. Lin et al.

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

0.005

0.01

0.015

0.02

0.025

0 200 400 600 800 1000

0.005

0.01

0.015

0.02

0.025
    Error histogram along R Channel
and its accumulated histogram (below)

  Adjusted histogram along R Channel
and its accumulated histogram (below)

(a) (b)

(c) (d)

Fig. 4. Illustration of node level transformation function based on error histogram

where Ec is the normalization factor such that
∑Nbin

k=1 histc(k) = 1 and Ωk
c

contains the indexes of all the sample points that are located in the k-th bin for
color channel c. In our experiments, we set Nbin = 1000.

Our approach uses the accumulative error histogram to construct the node
level transformation function. We found, however, that using the histc() com-
puted above is problematic as many bins are nearly empty (see Figure 4(a)). This
results in flat regions in the accumulative error histogram (see Figure 4(c)). To
avoid this problem, we use an adjusted version of the error histogram, hist∗c
which is blended with a constant (1−α) and smoothed by a Gaussian filter (see
Eq. 7). Figure 4(b) shows the adjusted histogram.

hist∗c(k;α) = α ·Gauss(histc)(k) + (1− α)
1

Nbin
. (7)

For sake of simplicity, the histogram is treated as a continuous function Θ defined
on [0, 1], whereΘ(t;α) = Nbin·hist∗c(k;α) when t ∈ [ k

Nbin
, k+1
Nbin

). We finally define
the inverse of node level transformation function as follows:

g−1
c (v;α) =

∫ v

0

Θ(t;α)dt, (8)

where v is a node level. Since Θ incorporates both the error histogram and the
uniform term, the derived function g−1

c is able to guide the node level transfor-
mation to the erroneous locations while maintaining some nodes in regions of
small errors through the control of the uniform term. The monotone increasing
property of the accumulated histogram guarantees the existence of a node level
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transformation function gc(u). In our implementation, v can be computed using
a binary search over g−1

c for a given u. Figure 4(c) shows the accumulative his-
togram and the node level transformation functions using the original histogram
where α is set to 1. Figure 4(d) shows the accumulative histogram and the node
level transformation functions using the adjusted histogram where α is set to 0.5.
We can see the function in (d) has a much slower accumulative error histogram
function and the lattice levels are not too skewed by the errors.

Nonuniform Lattice Construction. The nonuniform lattice node levels
Lc(α) along dimension c ∈ {R,G,B} can be obtained by transforming uniform
node levels using gc(u). The i-th node level Lc(i;α) is calculated as follows:

Lc(i;α) = gc(
i− 1

NL − 1
;α), i = 1, 2, ..., NL. (9)

Non-uniform lattice a(α) is then constructed as the Cartesian product of LR(α),
LG(α) and LB(α), and bc(α) = ((W̃α

c )
T W̃α

c + λK)−1(W̃α
c )T ỹc, where W̃α

c =
[Wα;λSS

α;λAAc] with Wα representing the weighting matrix of x in a(α) and
Sα the new regularization matrix.

While we can set α to a fix value (0.5), we instead let our algorithm choose
the best α to blend the nonuniform and uniform arrangements. The value of
α can be optimized by solving the following minimization problem using the
Trust-Region-Reflective Optimization technique [22, 23]:

α̂ = min
α

n∑
i=1

‖(Wα
i b(α))

T − yi‖22, (10)

where Wα
i is the i-th row of Wα. The final lattice is set to be a(α̂).

4 Results

In this section, we show several comparisons of our nonuniform lattice regres-
sion approach in terms of pixel errors and computation time compared to RBF
and uniform lattice regression. All experiments were performed in Matlab and
C++ code using a PC with a dual-core 2.3Ghz processor and 3.25GB mem-
ory. We used the publicly available calibration data2 that contains examples of
RAW and sRGB images of MacBeth color charts for different camera models
under various settings, i.e. exposure, white-balance, and picture styles (when
available). This calibration data has 164 color samples per image with up to 10
different exposures and a number of white-balance settings per picture style (e.g.
landscape, portrait, standard, vivid, etc). Color samples from the RAW images
are first multiplied by their corresponding white-balance matrices. This gives us
approximately 10,000 training samples per camera and picture style in the form
of xi → yi as described in Section 2.

2 Obtained from http://www.comp.nus.edu.sg/~brown/radiometric_calibration/

http://www.comp.nus.edu.sg/~brown/radiometric_calibration/
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Table 1. Normalized pixel errors and evaluation time comparisons for RBF, uniform
lattice regression (LR) and our nonuniform lattice regression (NULR) approach on
Nikon examples

NIKON D7000 (size 1632 × 2464)

Error (pixel) Average Maximum Q3 75% Q2 50% Q1 25% Time (s)

Method Lattice Size

Example 1: Picture Style Normal, Exposure Time 1/15 sec, White Balance Tungsten

RBF - 0.011790 0.060117 0.006792 0.011092 0.015686 24.2028

NULR 13 × 13 × 13 0.013215 0.061005 0.008769 0.012401 0.017094 0.8906

LR 13 × 13 × 13 0.058985 0.203733 0.032338 0.052467 0.076546 0.8281

NULR 17 × 17 × 17 0.012502 0.068935 0.007843 0.011765 0.016169 0.9219

LR 17 × 17 × 17 0.050673 0.223701 0.025415 0.041130 0.067126 0.8437

NULR 24 × 24 × 24 0.012172 0.064795 0.007843 0.011765 0.016169 0.9844

LR 24 × 24 × 24 0.037690 0.154939 0.017971 0.028818 0.047384 0.8437

Example 2: Picture Style Normal, Exposure Time 1/5 sec, White Balance Fluorescent

RBF - 0.009282 0.062868 0.005546 0.008769 0.013006 30.5152

NULR 13 × 13 × 13 0.012030 0.066667 0.006792 0.011092 0.016169 0.8906

LR 13 × 13 × 13 0.041590 0.251470 0.019608 0.033735 0.051729 0.8437

NULR 17 × 17 × 17 0.011387 0.068487 0.005546 0.009606 0.014673 0.9062

LR 17 × 17 × 17 0.031173 0.211110 0.014673 0.023854 0.039411 0.8437

NULR 24 × 24 × 24 0.010408 0.086808 0.005546 0.008769 0.013006 0.9375

LR 24 × 24 × 24 0.022122 0.161405 0.008769 0.016638 0.027730 0.8437

Example 3: Picture Style Landscape, Exposure Time 1/8 sec, White Balance Tungsten

RBF - 0.028220 1.006079 0.016169 0.021118 0.027730 7.3593

NULR 13 × 13 × 13 0.023837 0.446319 0.014673 0.020377 0.028006 0.8750

LR 13 × 13 × 13 0.051046 0.460162 0.021479 0.032575 0.077445 0.8281

NULR 17 × 17 × 17 0.021774 0.456353 0.013585 0.019212 0.025110 0.8906

LR 17 × 17 × 17 0.041038 0.455088 0.018394 0.028549 0.052320 0.8437

NULR 24 × 24 × 24 0.021427 0.510241 0.013006 0.018394 0.025110 0.9375

LR 24 × 24 × 24 0.029896 0.488373 0.016169 0.022866 0.036367 0.8437

Example 4: Picture Style Landscape, Exposure Time 1/15 sec, White Balance Sunny

RBF - 0.021352 1.000653 0.014139 0.019608 0.025415 6.4687

NULR 13 × 13 × 13 0.019733 0.264437 0.012401 0.017538 0.024174 0.8594

LR 13 × 13 × 13 0.048376 0.224901 0.022866 0.039992 0.070588 0.8437

NULR 17 × 17 × 17 0.018589 0.268334 0.011765 0.016638 0.022528 0.8906

LR 17 × 17 × 17 0.040553 0.215829 0.019212 0.033735 0.057099 0.8281

NULR 24 × 24 × 24 0.018108 0.283766 0.011092 0.016169 0.021479 0.9687

LR 24 × 24 × 24 0.029612 0.232434 0.016169 0.025110 0.039411 0.8437

We compute the initial uniform lattice regression using the method based on
Eq. 4. Nonuniform lattice regression is computed using the method described in
Section 3. For each method we compute lattices with resolutions of 13× 13× 13,
17× 17× 17, and 24× 24× 24. The one-off computation time in Matlab for the
uniform lattice regression at the highest resolution is approximately 7s, while
our nonuniform lattice regression required approximately 120s. We use the RBF
and tone-curve data provided by the authors [1] on their webpage. To evaluate
the RBF, we implemented a cached-optimized method that can reuse colors that
have already been computed.

Our results are shown in three tables for the following cameras: Nikon D7000
(Table 1), Canon 1Ds Mark III (Table 2), Sony α200 (Table 3). The different
techniques are denoted as nonuniform lattice regression (NULR), uniform lattice
regression (LR), and RBF. Each table shows the following normalized pixel error
statistics: average error, max error, 25% quartile (Q1) error, 50% quartile (Q2) or
median error, and the 75% upper quartile (Q3) error. We also show the running
times in seconds (all results computed using C++). The errors are computed on
a variety of images with different picture styles, exposure, white-balance settings,
and resolutions. We note that Sony α200 has only one picture style on line.

We also show qualitative results in Figure 5, which shows the different pixel
errors as a hotmap. Our quantitative and qualitative results demonstrate the
our nonuniform lattice regression approach provides performance better than
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Table 2. Normalized pixel errors and evaluation time comparisons for RBF, uniform
lattice regression (LR) and our nonuniform lattice regression (NULR) approach on
Canon examples

CANON 1Ds MARK III (size 1872 × 2808)

Error (pixel) Average Maximum Q3 75% Q2 50% Q1 25% Time (s)

Method Lattice Size

Example 1: Picture Style Standard, Exposure Time 1/15 sec, White Balance Cloudy

RBF - 0.009156 0.114332 0.005546 0.008769 0.012401 17.7498

NULR 13 × 13 × 13 0.009829 0.114332 0.005546 0.008769 0.012401 1.0625

LR 13 × 13 × 13 0.045459 0.161595 0.026307 0.039411 0.059344 0.9531

NULR 17 × 17 × 17 0.009217 0.117057 0.00554 0.008769 0.012401 1.0937

LR 17 × 17 × 17 0.028856 0.126467 0.016169 0.026307 0.038822 0.9687

NULR 24 × 24 × 24 0.009011 0.114332 0.005546 0.008769 0.012401 1.1719

LR 24 × 24 × 24 0.018508 0.108819 0.009606 0.016638 0.025110 0.9687

Example 2: Picture Style Standard, Exposure Time 1/10 sec, White Balance Fluorescent

RBF - 0.009908 0.103607 0.005546 0.008769 0.013006 20.2185

NULR 13 × 13 × 13 0.010629 0.103607 0.006792 0.009606 0.014139 1.0625

LR 13 × 13 × 13 0.048408 0.199769 0.022866 0.037818 0.059084 0.9531

NULR 17 × 17 × 17 0.010329 0.105007 0.006792 0.009606 0.014139 1.0937

LR 17 × 17 × 17 0.035407 0.174146 0.014673 0.026307 0.042418 0.9687

NULR 24 × 24 × 24 0.009949 0.105007 0.005546 0.008769 0.012401 1.1562

LR 24 × 24 × 24 0.019140 0.110988 0.011092 0.016638 0.024174 0.9844

Example 3: Picture Style Portrait, Exposure Time 1/15 sec, White Balance Tungsten

RBF - 0.011571 0.175553 0.006792 0.011092 0.014673 22.5049

NULR 13 × 13 × 13 0.013200 0.170171 0.008769 0.012401 0.017094 1.0471

LR 13 × 13 × 13 0.060657 0.224422 0.028549 0.045901 0.084017 0.9846

NULR 17 × 17 × 17 0.011961 0.178421 0.007843 0.011765 0.016169 1.1252

LR 17 × 17 × 17 0.046053 0.169945 0.023854 0.036367 0.066320 0.9690

NULR 24 × 24 × 24 0.011522 0.170442 0.006792 0.011092 0.014673 1.1721

LR 24 × 24 × 24 0.029428 0.137423 0.017094 0.025110 0.034634 0.9690

Example 4: Picture Style Portrait, Exposure Time 1/5 sec, White Balance Fluorescent

RBF - 0.011001 0.215722 0.005546 0.008769 0.014673 29.2521

NULR 13 × 13 × 13 0.012381 0.152084 0.006792 0.011765 0.016638 1.0469

LR 13 × 13 × 13 0.037227 0.327774 0.016169 0.027730 0.042599 0.9688

NULR 17 × 17 × 17 0.011451 0.156224 0.005546 0.009606 0.015686 1.0782

LR 17 × 17 × 17 0.026838 0.271269 0.009606 0.019608 0.034187 0.9688

NULR 24 × 24 × 24 0.011098 0.156961 0.005546 0.009606 0.015686 1.1407

LR 24 × 24 × 24 0.018117 0.168262 0.008769 0.014673 0.023854 0.9844

Table 3. Normalized pixel errors and evaluation time comparisons of RBF, uniform
lattice regression (LR) and our nonuniform lattice regression (NULR) approach for
Sony examples

SONY α200 (size 1296 × 1936)

Error (pixel) Average Maximum Q3 75% Q2 50% Q1 25% Time (s)

Method Lattice Size

Example 1: Picture Style Standard, Exposure Time 1/15 sec, White Balance Sunny

RBF - 0.009144 0.043844 0.005546 0.008769 0.012401 12.9061

NULR 13 × 13 × 13 0.009999 0.069046 0.005546 0.008769 0.012401 0.5156

LR 13 × 13 × 13 0.061349 0.165358 0.041687 0.056693 0.077841 0.4531

NULR 17 × 17 × 17 0.009889 0.080559 0.005546 0.008769 0.012401 0.5156

LR 17 × 17 × 17 0.049572 0.181497 0.029866 0.043844 0.058298 0.4531

NULR 24 × 24 × 24 0.009811 0.127013 0.005546 0.008769 0.012401 0.5781

LR 24 × 24 × 24 0.028771 0.168855 0.016169 0.027730 0.036155 0.4687

Example 2: Picture Style Standard, Exposure Time 1/10 sec, White Balance Fluorescent

RBF - 0.009816 0.063233 0.005546 0.008769 0.013006 13.9998

NULR 13 × 13 × 13 0.010954 0.065032 0.006792 0.009606 0.014139 0.5156

LR 13 × 13 × 13 0.053259 0.165498 0.035076 0.050980 0.070806 0.4687

NULR 17 × 17 × 17 0.010605 0.060117 0.006792 0.009606 0.014139 0.5312

LR 17 × 17 × 17 0.044052 0.181497 0.022528 0.036996 0.055459 0.4687

NULR 24 × 24 × 24 0.010498 0.062868 0.005546 0.009606 0.014139 0.5625

LR 24 × 24 × 24 0.028732 0.144673 0.014139 0.024174 0.035727 0.4844

uniform lattice regression and comparable to results obtained with RBF. In
terms of time complexity, our approach is an order of magnitude faster than
RBF and comparable to using a uniform lattice with a slight overhead of an
indirect lookup table to compensate for the nonuniform layout.
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Fig. 5. Several examples from different camera models showing the error maps between
our method, RBF, and an LUT based on uniform lattice regression

5 Conclusion and Discussion

We have introduced a novel nonuniform lattice regression approach to compute a
sparse LUT for use in modeling the camera imaging pipeline of converting RAW
values to their corresponding sRGB output. Our approach is based on a regular
lattice design but introduces nonuniform spacing of the lattice layout. Our algo-
rithm adaptively adjusts the lattice grid sampling based on the error histogram
to capture the complexity of RAW to sRGB transformation. Our results demon-
strate that our nonuniform lattice provides errors comparable to using an RBF,
but with computational efficiency similar to a uniform lattice which is an order
of magnitude faster than optimized RBF computation. Moreover, the adaptive
lattice design allows us to incorporate more steps of the imaging process into
the LUT.

Lastly, while our focus was the color mapping pipeline in digital cameras,
we believe the ability to simplify complex functions using a nonuniform lattice
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can be useful in other applications, such as nonlinear image warping or 3D de-
formable registration. In additional, the structure of the final nonuniform lattice
provides insight into the completely of the underlying warp, that map be useful
for function analysis or to help guide better or adaptive calibration methods.
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