Learning to Efficiently Detect Repeatable
Interest Points in Depth Data

Stefan Holzer!:?*, Jamie Shotton?, and Pushmeet Kohli?

! Department of Computer Science, CAMP, Technische Universitéit Miinchen (TUM)
holzers@Qin.tum.de
2 Microsoft Research Cambridge
{Jamie.Shotton,pkohli}@microsoft.com

Abstract. Interest point (IP) detection is an important component of
many computer vision methods. While there are a number of methods for
detecting IPs in RGB images, modalities such as depth images and range
scans have seen relatively little work. In this paper, we approach the IP
detection problem from a machine learning viewpoint and formulate it as
a regression problem. We learn a regression forest (RF) model that, given
an image patch, tells us if there is an IP in the center of the patch. Our RF
based method for IP detection allows an easy trade-off between speed and
repeatability by adapting the depth and number of trees used for approx-
imating the interest point response maps. The data used for training the
RF model is obtained by running state-of-the-art IP detection methods
on the depth images. We show further how the IP response map used for
training the RF can be specifically designed to increase repeatability by
employing 3D models of scenes generated by reconstruction systems such
as KinectFusion [I]. Our experiments demonstrate that the use of such
data leads to considerably improved IP detection.

1 Introduction

Recent developments in depth sensor technology have enabled the widespread
use of inexpensive consumer devices such as the Kinect that is able to capture
dense depth data at 30fps. This opens a wide range of opportunities for new
applications based on depth information such as real time localization and object
or scene reconstruction. Methods proposed for this and other such applications
involve estimating the pose of the camera by matching the current depth map
against a database of previously seen depth maps.

A common approach for solving the above-mentioned problem is to extract
interest points in order to reduce the computational burden necessary to per-
form this matching task. A recent example where such a technique is of interest
is the KinectFusion system [I], which demonstrated that depth sensors paired
with efficiently parallelized programs running on high-end graphics cards allow
to perform dense frame-to-frame depth tracking and enable accurate 3D recon-
struction in real-time. However, memory restrictions force the reconstruction
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to be limited to small office-like environments. For reconstructing larger envi-
ronments, e.g. complete buildings, the scene has to be split into several pieces,
which by themselves, can be handled by the reconstruction system. A common
way to connect such pieces is to extract interest points which can then be effi-
ciently queried. However, estimating good interest points in noisy depth data is
computationally expensive and therefore, only of limited use in online systems.
We reduce the computational load necessary to compute interest points by ef-
ficiently approximating response maps of interest point detectors using regression
trees. We demonstrate the effectiveness of our approach by learning to predict
the response of an interest point detector based on surface curvature. For train-
ing and evaluating the regression trees, we use a data set of depth and color image
sequences, obtained using a Kinect sensor. Our data set also includes volumetric
reconstructions of the recorded scenes as well as synthetic depth and surface nor-
mal maps. These have been created from the reconstructed data given by Kinect-
Fusion [I], and are therefore more accurate and include less noise than the raw
images. Finally, we introduce a way of creating optimized response maps for inter-
est point estimation and show that, by using these maps for training the regression
forest model, we can improve the repeatability of online interest point detection.

2 Related Work

Although there has been a lot of research on interest point extraction in 2D
color images, there is surprisingly little work on interest point extraction in
dense depth data, as supplied for example by the Kinect depth sensor.

3D Interest Point Extraction. Steder et al. [2] used an approach based on the
Laplacian-Of-Gaussian method to compute interest points in range images. How-
ever, this is computationally very expensive and not suitable for real-time or
near-real-time operation. In [3], Steder et al. presented an interest point de-
tector which first finds and classifies different kinds of 3D object borders and
then locates interest points based on this information. Although efficient, this
method is specifically designed for range images, which have different charac-
teristics compared to the depth maps obtained from the Kinect sensor. In [4],
Unnikrishnan presented a method for extracting interest points with automatic
scale selection in unorganized 3D point clouds. However, this work does not take
any view-point related information into account.

Learning-based Interest Point FExtraction. A number of learning-based ap-
proaches have been proposed for efficient estimation of interest points in color or
gray value images. Rosten et al. [5] introduced FAST (Features from Accelerated
Segment Test), a interest point extraction method which considers all pixels on
a circle around the current point to decide whether this point is a feature or not.
Although no learning is involved in this approach, it can be seen as a manually
designed decision tree. In [6], Rosten et al. extend their work such that the out-
put of FAST is learned using a decision tree. Again, pixels on a circle around
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the center pixel are used in the tree features. In [7], Rosten et al. try to improve
the repeatability of the interest point detection. In contrast to the previous ap-
proaches they consider more test pixels and use simulated annealing to optimize
the decision tree with respect to repeatability and efficiency. The optimization is
done by randomly modifying an initially learned tree and by checking whether
this modification improves repeatability and efficiency.

The core idea of [§] is to take an existing binary-valued decision algorithm as
a black box performing some useful binary decision task and to train the Wald-
Boost [9] classifier as its emulator. WaldBoost is a greedy learning algorithm
which finds a quasi-optimal sequential strategy for a given binary-valued deci-
sion problem. It combines the AdaBoost [10] algorithm for feature selection and
Wald’s sequential probability ratio test (SPRT) for finding the thresholds that
are used for making the decision. As examples, they learned the Hessian-Laplace
and Kadir-Brady saliency detector. However, the resulting emulators are slow
and not able to process images at reasonable frame rates.

Considering more high-level interest points, the face detector of Viola et al. [11]
can also be seen as a detector of interest points, where the interest points are ac-
tually faces. In [I2], the authors try to classify surface types, e.g. planes or valleys,
in range data using perceptron trees. This does not fit exactly into the category
of interest point detection, but it identifies regions of interest which can be used
for similar tasks as interest points. In [I3], Lepetit et al. train trees such that they
output the probability that the considered interest point corresponds to a specific
class. Although not intended by the authors, this might be seen as kind of an in-
terest point detector for every class if applied densely on an image. Similar things
have been done in [I4] using Ferns. Shotton et al. [I5] use decision trees to estimate
body parts and use artificially rendered humans to train their trees.

However, the above-mentioned approaches neither consider learning the detec-
tion of interest points in depth data using regression trees, as we do in Sec. [ nor
creating artificial interest point response maps (for training the regression model)
that are optimized to increase the detection performance, as we propose in Sec.

3 High Curvature as Baseline Interest Point Detectors

A common approach [I6/17] used for estimating interest points in 3D data is to
consider surface curvature and select points where curvature reaches a maximum.
In the following, we explain how curvature can be computed using the normal
vectors of the surface surrounding the point of interest. For this, we first describe
the process for estimating surface normals and then discuss how these estimates
can be used to compute a curvature response.

3.1 Normal Estimation

For surface normal estimation from a depth map, we use a modified version of
the approach proposed in [18]. They consider the first order Taylor expansion of
the depth function D(x)

D(z + dzx) — D(z) = dz' AD + O(dz?), (1)
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where x is the 2D coordinate in the depth map, dx is a 2D offset, AD is a 2D
depth gradient, and O(dx?) represents higher order terms. To estimate the value
of the gradient AD they use 8 neighboring points around the point of interest
to create a stack of equations. A neighbor is only considered if the difference in
depth is below a certain threshold «. In our experiments we use a« = 5 cm. From
AAD, one can then compute three 3D-points as

X =v(z)D(z), (2)
X, =v(z+[1,01")(D(z) + [1,0]AD), (3)
Xy =v(z+[0,1]")(D(z) + [0,1]AD), (4)

which form two vectors vx_ x, and vx_,x, between X and X; as well as X and
X5. The desired normal can be computed from these two vectors by computing
the cross-product n = vy ,x, X vx_,x,.

In contrast to [I8], we compute the position of the 8 neighboring points based
on the inverse of the depth of the point of interest instead of using a fixed
position. This means, that we take a bigger image region into account for points
further away. We do this, since the depth of 3D points located at further distance
to the depth sensor is disturbed by stronger noise and discretization effects than
that of 3D points close to the sensor.

3.2 Curvature Response

Having computed the normals, we select all neighboring points within a 15 x 15
pixel image window and project all their normals onto the plane defined by the
normal of the point of interest. From these projected normals, we then compute
the covariance matrix C' and use its second eigenvalue as curvature response.

4 Learning Interest Point Detectors

In this Section we introduce the learning procedure for our proposed interest
point detectors based on decision trees. For this, we first present the dataset we
used for training (see Sec. ET]), then introduce the learning procedure for ob-
taining regression trees which approximate the interest point response estimation
process (see Sec. [42]), and finally, explain the post-processing steps we use in or-
der to obtain the interest points from the interest point response approximation
provided by the regression trees (see Sec. .3]).

4.1 Data Set

In total, we use 33 video sequences captured from the Kinect sensor: 23 sequences
for training, and 10 sequences for testing (see Fig.[Il). Each video sequence con-
sists of approximately 900 continuously recorded color images and corresponding
depth images. Both, the training as well as the test set of sequences depict typical
real world scenes expected to be encountered in an office-like scenario, including
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Fig. 1. The shown color images present representative frames of each sequence used
for training and testing. The first 23 images represent the training sequences while the
last 10 images represent the test sequences.

N -

Sequence of Reconstruction Sequence of Sequence of Mappings between Voxels
Raw Data Volume Reconstructed  Reconstructed and Image Data
Depth Maps Normals

N
~

Fig. 2. The different types of data each test and training sequence contains

desks, specialized work spaces, recreational areas as well as meeting rooms. To
ensure a fair evaluation, we ensured that the test sequences did not record any
of the same volume of 3D world space.

Each of the available sequences contains not only the raw data obtained from
the Kinect sensor but also a volumetric reconstruction obtained using the Kinect-
Fusion [I] reconstruction system. Fig. Plshows the different types of data we have
available in the sequences. These include the raw depth and image data, the re-
constructed volume, synthetic depth and normal maps obtained from the recon-
structed volume, and for each frame, a mapping between the volume voxels and
the pixels in the images. This volumetric mapping will let us create optimized
synthetic interest point response maps as described in Sec.

4.2 Learning Using Regression Trees

In the following we describe the process for learning the structure of a binary
regression tree that approximates interest point responses from depth maps.
Every non-leaf node of the tree uses a depth comparison between two sample
positions relative to the point under consideration to decide whether to follow
the left or right tree branch emanating down from the node. Every leaf node of
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the tree stores an interest point response value which is the mean of the responses
of all the training pixels that reached that leaf node. This leads to the following
parameterization of a node:

[ (f,,n,) if n is node
"= { (me) if nisleaf ~’ (5)
where f is a feature, n; and n, are the left and right child node respectively, and
m. is the mean interest point response of the training examples that fall into the
corresponding node. The feature f implements the depth comparison between
two sample positions and is defined as

f: (xlay1>$23y2at)v (6)

where p; = (71,71)" and ps = (2,y2) " are the sample positions for the depth
values and ¢ is a threshold which is applied on the depth difference D(p1) —D(p2).
The sample points are placed within a wp x hp window. The first sample point
p1 is either placed in the center or randomly within this window around the
center point, where both of these possibilities have equal chance. The second
sample point ps is placed randomly within the window. In our experiments, we
use wp = hp = 41 at a depth of 1 meter and we scale the window according to
the depth. The thresholds as well as the offsets of the feature sample positions
are selected automatically during the training.

During the learning, we select for every node n; a feature f; € F and a
threshold ¢ which best separate the set £ of examples. We consider an example
as a quintuple e with

e= (Q7r7x7yvc)v (7)
where ¢ is the index of training sequence, 7 the index of the frame within this
sequence, p = (z,y) is the location of the example within the image r of
sequence ¢, and c is the corresponding interest point response value. A feature
f; separates the set £ best if it minimizes

N, N, g
Gilel+Nr+erl+Nr’ ()
where v, and v; are the variances of the examples that fall into the left re-
spectively right child node, and N; and N, are the corresponding numbers of
examples. This variance reduction objective follows the standard entropy mini-
mization strategy used for regression tree learning [19]. In our experiments we
sample 1000 feature tests ie. |F| = 1000 and select 10 thresholds which are
distributed over the range of the possible feature results. The example set £
is created by selecting every second pixel in x and y from approximately 1000
images taken from our training sequences. However, we use an example only if
curvature information is available and the depth is not larger than 4 meters.
At test time, for every image position, we follow the path down from the
root to the leaf, and return as the result, the response m, corresponding to the
reached leaf. In case of multiple trees, the results of the individual trees are
combined together by averaging them.



206 S. Holzer, J. Shotton, and P. Kohli

Fig. 3. Left to right: exemplary depth map with corresponding surface curvature map,
the unfiltered response obtained from regression trees as well as its median filtered
counterpart

4.3 Post-processing

Fig. Bl shows the interest point response map approximation obtained from a
depth map using a regression tree. As one can easily see it contains a significant
amount of salt-and-pepper-like noise which has to be filtered out in order to get
a stable response over multiple frames. Therefore, we apply a median filter of
size 5 x 5 and then a Gaussian filter with sigma 3 in order to get distinctive
peaks. Finally, the interest points are extracted as maxima of the resulting map.

5 Designing Optimal Interest Point Detectors

In Section , we have shown how random forests can be trained to predict the
response of any existing curvature-based interest point detector. This process
however, does not in itself lead to better interest points. In this section we show
how to compute desirable interest points for training the random forest that may
not be obtained from existing methods. For this, we first discuss the properties
desired from a good interest point and then show how to compute such response
maps from 3D reconstructions of the scenes.

5.1 Optimality Criteria

In the following we define interest points as a set of points in the image coordinate
system which fulfil certain specific properties. We will use these properties to
select an evaluation criteria. The following list of properties are desirable for a
set of scene elements in order to be useful as interest points:

— Sparseness: there should be only a small number of points in the scene.
— Repeatability: the points should be detected in all views of the scene.
— Distinctiveness: the area around an interest point should be unique.

— Efficiency: points could be estimated efficiently.

While analyzing the criteria, one sees that sparseness is hard to evaluate since
it is usually defined using a threshold. Distinctiveness is highly dependent on
the matching method, especially on the construction of the descriptor and thus
is difficult to evaluate objectively. Repeatability of an interest point, however, is
easy to measure since we have access to the reconstruction of the scene depicted
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Fig. 4. Illustration of IP repeatability. The evaluation always considers a source frame
and a destination frame. All the extracted interest points in the source frame are pro-
jected into the destination frame using the provided reconstruction. For every projected
source point we search for corresponding destination points within a radius of 1.5 cm.
Only the closest match within this radius is considered as a true positive and the others
are considered as false positives. If no point is present, we count it as a false negative.
If a destination point is not assigned to any projected source point then it is considered
a false positive.

in every training/test sequence. This enables us to propagate interest points
from one frame to any other frame of the sequence and check the consistency of
results.

We also evaluate repeatability with respect to the number of extracted in-
terest points (see Sec. and [6.2)), which provides us with information about
the detection performance with respect to sparseness. Furthermore, we evaluate
repeatability with respect to the number and depth of trees in Sec. and
Since the efficiency of the presented approach depends on the number and depth
of trees used for detecting interest points, this allows us to quantify the trade-off
between efficiency and repeatability. The influence of the tree parameters on the
interest point detection performance is discussed in detail in Sec.

As a measure for repeatability we use the number of true-positives, false-
positives and false-negatives. The estimation of these numbers is described in
Fig. @ Repeatability is computed for a 5 frame difference as well as a 40 frame
difference between compared images. This was done to compare repeatability for
both, small- as well as wide-baseline matching applications.

5.2 Creating a Response Tailored for High Repeatability

In order to create a response which leads to highly repeatable interest points we
make use of the mapping between pixels of the input depth maps and the voxels
of the reconstruction volume, as shown in Fig. Bl For this, we first compute
the curvature response for every image of each sequence based on the synthetic
surface normals, which are obtained from the reconstruction. These curvature re-
sponses are then accumulated in an accumulation volume. A second accumulator
volume is used to count how often a voxel was visible in one of the images of the
sequence. Finally, we project the resulting accumulation volume into each frame
of the sequence and select the best IV interest points from the rendered image.
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Fig. 6. Computing artificial response maps from accumulated responses

Note that this procedure also correctly handles occlusions. The final response
map is then created by creating a Gaussian response for each of the selected
interest points, as shown in Fig.[6l This artificial response gives high responses
for repeatable points and is then approximated using a regression tree. Results
for this are given in Sec.

6 Results

In the following we evaluate our proposed approach against the baseline method
using the test set introduced in Sec. 4.1l As discussed in Sec.[5.] the evaluation
is based on the basis of repeatability of the obtained interest points. If not other-
wise mentioned, the evaluations are done with respect to the number of interest
points obtained from the detectors. The number of IPs is controlled by changing
the threshold which is applied on the response map created by the specific IP
detector. Selecting a high threshold results in only a few, but very stable IPs,
while choosing a lower threshold increases the number of points. A higher num-
ber of points, on the other hand, generally leads to a worse true-positive rate.
The drop in the true-positive rate with increasing number of obtained interest
points is explained by the fact that a lower threshold applied on the response
map results in more but less reliable points. The evaluation is conducted using
a notebook with a 2.26GHz Intel(R) Core(TM)2 Quad CPU and 4 GB of RAM,
where only one core is used for the computation.
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Fig. 7. Comparison of repeatability of detected interest points with respect to different
training and test data characteristics. True-positive rate with image pairs with 5 frames
difference (left) and 40 frames difference (right).

0.65
06 0328
. . 0.3
£0.55 * & original ki & original
ﬂ‘ +learned ﬂ‘ 0.28 +learned
=Y \ -©-designed & -©-designed
— O
" 0.26 e,
045 0.24
\ +
0.4 0.22
0 50 100 150 200 250 0 50 100 150 200 250

Number of points Number of points

Fig. 8. Comparison of the interest point detector trained using designed response maps
(described in Sec. Bl and Fig. [6) with the original curvature-based approach for a 5
frames difference (left) and a 40 frames difference (right).

6.1 Learning Interest Point Detector Responses

We now describe our experimental results.

Fig. [d compares the repeatability of results obtained from learned and hand-
coded detectors on both, raw and reconstructed datall. The results of the cur-
vature-based interest point detector applied on the raw Kinect depth map are
annotated by original-raw, while those obtained by applying it on the rendered
depth map (obtained from the 3D model KinectFusion system) are annotated
by original-rec. As expected, original-rec results are better than original-raw
because the rendered depth maps have less noise, are smoother, and do not
suffer from missing data.

We now analyze the effect of using raw depth (learn-raw-...), as well as ren-
dered depth (learn-rec-...) for training the regression forest. These two different
cases are then evaluated on raw depth data (learn-...-raw) as well as on re-
constructed depth data (learn-...-rec). This leads to a total of four different
possibilities. Note that the curvature response used for training the regression
trees is always computed from the reconstructed data given by the KinectFusion

! This section deals only with the input data. The use of designed response maps (the
training labels) as described in Sec. Bl will be analyzed below in Sec.
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Fig. 9. Comparison of the interest point detector trained using designed response maps
(described in Sec.[Bland Fig. [6) with the original curvature-based approach, its learned
counterpart, as well as the detectors of Steder et al. [2I3]. Results are for a 5 frames
difference (left) and a 40 frames difference (right).

system. We are changing here only the data on which the tree features are evalu-
ated in order to decide on the split. As one would expect, training the regression
tree using the data type it is later applied to gives superior results compared to
training it from a different type of data.

Comparing the IP repeatability of the original surface curvature estimation
approach (original-raw) with our proposed approximation using regression trees
(learn-raw-raw) in Fig. [{l one can see that our approach is not only able to
approximate the behaviour of the curvature-based IP detector with respect to
repeatability, but it even gives better results. The improvement can be explained
by the fact that we use the curvature estimated from the reconstructed data
instead of the raw data for training our regression trees.

6.2 Learning Designed Response Maps

In Fig. 8 we compare the results obtained by a regression forest trained using
the artificial IP response maps (which we introduced in Sec. [l and Fig. [l with
the results of the original interest point detector based on curvature as well
as the regression forest trained using its IP responses. Our results show that
it is possible to train a regression forest to output such desired IPs resulting in
better repeatability performance compared to the curvature-based interest point
detector.

In Fig. @ we additionally compare to [2] and [3]. Although [2] tends to have
a higher true-positive rate for large numbers of points, it also shows a higher
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Fig. 11. Evaluation of the influence of the number of trees on the true-positive rate
and the number of false positives per image

number of false-positives. The approach presented in [3] on the other hand has
a very low number of false positives, but also a far worse true-positive rate.

6.3 Depth of Trees

Fig. [0 evaluates the influence of the depth of a regression tree on the perfor-
mance of the interest point detector. While the true-positive rate drops until a
depth of 7 and then increases slowly with increasing depth, the number of false
positives per image is high for trees with a depth less than 7.

6.4 Number of Trees

As Fig. [Tl indicates, the number of trees has only a small effect on the resulting
detection performance. While the true-positive-rate stays almost constant, the
number of false-positives per image drops only by a value of less than 2 when
going from a single tree up to ten trees. This can be explained by the applied
filters (see Sec.d3]), which are used to remove different types of noise from the
obtained response maps, since adding more trees to the evaluation process has
a similar effect on the response. Note, however, applying the described filters is
computationally more efficient than using a large number of trees (see Sec. [6.5).
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Fig.12. Timings for interest point detection. Left: comparison of the original
curvature-based approach with learned interest point detectors using different numbers
of trees and tree depths as well as the detectors of Steder et al. [2I3]. Right: zoomed-in
version where we only the learned approaches are compared. For our approach we used
the regression trees learned from the designed response maps (see Sec. [, including
the post-processing step (see Sec. IIZI)

6.5 Processing Time

In Fig. we compare the computation time of the original curvature-based
IP detector with our random forest based detector using different number of
regression trees with different depths and with the detectors of Steder et al. [213].
As one can see, the processing time for our proposed approach using regression
trees is much less than for the original approach based on surface normals. It
is also faster than the approach of Steder et al. [3]. The single tree or low
depth forest variants of our approach are faster than [2] also. Note that for
the processing time of the original approach as well as for the approaches of
Steder et al. [2I3] we estimated only a single value since it does not depend
on the depth of a tree. We visualize it as a line for better comparison. For the
evaluation of [3], we used an open-source implementation which is available in
the Point Cloud Library@.

7 Conclusion

In this paper, we presented a novel regression forest based approach to effi-
ciently detect interest points in depth maps. Our experimental results show that
a curvature-based interest point detector can be approximated using the regres-
sion forest model. Furthermore, we show that by using a reconstruction of the
available scenes we can create an improved interest point detector which gives
interest points with higher repeatability.

Acknowledgements. The authors would like to thank Rasmus Kyng, Shahram
Izadi, David Kim, Dave Molyneaux, and Otmar Hilliges for the inspiring discus-
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2 http://www.pointclouds.org
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