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Abstract. We present a probabilistic generative model for simultane-
ously recognizing daily actions and predicting gaze locations in videos
recorded from an egocentric camera. We focus on activities requiring
eye-hand coordination and model the spatio-temporal relationship be-
tween the gaze point, the scene objects, and the action label. Our model
captures the fact that the distribution of both visual features and ob-
ject occurrences in the vicinity of the gaze point is correlated with the
verb-object pair describing the action. It explicitly incorporates known
properties of gaze behavior from the psychology literature, such as the
temporal delay between fixation and manipulation events. We present
an inference method that can predict the best sequence of gaze locations
and the associated action label from an input sequence of images. We
demonstrate improvements in action recognition rates and gaze predic-
tion accuracy relative to state-of-the-art methods, on two new datasets
that contain egocentric videos of daily activities and gaze.

1 Introduction

Ever since the pioneering experiments of Yarbus [27], it is well known that human
attention and gaze are directed in a top-down task-dependent and goal-oriented
manner. This is summarized in the following quote from [27]: “Eye movement
reflects the human thought processes; so the observer’s thought may be followed
to some extent from records of eye movement.” Hayhoe and Ballard [10] note
that the point of fixation in the scene may not be the location which is the most
visually salient, but rather will correspond to the best location given the spatio-
temporal demands of the task. However, in computer vision, research on visual
attention has been primarily based on bottom-up approaches [11]. Research on
attention based on top-down components such as scene content, actions and
objects has been very limited [28,8,2].

A basic challenge in the top-down study of gaze is that there is not always
a direct relationship between actions and fixations. For example, a person can
easily carry an object in her hand and put it on the table without looking at it.
To address this issue, in this paper, we focus on object-manipulation tasks that
require hand-eye coordination. These are actions that are hard to accomplish
without using both hands and eyes in coordination. For example, when pouring
a liquid into a bottle, subjects initially fixate on the mouth of the bottle, and then
switch to monitoring the level of liquid in the container once they are past the
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(a) (b) (c)

Fig. 1. Humans often attend to the location that contains the spatio-temporal infor-
mation of the task. While this might not be true in some cases such as covert gaze, but
in general the region around the gaze location provides significant information about
the action. In the figures above, in each row we show a sequence of bounding boxes
extracted around the gaze point from a particular instance of the action. For each of
the action types, we show four rows of boxes, each selected from one instance of the
action. The actions are (a) spread peanut-butter on bread using knife, (b) scoop jam
using knife and (c) close milk.

half-way mark. In their classic study [14], Land and Hayhoe demonstrated that
during object manipulation tasks a substantial percentage of fixations (around
80%) fall upon the task-relevant objects.

As an illustration of the close association between gaze and activities of daily
living, Fig 1 contains small windows of pixels which have been extracted from
around the gaze location. Columns correspond to frames, sampled at every two
seconds. Rows correspond to different instances of a particular action. We observe
that the appearance of these small windows is very consistent among instances
of the same action performed by different individuals. Moreover, window con-
tents vary significantly between actions. This observation illustrates the close
relationship between eye movement, action and objects in such tasks.

Previous investigations of eye movement have largely been based on stud-
ies of static scene viewing, using gaze tracking technology affixed to a monitor
screen. However, in order to study gaze in the context of object manipulation
tasks, a mobile system that captures human gaze in real-life setting is required.
Recently, wearable gaze tracking systems, such as [3], Tobii1 and SMI2, have
become available. These systems combine an outward-facing camera, which cap-
tures an ego-centric or first-person view of the scene, with inward-facing gaze
sensing cameras that estimate the line of sight into the scene. Calibration of the
multi-camera system makes it possible to continuously measure the point of gaze
within the scene in front of the user. These systems create new opportunities
to exploit gaze measurements in the context of real-world tasks and naturalistic
settings. In this paper, we address the question of how such gaze measurements
could be useful for activity recognition in egocentric video.

1 http://www.tobii.com/
2 http://www.eyetracking-glasses.com/

http://www.tobii.com/
http://www.eyetracking-glasses.com/
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This paper addresses the following questions:

– How consistent are the fixation patterns of different individuals performing
the same action?

– Does knowing the fixation location in images of a sequence help to better
recognize actions?

– Can we develop a method that can learn where to look and how to recognize
actions given egocentric video with gaze measurements?

We show that action and gaze behavior are highly coordinated in daily object
manipulation tasks. We show that knowing gaze location significantly improves
action recognition results, and knowing the action enables more accurate predic-
tion of gaze location. We use these observations and findings in order to learn
from humans where to look for and how to recognize the daily actions in ego-
centric videos.

2 Previous Work

We divide the previous work into three groups: (1) daily activity recognition, (2)
wearable sensors, and (3) gaze.

Daily Activity Recognition. Recognizing daily human activities is central to a
number of different areas such as human-computer interaction, humanoid robots
and elder care. The recognition of human conduct of daily object-manipulation
tasks has attracted considerable attention [14,26,9,5], yet it is far from being
solved. In contrast to traditional action recognition, which focuses on whole
body movements, object context plays an important role in recognizing daily
actions [26]. Mann et al. [17] derive force dynamic relations between objects to
understand their interactions. Wu et al. [26] use RFID-tagged objects to boot-
strap an appearance-based object classifier and perform activity recognition us-
ing temporal patterns of object use. Gupta et al. [9] follow a Bayesian approach
using a likelihood model based on hand trajectories to analyze human-object
interactions. All of these methods use static cameras mounted in the environ-
ment. However, to capture daily activities of a person, even if the office and the
home are densely instrumented with cameras, the system needs to go through
the non-trivial challenge of focusing on hands and objects and coping with oc-
clusions. In contrast to these methods, in this paper we recognize daily actions
from first-person point of view.

First-Person Vision. The idea of using wearable cameras is not new [22],
however, recently there has been a growing interest in using them in the com-
puter vision community, motivated by the advances in hardware technology
[23,5,13,21,28,7,6,15,19]. Spriggs et al. [23] classify daily activities using a head-
mounted camera and accelerometers. Pirsiavash and Ramanan [19] reocgnize
activities of daily living by learning active object detectors. Yi and Ballard [28]
use a wearable eye-tracking system and wearable sensors on the hands to detect
the grasped and gazed object for recognizing daily actions. In contrast to [28],
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we develop a method that can perform action recognition both with and with-
out observed gaze during the testing phase. In addition, we introduce a simple
generative model that captures the relationship between action and gaze. Our
previous method [5] for recognizing daily actions in an egocentric setting is the
closest work to this paper. In that work, we use motion cues to segment hands
and foreground objects and then extract features from the foreground region to
recognize actions. However, our previous method fails when the object is not
moving, for example when spreading peanut-butter on a slice of bread which
is resting on a plate. We show that our new method presented in this paper
achieves significantly better performance in comparison to [5].

Gaze.Gaze allocation models are usually derived from static picture viewing stud-
ies. This has led to methods for computation of image salience [11] which uses low-
level image features such as color contrast or motion to provide a good explanation
of how humans orient their attention. However, these models fail for many aspects
of picture viewing [27] and natural task performance. Einhauser et al. [4] and Borji
et al. [2] observe that object-level information can better predict fixation locations
than low-level saliencymodels.Torralba et al. [24] uses global scene context features
to predict the image regions fixated by humans performing natural search tasks.
Judd et al. [12] show that incorporating top-down image semantics such as faces
and cars improves saliency estimation in images. In this paper, we show that we
can significantly enhance daily action recognition given gaze and further we show
that knowing the first-person action as a prior can significantly improve gaze allo-
cation in images. Further, we introduce a method for simultaneously inferring gaze
and first-person action in egocentric videos of daily activities.

3 Method

Our algorithm estimates the action and the most likely sequence of gaze locations
in an image sequence by leveraging the fact that human gaze is often focused at
locations where the task is being performed. Usually the immediate surroundings
of the gaze point contain most of the informative features, and other parts of
image contain less relevant information.

3.1 Model

We use a generative model to describe the relationship between the egocentric
action and the gaze location in each frame of an image sequence, as depicted in
Fig 2(a). In this model, an action a can be inferred from the local image features
xt that are observed in the vicinity of the sequence of fixation points gt. We have
visually illustrated the concept of our model in Fig 2(b).

In our model, we have two conditional probabilities: likelihoods p(xt|a, gt)
and transitions p(gt|gt−1, a). We model the probability of transition from a gaze
location gt−1 in frame t − 1 to gaze location gt in frame t of an action a with
a Gaussian on the distance of the two points in image coordinates. We learn a
separate Gaussian model for each action.
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Fig. 2. In (a), we show the model for predicting the gaze location in images and action.
We have visualized our model in context of a few frames in (b). The likelihood map of
p(xt|gt, a) is shown for action a set to “pour milk into cup”. The brighter the pixels in
images shown for p(xt|gt, a) are, the higher the likelihood.

p(gt|gt−1, a) =
1

σa

√
2π

exp(
−(‖ gt − gt−1 ‖ −μa)

2

2σ2
a

)

The mean μa and the varianceσ2
a of the Gaussian models are learned separately for

each action a from training data. In the following we describe our features xt, and
in Sec 3.2 we describe the procedure for computing p(xt|gt, a). Our method uses
the image content in the neighborhood of the gaze location to infer the action.

Based on our observations and experiments, we use three sets of features for each
pixel location in an image: (1) features representing the set of objects around that
point, (2) appearance features, and (3) features capturing if the image location be-
longs to an object that will be manipulated by the hands in the near future.

Object-Based Features. Objects play an important role in discriminating
daily actions. In an action such as “spreading peanut-butter on the bread using
knife”, usually it is possible to see parts of peanut, knife and bread in a local
neighborhood of the gaze point. It is very uncommon to find the same pattern in
an area of an image from another action. To build our object-based features, for
each pixel in the image, we concatenate the maximum scores of different object
classifiers in its local neighborhood to build a feature vector. We describe the
details of our object detectors in Sec 5.1.

Appearance Features. Captures the appearance of the gaze location. This
feature is used to determine the fixated part of the object. For example the ap-
pearance of a milk jar at its handle is different from its appearance at its mouth.
In different actions, different parts of an object will be fixated. We compute the
histogram of color and texture in a circular area around each pixel and use that
as appearance feature.

Future Manipulation Features. This feature is based on the well known fact
in the psychology literature that the gaze is usually ahead of the hands in the
hand-eye coordinate system [14,18]. Eyes usually lead to another task before
the hands, in order to provide additional input for planning further movements.
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Land and Hayhoe [14] observed that the average lead time for the tea-making
task was 0.56 s and for sandwich-making was 0.9 s. As a result, hand activity
in a few frames ahead provides a strong cue for predicting the gaze location in
the current frame. In order to build a feature that captures whether an object is
manipulated by hands in the future, we first use the method in [21] to segment
each frame of the video into foreground and background regions. The foreground
regions contain the hands and the manipulated objects. To verify if a pixel in
frame f belongs to foreground in t frames later in video, we transfer the computed
foreground mask of frame f + t to frame f using the chain of optical flow vectors
between adjacent frames. An example is shown in Fig 3. We do this for multiple
values of t, and build a 0− 1 feature vector for each pixel location that describes
if it is part of the foreground in t frames later or not.

3.2 Inference

For each action we learn a SVM classifier that fires on the pixels that are more
likely to correspond to the gaze location for that particular action, given the
described set of features. To train the classifier, we select the positive features
from the pixels surrounding the gaze locations in training sequences correspond-
ing to a. We select the negative features from pixels far from the gaze point in
training sequences corresponding to a and all the pixels in training sequences
of other actions. A few representative results are shown in Fig 6. We learn the
posterior for p(a, gt|xt) by fitting a sigmoid function to the output of the SVM
classifier learned for action a [20], similar to Lester et al. [16]. We can estimate
the p(xt|a, gt) ∝ p(a,gt|xt)

p(a,gt)
from the output of SVM classifiers by assuming a

uniform probability for p(a, gt).
Our goal is to infer the action as well as the most likely sequence of gaze

points in a test image sequence. The posterior probability of action a given the
sequence of image features X = {x1, ..., xN} is

p(a|X) ∝ p(a,X) =
∑

G

p(a,G,X) ≈ p(a,G∗
a, X) (1)

Since integration over all values of G is not practical, in Eq 1 we approximate∑
G p(a,G,X) with p(a,G∗

a, X), where G∗
a is the most likely sequence of gaze

locations given action a. If the action a is given, the graph in Fig 2(a) becomes an
HMM in which the most likely sequence of gaze locations G∗

a can be computed
using the max-product (Viterbi) algorithm. Given the computed most likely
sequence of gaze locations for action a, G∗

a = {ga1 , ..., gaN}, we have

p(a|X) ∝ p(a)
N∏

t=1

p(xt|a, gat ) (2)

where we assume p(a) to be a uniform distribution and p(xt|a, gat ) are estimated
from the output of SVM classifier at location gat as described above. Note that
if the gaze locations were observed during the test, we could replace gat in Eq 2
with observed gaze locations to compute p(a|X).
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(a) Gaze in f (b) FG of f (c) FG of f + t to f (d) FG of f + t

(e) Gaze in f (f) FG of f (g) FG of f + t to f (h) FG of f + t

Fig. 3. This picture is best viewed in color. The gaze is usually a few frames ahead of
hands. As a result, the foreground region a few frames later can provide a valuable cue
for determining the gaze location in the current frame. We show two examples from
initial frames of “take peanut-butter” and “take plate”. The gaze falls on the object,
while the hands have not reached to the object yet. In (a,e) the ground-truth gaze
location in frame f of the action is shown. The computed foreground region in the
frame f only contains the hand (b,f). However, when the foreground region from t
frames later is transferred to this frame, it contains the gazed object (peanut-butter
jar or plate) as well (c,g). The foreground region of frame f + t is shown in (d,h).

4 Dataset

In this section we present two new datasets which we believe are the first of
their kind. These datasets contain gaze location information associated with
egocentric videos of daily activities. Our datasets are recorded from the first-
person point of view and contain the subjects’ gaze location in each frame of the
video and are publicly available3.

GTEA Gaze. We use the Tobii eye-tracking glasses to record this dataset.
The Tobii system has an outward-facing camera that records at 30 fps rate and
480×640 pixel resolution. The glasses use an infrared inward-facing gaze sensing
camera to output the 2D location of the eye gaze in each frame of the video. We
setup a kitchen table with more than 30 different kinds of food and objects on it.
Once each subject wore the eye-tracking glasses and the system was calibrated,
we took the subject to the table, and asked them to make a meal for themselves
that they can take and have if they like. We didn’t put any constraints on their
options. Based on the time of the day at which the subject was performing
the meal preparation task and their personal preferences, they made different
kinds of meal. The two most common meals made by the subjects were turkey
sandwich and peanut-butter and jelly sandwich.

3 http://cpl.cc.gatech.edu/projects/GTEA_Gaze/

http://cpl.cc.gatech.edu/projects/GTEA_Gaze/
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We collected 17 sequences of meal preparation activities performed by 14 dif-
ferent subjects. Each sequence took about 4 minutes on average. In our exper-
iments, we use 13 sequences for training and 4 sequences for testing. We make
sure that none of the sequences in the test are performed by a subject from
training sequences. We annotated all the actions existing in each sequence. Each
sequence contains about 30 actions on average. Each action contains a verb (for
example “pour”), a set of nouns (like “milk, cup”) and a starting and an ending
frame number. There exists 94 unique actions (unique combination of verbs and
nouns) in our dataset. However, many of these actions only take place one or two
times through out all sequences. In our experiments we prune the rare actions
and only focus on the 25 remaining ones that at least take place two times in
training sequences and once in testing sequences. Our set of actions contain the
following verbs: take, open, close, pour, sandwich, scoop, spread.

GTEA Gaze+. We collected this dataset based on our experience in collecting
the first one, in order to overcome some of its short comings. The video quality in
this dataset is HD (1280×960), tasks are more organized, activities are performed
in a natural setting, and the number of tasks and the number of objects used
in each task are significantly bigger. The dataset is collected in Georgia Tech’s
AwareHome, which is an instrumented house with a kitchen that contains all of
the standard appliances and furnishings. We used SMI eye-tracking glasses to
record this dataset.

We have collected data from 10 subjects, each performing a set of 7 meal
preparation activities. Activities are performed based on the following food
recipes: American Breakfast, Turkey Sandwich, Cheese Burger, Greek Salad,
Pizza, Pasta Salad, and Afternoon Snack. Each activity (sequence) takes around
10-15 minutes on average, resulting in more than one hour of data per subject.
Gaze location at each frame is recorded. We have annotated the beginning and
end of different actions in each activity. Each sequence contains around 100 dif-
ferent actions. Actions in this dataset are associated with the following verbs:
taking, putting, pouring, cutting, opening, closing, mixing, transfering, turn-
ing on/off, washing, drying, flipping, dividing, spreading, compressing, cracking,
peeling, squeezing, filling, reading, moving around, distributing, draining and
reading.

5 Results

In this section we present experimental results on our first dataset (GTEA Gaze).
Results on the second dataset (GTEA Gaze+) can be found in the following url:
http://cpl.cc.gatech.edu/projects/GTEA_Gaze/.

Here we first describe the details of our object detector and then we demon-
strate results on our dataset that show the effectiveness of our method in gaze
prediction and action recognition during daily actions.

http://cpl.cc.gatech.edu/projects/GTEA_Gaze/
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Action Recognition given Gaze
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Fig. 4. This figure is best viewed in color. Confusion matrix for recognizing actions
given the gaze locations in each frame. Gaze information significantly improves ac-
tion recognition. The average accuracy is 47% which is significantly higher than 27%
accuracy achieved by Fathi et al. [5] method. Random classification chance is 4%.

5.1 Object Detection and Segmentation

Here we describe the details of the method we use for object detection and
segmentation. Our framework is not dependent on the choice of object detector
and can be applied to any possible object detection and segmentation method.
However, to be clear about the details of our implementation here we describe
the method used in this work.

We first use [1] to extract contours and use multiple thresholds to segment each
frame into layers of regions. The lowest layer contains small super-pixels. Each
super-pixel is included in bigger regions in the upper levels. In order to detect
and segment the objects in each image, we learn a super-pixel classifier using
SVM for each object type. For each super-pixel we concatenate the color and
texture histogram of its containing regions, and the color and texture histogram
of multiple circles with various radiuses around its center. We compute texture
descriptors using the method of [25] and quantize them to 256 kmeans centers.
We further extract color descriptors for each pixel and quantize them to 128
kmeans centers. We use a few manually segmented images from training set
to learn a SVM super-pixel classifier for each object type. We learn 33 object
classifiers in total, including a classifier for detecting the hands. As described in
Sec 3.1, we use the learned object classifiers to build the object-based feature
vector that captures the object context around a potential gaze point gt. For each
pixel in image, we concatenate the maximum scores of different object classifiers
in its local neighborhood to build a feature vector.

5.2 Action Given Gaze

Recognition of daily actions has its own challenges that are different than those
in traditional action recognition settings. Daily actions consist of a verb and
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Fig. 5. The figure is best viewed in color. We compare our action recognition results
with and without gaze observed during the test with results of Fathi et al. [5]. Our
method with observed gaze achieves 47% average accuracy. Our method that simulta-
neously infers gaze and action reaches 29% accuracy. The method of Fathi et al. [5]
gets 27% accuracy. The classification accuracy by chance is 4% for 25 classes.

one or more object names. As a result, object context plays an important role
in discriminating different actions. This makes the recognition task easier since
the action verb and objects can provide context for each other [5], but at the
same time the task becomes harder since miss detection of an object can result
in a wrong action label. Furthermore, detection of objects in the background
as part of the foreground can lead to wrong action labels. Another challenge in
recognizing daily actions is that a simple action like “open peanut-butter jar” can
be performed by completely different motion patterns. One might hold the jar by
left hand and open it with right hand, one might leave the jar on the table and
use one hand to open it, etc. Given all these variations in ways of performing
an action, still the appearance of the area around the gaze point is usually
consistent between different subjects performing the same action. Focusing at
the neighborhood of the gaze location lets us get rid of those variations and leads
to significant improvement in action recognition accuracy.

As described in Sec 3.2, for the case of observed gaze, we compute the prob-
ability of p(a|X) using Eq 2 by replacing gat with given gaze locations in frame
t. Our method achieves 47% accuracy on action recognition compared to 27%
accuracy of Fathi et al. [5]. Random classification chance for 25 classes is 4%.
We show the confusion matrix for recognition of different actions in Fig 4. We
compare our results to [5] in Fig 5. Fathi et al. [5] first segment the foreground
from background, then use a semi-supervised learning method to detect objects,
and then extract features from hands and objects to perform action recognition.
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(a) (b)

(c) (d)

(e) (f)

Fig. 6. Our method predicts fixation locations in images for each particular action.
The right hand side pictures show the frame and the left hand side images show our
prediction results. The brighter the pixels are it means the higher the score returned by
our algorithm is. The red dots show the ground-truth gaze locations from few adjacent
frames. The actions are (a) scoop jam using knife, (b) open cheese, (c) take knife and
(d) open jam, (e) spread peanut on bread using knife and (f) take bread.

To make the comparison fair, since we use pre-learned object classifiers, we
provide their method with our object classifiers as well. In Sec 5.4 we show that
our method of simultaneous gaze prediction and action recognition also achieves
better results than [5].

5.3 Gaze Given Action

The task provides a rich context for prediction of gaze location in images and
video. Different subjects have a very consistent gaze pattern while performing
the same action. We build a classifier that predicts human attention during
performance of a particular action. We compute the likelihood of every pixel in
image corresponding to gaze location by applying the classifier to feature vector
extracted for that pixel location. In Fig 6 we show example outputs of our
classifier. The pixels belonging to the action are scored higher than background
pixels. In Fig 7, we show that our method significantly achieves better results
in comparison to general saliency methods [11] that only use low-level image
features. Note that we understand that this might not be a fair comparison
since our results are generated by knowing the action label for the image. The



Learning to Recognize Daily Actions Using Gaze 325

0

0.2

0.4

0.6

0.8

1

ta
ke

 cu
pP

lat
eB

ow
l

ta
ke

 kn
ife

ta
ke

 b
re

ad

ta
ke

 p
ea

nu
t

op
en

 p
ea

nu
t

sc
oo

p 
pe

an
ut

 kn
ife

sp
re

ad
 p

ea
nu

t b
re

ad
 kn

ife

ta
ke

 ja
m

op
en

 ja
m

sc
oo

p 
jam

 kn
ife

clo
se

 ja
m

sp
re

ad
 ja

m
 b

re
ad

 kn
ife

sa
nd

wich
 b

re
ad

clo
se

 p
ea

nu
t

ta
ke

 m
ilk

op
en

 m
ilk

po
ur

 m
ilk

 cu
pP

lat
eB

ow
l

clo
se

 m
ilk

ta
ke

 tu
rk

ey

clo
se

 tu
rk

ey

ta
ke

 ch
ee

se

op
en

 ch
ee

se

ta
ke

 ca
rro

t

ta
ke

 p
ep

er
on

i

ta
ke

 ch
ee

se
2

Gaze Estimation Accuracy

Saliency
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Our Features and Saliency given Action

Fig. 7. This figure is best viewed in color. The task plays an important role in predicting
the gaze behavior. Saliency based methods which only use low-level features are not
able to capture the task related attention. Knowing the action significantly improves
the results of gaze prediction. The saliency [11] at gaze location is on average higher
than the saliency at 60% of the other points in image. Our classifier’s score at gaze
location is on average better than 81.3% of the classification scores at other image
locations. Combination of low-level features used by [11] with our features only slightly
improves results to 81.9%, which means the higher level action knowledge plays a more
important role for predicting where humans attend. Random chance is 50% shown by
the cyan line.

main point of our results is that (1) if the action is known, the gaze can be
predicted with a good precision and (2) we show an evidence that gaze and
action are closely tied together, and use this finding to justify our framework.

Each gaze prediction method in Fig 7 outputs a saliency map, in which each
pixel location in the image is assigned a score. We measure the accuracy of a
method by computing the percentage of the pixel scores that are lower than the
pixel score of ground-truth gaze location. For example, assume the ground-truth
gaze location falls at a pixel with score 0.9. If 75% of the pixels in the image are
assigned scores less than 0.9, then the accuracy of the gaze prediction method
for that frame is 75%. We average the accuracy over all frames belonging to the
action and report them in Fig 7.

5.4 Simultaneous Inference

There are multiple reasons that motivate us to develop a method that works
without having gaze data as well: (1) eye-tracking glasses are very expensive,
need calibration , and still are not user friendly enough to be put on for more than
a few minutes. We can learn parameters of our model from the data captured by
eye-tracking glasses and then apply it to the data captured by cheap wearable
cameras as well, (2) comparison of computed gaze locations with actual human
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data might lead to diagnosis of attention problems, measure the level of expertise
and be used for human computer interaction and (3) simultaneous prediction of
gaze and action demonstrates the close relationship between the two.

We use the inference method described in Sec 3.2 to recognize actions and
estimate the gaze location in each image sequence. We show our results in Fig 5.
Our method achieves 29% accuracy compared to the method of [5] that achieves
27%. The accuracy of random classification by chance is 4%.

6 Conclusion

We have described a novel approach to exploiting gaze measurements for ac-
tion recognition in egocentric videos. Our research is motivated by the recent
availability of wearable gaze tracking glasses, which make it possible to obtain
continuous gaze measurements from subjects performing activities of daily living
under real-world conditions. Our goal is to explore the utility of these continuous
gaze measurements in solving classical vision tasks such as action recognition.
We focus on classes of actions requiring hand-eye coordination which arise fre-
quently in daily activities, such as cooking a meal, putting toothpaste on a
toothbrush, etc. For such actions, we have demonstrated that the sequence of
gaze fixation points within egocentric video effectively indexes the key visual
properties of the image frames. We have shown that the sequence of indexed
visual features is consistent across multiple users performing the same action,
and is discriminative across different actions. We have introduced a generative
probabilistic model for gaze behavior which combines fixation, visual features,
and action labels in a simple but effective manner. We have demonstrated that
our model produces more accurate predictions of gaze location and action labels
than several state-of-the-art methods.
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