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Abstract. We propose a novel regularization model for stereo matching
that uses large neighborhood windows. The model is based on the observa-
tion that in a local neighborhood there exists a linear relationship between
pixel values and disparities. Compared to the traditional boundary pre-
serving regularization models that use adjacent pixels, the proposed model
is robust to image noise and captures higher level interactions. We develop
a globally optimized stereo matching algorithm based on this regulariza-
tion model. The algorithm alternates between finding a quadratic upper
bound of the relaxed energy function and solving the upper bound using
iterative reweighted least squares. To reduce the chance of being trapped
in local minima, we propose a progressive convex-hull filter to tighten the
data cost relaxation. Our evaluation on the Middlebury datasets shows
the effectiveness of our method in preserving boundary sharpness while
keeping regions smooth. We also evaluate our method on a wide range of
challenging real-world videos. Experimental results show that our method
outperforms existing methods in temporal consistency.

1 Introduction

Boundary preserving regularization plays an important role in global stereo
matching. In the seminal work [1], Bobick and Intille observed that occlusion
boundaries tend to collocate with intensity edges. This observation has since
been widely used in most of the top performing global stereo matching methods.
The common way of using this observation is to modulate the pairwise regu-
larization with a weight function which is inversely proportional to the pixel
difference; that is, the larger the pixel difference is, the weaker the pairwise reg-
ularization is [2]. Although being simple and powerful, the pairwise boundary
preserving regularization has two limitations. First, between a pair of neighbor-
ing pixels, there is no way to tell whether a change in pixel value is due to image
noise or not. Second, the term cannot capture potential relationships between
pixel values and disparities beyond neighboring pixels.

In this paper, we propose a novel boundary preserving regularization that
overcomes these two limitations. In order to reason what is image noise, we go
beyond adjacent pixels and consider a large neighborhood window. Using a large
neighborhood window also allows us to capture pixel value and disparity inter-
actions at a higher level. Our regularization model is based on the observation
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Linear Regression Result D(x) = −28.94I(x)

+ 37.76

D(x) = 0.31I(x)

+ 29.62

D(x) = 6.45I(x)

+ 13.42

(a) (b) (c)

Fig. 1. Linear regressions between intensities and disparities around three points
(marked in the Teddy image) at: (a): disparity discontinuity, (b): dense texture re-
gion, and (c): textureless region. Blue solid lines represent the spatial intensity change
(1st row) and the spatial disparity change (2nd row). Red dashed lines in the second
row show the estimated disparity using the regression model in the equations (3rd row).

that within a local window (e.g., 5× 5), the disparity values in the window can
be linearly regressed from the intensity values, i.e.,

D(x, y) = aI(x, y) + b. (1)

Figure 1 intuitively illustrates this observation in three typical cases using 1D
windows. In the case of Figure 1(a), the window contains a depth discontinuity,
and the intensity in the window transits from one level to another. Since the
intensity transition collocates with the color transition, the two parameters a and
b are sufficient to map the two dominant intensity values to the two dominant
disparity levels. In the case of Figure 1(b), the window contains a single disparity
but varying intensities (texture), letting a ≈ 0 and b being the average disparity
again linearly maps the disparity levels from the intensity values. In the case
of Figure 1(c), the window approximately contains a constant disparity and
uniform intensity. This is an ambiguous situation, because a and b follow a
linear constraint D̄ ≈ aĪ + b. However, if we add a regularization to penalize a
large value of a, then a ≈ 0 and b being the average disparity leads to a good
fit. More general cases are discussed in Section 3.2.

Based on this observation, we propose a new stereo matching energy function
that uses local linear regression models as regularization. In this energy function,
regression parameters a and b are unknown variables that are adapted to each
local window. This energy function is not readily optimized by conventional
optimization methods, such as Graph Cuts and Belief Propagation. We develop
an iteratively convex relaxation algorithm that minimizes the energy function.

We evaluate our method on all the stereo pairs from Middlebury dataset with
ground truth. We achieve the state-of-the-art performance (ranked top 10 on
the four benchmark pairs, as of the submission time on March 2012). We also
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evaluate our stereo method on a wide range of challenging real-world videos
used in the literature. Although our stereo method is applied to each pair of
frames independently (no temporal constraint is used), our method demonstrates
temporally stable disparity estimates and significantly outperforms competitive
frame-by-frame methods with regard to temporal consistency. By not depending
on motion tracking for temporal consistency, our method is applicable to scenes
with fast motion where tracking itself is a challenge.

To summarize, our technical contributions include:

– We propose a novel regularization by modeling the local correlation between
disparity variations and intensity patterns. Each regularization term involves
more than two pixels and we show how to formulate both first order and
second order smoothness terms.

– We propose a progressive convex-hull filter that relaxes the data cost in each
iteration. We demonstrate that such iterative relaxation helps to escape local
minima in optimizing non-convex function in stereo.

– We propose an iterative algorithm that alternates between finding a
quadratic upper bound of the relaxed energy function at the current solution
and updating the solution by minimizing the upper bound using iterative
re-weighted least squares.

2 Related Work

Stereo matching has a large body of literature. Most recent papers can be found
and are evaluated on the Middlebury website [3]. Reviewing all the papers is
beyond the scope of this paper. We only discuss closely related work.

Our method falls into the category of global methods which formulate stereo
matching using a random field model and infer disparity maps using energy
minimization methods like Graph Cuts [2] or Belief Propagation [4]. Most global
methods are designed to handle energy functions with pairwise terms. High-order
terms are usually approximated as pairwise terms for optimization [5, 6]. In
addition, image segmentation is often combined with GC and BP based stereo
matching to achieve better results [7–10]. However, when applied to video in
a frame-by-frame fashion, segmentation based methods may generate artifacts
that are temporally inconsistent [5].

The closest previous work to ours is Bhusnurath and Taylor [11], in which
they proposed a convex formulation for binocular stereo matching. Their key
idea is to find a piecewise linear lower convex hull of each data term and use a
weighted L1 penalty for the first and second order finite differences as regular-
ization. Our work differs from [11] in three major ways. First, our regularization
models the local correlation between disparity variation and intensity pattern
while the previous work does not. Second, we use a progressive convex hull filter
to iteratively tighten the relaxation used in their data term. Third, their energy
function is non-smooth, requiring a linear programming solver that introduces
a large number of slack variables (to handle inequality constraints); our energy
function is smooth, and we designed an iterative re-weighted least squares (IRLS)
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technique to search for minimum. We demonstrate that our method produces
better boundary-preserving results on the Middlebury benchmarks and better
temporal consistency on many videos.

Our regularization model is inspired by Rhemann et al . [12], where they utilize
a local linear model for edge-preserving cost aggregation. Previous works have
also successfully applied local linear model in other applications, such as image
matting [13] and image filtering [14]. Our method differs from [12] in that ours
is an energy-based method that incorporates the local linear model into our
minimization objective, while local methods like [12] use linear model as filter
for the cost volume.

3 Problem Formulation

We formulate stereo matching as a global optimization. Given a left-right pair Il
and Ir, we seek to estimate the disparity map D between them. Our formulation
is not symmetric: the disparity map is from the left (reference) to the right
image. The objective function Φ is a sum of three terms: data terms Φ0, first
order smoothness terms Φ1, and second order smoothness terms Φ2:

Φ(D) = Φ0(D) + β1Φ1(D) + β2Φ2(D), (2)

where β1 and β2 are the combination coefficients.

3.1 Data Term Φ0

Φ0(·) is a weighted sum of data terms over all pixels as

Φ0(D) =
∑

i∈I
uiγi(di), (3)

where di is the disparity for pixel i, γi is the data term function, ui is the
confidence weight for pixel i, and I is the set of all pixels. Data term is not the
contribution of this paper; we used Guided Filtered cost volume [12]. Although
the cost volume is defined only on integer disparity levels, we interpolate these
discrete values so that the data term function is defined continuously from 0 to
the maximum disparity. The calculation of ui will be described in Section 5.1.

3.2 First Order Smoothness Term Φ1

Following our observation made in Section 1, we model the linear regression from
color intensity to disparity values as follows. For pixel j in the neighborhood of
i, the disparity dj is regressed from its own intensity value Ij as:

dj ≈ aiIj + oi, ∀j ∈ Nbr(i), (4)

where ai and oi are the unknown coefficients.
As shown in Figure 1, if the disparity is flat around i, then ai is close to 0 and

oi is the average disparity within the neighborhood. If there is a sharp transition
in the disparity in this neighborhood, e.g., a step edge, then most likely there
will be a sharp intensity transition collocated in the same neighborhood, and the
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coefficients ai and oi will transform the intensity profile into the disparity profile.
Therefore, this model is valid for images with piecewise smooth intensity patterns
where the disparity discontinuity boundaries collocate with the intensity edges.

To set up the regularization for the whole disparity map D, we could, as in
Levin et al . [13], sum up the sum of squared residual errors for each [ai, oj ] in
all local neighborhoods as

∑

i

∑

j∈Nbr(i)

(dj − aiIj − oi)
2 + λa2i , (5)

where λa2i is the regularization term. However, using Eq. (5) for disparity reg-
ularization has a problem. Specifically, if a local neighborhood contains more
than two dominant disparity values, it will likely contain more than two domi-
nant intensity values. As a result, the affine model in Eq. (4) may not be a good
fit between the intensity and the disparity. Furthermore, the squared penalty
in Eq. (5) is susceptible to outliers that cause misfit. To make the regularization
robust, we propose the following form

∑

i

∑

j∈Nbr(i)

wijρσ(dj − aiIj − oi) + λa2i , (6)

where wij is the color similarity weight between pixels i and j and ρσ is the
Huber function with parameter σ.

ρσ(ε) =

{
ε2/(2σ) for |ε| ≤ σ,
|ε| − (σ/2), otherwise.

(7)

Using Eq. (6) as regularization has two benefits. First, the Huber function re-
duces the effect of large residuals due to model misfit. Second, wij assigns higher
weights to pixels that are more similar in color to pixel i. If pixel i’s neighbor-
hood patch has more than two (e.g., three) dominant disparity values, the patch
will contain approximately three dominant colors, one for each disparity value,
assuming that pixels with similar disparity values have similar colors. wij will
favor two groups of pixels in the regression whose colors are more similar to pixel
i’s (one group will contain pixel i). Since ai and oi can map two dominant colors
to two dominant disparities, the regularization model holds.

Compared to the conventional pairwise regularization using color similarity
weight, such as wij(di − dj)

2 or wij |di − dj |, our new regularization is more ro-
bust. For example, when wij takes the form that is used in the bilateral filter [15],
the conventional regularization weights depend heavily on the color bandwidth
parameter, because large parameters may cause over smoothing of object bound-
aries and small parameters may cause isolated erroneous disparity regions. In our
model, wij is used to pick up the first one or two dominant colors, and therefore
it does not need to be too small to preserve sharp boundaries. The boundary
sharpness is encouraged by the linear regression between intensity and disparity.
The exact weight setup is described later in Section 5.

To simplify notation, let ai = [ai; oi], fj = [Ij ; 1], and Λi = diag([λi; 0]).
Further letting D = {di} be the vector of all disparities and A = {ai} be that
of all coefficients, we then write the regularization as
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Φ1(D,A) =
∑

i

∑

j∈Nbr(i)

wijρσ(dj − aTi fj) + aTiΛai. (8)

Note that ρσ is a convex function that operates on a linear function of unknown
variables D and A, so Φ1(D,A) is convex. Further note that, the bias variables
{oi} in the linear regression model is not regularized in Eq. (6) and Eq. (8);
therefore, even for completely dark image regions, i.e., Ij = 0, our regularization
model is still effective.

3.3 Second Order Smoothness Term Φ2

The regularization in Eq. (8) encourages pixels with similar colors to have similar
disparities, which can be considered as the first order smoothness. We can use
the same idea to encourage pixels with similar colors to have similar disparity
derivatives, i.e., the second order smoothness.

Specifically, let δx and δy be pixel index increments for spatial neighbors in
the x and y directions, respectively. We approximate the disparity derivatives in
x and y directions using finite differences as dj −dj+δx and dj −dj+δy . Replacing
the disparity values {di} in Eq. (8) by the disparity finite differences, our second
order smoothness Φ2(·) is defined as

Φ2(D,B,C) =
∑
i

∑
j∈Nbr(i)

wb
ijρσ′(dj − dj+δx − bT

i fj) + bT
iΛ

bbi

+
∑
i

∑
j∈Nbr(i)

wc
ijρσ′(dj − dj+δy − cTi fj) + cTiΛ

cci,
(9)

where wb
ij , w

c
ij , bi, and ci are counterparts of wij and ai in Eq. (8); B and C

are vectors of all coefficients {bi} {ci}, respectively. The setup of wb
ij and wc

ij

are different from wij and will be described later in Section 5.

4 Optimization Algorithm

We present an iterative algorithm to minimize our model in Eq. (2). Our objec-
tive function is difficult to optimize using discrete search methods such as Graph
Cuts [2] or Belief Propagation [4], because it involves both disparity variables
and auxiliary variables—the number of discretized states is huge for each pixel.
Therefore we resort to a continuous optimization approach.

Our model in Eq. (2) is also challenging for continuous optimization because
the data term energy Φ0 is highly non-convex, although Φ1 and Φ2 are convex.
Our strategy is to iteratively relax Φ0 to be a locally convex function so that the
chance of being trapped in a local minimum is reduced. The initial relaxation is
loose, which transforms Φ0 into a global convex function. During the iteration,
the relaxation becomes tighter and tighter. In the last few iterations, the algo-
rithm optimizes the original cost function. We discuss our iterative relaxation
procedure and how to optimize each relaxed energy function in this section.
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Fig. 2. Illustration of the progressive convex hull filtering with three different radius.
Initially a large r is used to compute the lower convex hull in (a). As iteration continues,
r becomes smaller so that the relaxation of the data term becomes tighter ((b) and
(c)). (d) shows an exaggerated quadratic B-spline (solid blue) and three parabola upper
bounds (solid green) for the relaxed data term like (a). We search for the upper bound
with the lowest curvature to approximate the relaxed data term in our optimization.

4.1 Progressive Convex Hull Filtering

At the first iteration, we compute the lower convex hull of each date term γi(·)
function, as shown in Figure 2(a), and we use the hull as the relaxed energy
function. This relaxation turns the original problem into a convex optimization
problem. We use its optimum solution to initialize the search of a less relaxed
energy function in the next iteration.

To make the relaxation tighter, we reduce the range over which the lower
convex hull is computed. Specifically, for each disparity level d, we consider a
range [d− r : d+ r] of radius r. We compute the lower convex hull of γi(·) over
this reduced range and define the value of the relaxed function at d to be the
value of this local lower convex hull at d. We sequentially evaluate the relaxed
function value at each d to obtain the relaxed function for this iteration.

Note that in the first iteration, r is set to be the maximum disparity, so the
relaxation is the global lower convex hull. r reduces as the iteration continues.
In the last few iterations, r = 0 and the relaxation becomes the original data
term function. Figure 2 shows a few examples of relaxation with different r,
indicating that a bigger r eliminates more local minimum at the expense of a
poor approximate of the original energy function.

4.2 Optimizing Relaxed Objective Function

Although the relaxed Φ0 has less number of local minima, it is still difficult
to minimize together with Φ1 and Φ2, because the relaxed Φ0 is non-smooth
(piecewise linear, as shown in Figure 2) and the optimization problem involves
a large number of variables: disparity values and regression coefficients defined
for every pixel. Methods that handle non-smooth functions using sub-gradients
would be prohibitively slow. Instead, we choose to approximate the relaxed Φ0 by
smoothing its corners and use an EM-like method to optimize the approximated
relaxation. Specifically we iteratively find an exact quadratic upper bound and
update the solution by minimizing the upper bound.
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Since the regularization Φ1 and Φ2 are defined using Huber function, which
is smooth and convex, no relaxation and smoothing approximation is needed.
Only quadratic upper bound is needed, which is shown below.

Φ̄0: Upper Bound for Relaxed Data Term Φ0. Our main idea is illus-
trated in Figure 2(d). Specifically, we approximate the relaxed data term using
quadratic B-spline, as shown in solid blue line. This approximation is equivalent
to convolve the relaxed data term with a box filter of support [−0.5, 0.5], so the
approximation error is negligible. (The B-spline in Figure 2(d) is exaggerated.)
Then at the current solution (black circle in Figure 2(d)), we find a parabola
with minimum curvature that is both tangent to the spline and above the whole
spline, as shown in solid green lines. This lowest parabola serves as a tight up-
per bound of the relaxed data term. The details of how to find this parabola is
provided in the supplementary material. Its computational cost is linear to the
number of disparity levels.

In summary, given the current disparity map D∗, the parabola upper bound
for the data terms summed over all pixels can be written as a quadric form as

Φ̄0(D) = (D−D∗)TH0(D−D∗) + (D−D∗)TΦ′
0(D

∗), (10)

where H0 is a diagonal matrix whose diagonal elements correspond to the cur-
vature of each parabola; Φ′

0(D
∗) is a vector whose elements correspond to the

tangent of the parabola. A constant is dropped in Eq. (10) because it does not
alter the optimization result.

Φ̄1: Upper bound for the First Order Term Φ1. Given the current esti-
mates of D and A, we can construct an exact upper bound for the regularization
Φ1(·) in Eq. (8) by finding the exact upper bound of the Huber function at the
current estimates.

Precisely, we first compute the absolute value of the current residual as

ε∗ij = |d∗j − a∗i
Tfj |, (11)

where d∗j and a∗i are the values of the current estimates. At this ε∗ij , the Huber
function ρ(·) in Eq. (7) has an exact upper bound ρ̄σ(·) as

ρ̄σ(ε) =

{
ε2/(2σ) for ε∗ij ≤ σ,
ε2/(2ε∗ij) + (ε∗ij − σ)/2 otherwise.

(12)

Applying Eq. (12) to each term in Eq. (8), we obtain an exact upper bound Φ̄1(·)
for Φ1(·) as

Φ̄1(D,A) =
∑

i

∑

j

vij(dj − aTi fj)
2 + aTiΛai, (13)

where vij =
wij

2max(σ,ε∗ij)
and the constant

∑
ij

wij max(ε∗ij−σ,0)

2 is dropped in Eq. (13)

since it does not alter the result.
Φ̄1(·) is a quadratic regularization that involves D and A. If vij = 1, Eq. (13)

has the same form as the regularization in [13]. To simplify the optimization, we
can adopt the technique in [13] to eliminate A as intermediate variables. (Details
are given in our supplementary material.) The result is
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Φ̄1(D) = DTH1D, (14)

where
H1 = diag(vj)−

∑
i

GT
iF

−1
i Gi

vj =
∑
i

vij

Fi = Λ+
∑
j

vijfif
T
i

Gi = [vi1f1, vi2f2, · · · , viN fN ].

(15)

Eq. (14) is a positive definite regularizer for the disparity map D that does not
involve A.

Φ̄2: Upper bound for the Second Order Term Φ2. Since Φ2(·) in Eq. (9)
has the same form as Φ1 in Eq. (8), except that it is operated on the finite
difference of the disparity map rather than the disparity values, we can follow
the same procedure as in Section 4.2 to obtain the quadratic upper bound for
Φ2(·) as

Φ̄2(D) = DTH2D, (16)

where

H2 = ∇T
x

(
diag(vbj)−

∑
i

Gb
i
T
Fb

i
−1

Gb
i

)
∇x +∇T

y

(
diag(vcj)−

∑
i

Gc
i
TFc

i
−1Gc

i

)
∇y,

(17)

and ∇x and ∇y are sparse matrix operators that transform the disparity map
D into its derivative maps in x and y directions, respectively; vbj , F

b
i , and Gb

i

are computed using Eqs.(11,13,15) with wij replaced by wb
ij ; v

c
j , F

c
i , and Gc

i are
computed in the same way but with wij replaced by wc

ij .

4.3 Algorithm Summary

Our algorithm is summarized below.

Step0 Initialization
Set D using a local method and A, B, and C as 0; set r as max disparity.

Step1 Find the relaxed data term using convex hull filter with radius r.
Step2 Evaluate upper bounds

Φ̄0(D), Φ̄1(D), and Φ̄2(D) in Eqs. (10,14,16).
Step3 Update disparity map

D = (H0 + β1H1 + β2H2)
−1

(H0D
∗ − Φ′

0(D
∗)).

Step4 reduce r and return to Step1

In our implementation, we alternate between Step 1-4 for 30 iterations. It takes
around 30 minutes to calculate the disparity map of a 450x375 image, e.g., Cones,
based on our Matlab implementation. The majority of the time is spent on using
Matlab backslash to solve a sparse linear system; constructing the upper bounds
and setting up the sparse matrices takes much less time. We have found the
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(a) Init estimation (b) 3rd iteration (c) 8th iteration (d) Final result

Fig. 3. Disparity maps (first row) and error maps (second row) of the Teddy dataset
after a number of iterations. The initial estimation (a) is incorrect in (i) textureless
region (right part of the wall), (ii) occluded regions (left of the roof), and (iii) regions
with repetitive structures (left part of the wall). The first two types of error can be
corrected in the first few iterations in (b). Our progressive convex hull filter gradually
tightens the relaxation and provides more discriminative power to correct the third
type of error in (c). (d) shows the final converged result of our method.

running time can be reduced by adopting an over-segmentation representation,
but the results in this paper are based on our non-segmented approach. The
speed can be further improved by using conjugate gradient method on a GPU,
in which H0, H1, and H2 do not need to be constructed explicitly.

5 Implementation Details

5.1 Computing Weight {ui} in Eq. (3)

We use the coefficient ui to exclude overly-textureless pixels and overly-repetitive
pixels, so that they have minimum effect on the objective function. Many choices
are available as reviewed in [16]. We find the following procedure works well in
our implementation. For each pixel, we calculate two features: distinctiveness
and uniqueness. Let d̂ be the disparity corresponding to the minimum cost. Then
distinctiveness is defined as the minimum difference of the cost value between
d̂ and d̂ ± 1. Uniqueness is defined as the difference between the first and the
second minimum cost value. We rank all the pixels by these two features, then
map these two rankings linearly to [0, 1], and finally set ui to be 1 if the product
of the two mapping results is above 0.1, and 0 otherwise.

5.2 Computing Weights {wij, w
b
ij, w

c
ij} in Eqs. (8,9)

The pixel-pair weights wij , w
b
ij and wc

ij should capture the likelihood of the cor-
responding pixels belonging to the same object. We calculate the weights based
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on color similarity, as: wij = exp
(
− δ(i,j)

σc

)
, wb

ij = exp
(
− δ(i,j)+δ(i+δx,j+δx)

2σc

)
,

and wc
ij = exp

(
− δ(i,j)+δ(i+δy,j+δy)

2σc

)
, where δ (i, j) is the average absolute dif-

ference of RGB channels and the color bandwidth parameter σc = 3. For each
pixel i, these weights are evaluated on its immediate 8 spatial neighbors and the
most similar 8 neighbors in a search range of 31 pixels, where the similarity is
measured by the distance between the two 5x5 patches that cover pixel i and j.

6 Experimental Results

We evaluate our method on the Middlebury datasets and a variety of real-world
videos. A subset of the results are reported here; more are provided in the sup-
plementary document and video.

6.1 Effectiveness of Iterative Optimization

We use Teddy image dataset as an example to show the effectiveness of our
iterative optimization algorithm. Figure 3 shows our intermediate disparity es-
timations of the left view after a number of iterations. The initial estimation
(Figure 3(a)) is largely incorrect in (i) textureless regions (e.g., right part of the
wall), (ii) occluded regions (e.g., left part of the roof), and (iii) regions with
repetitive structures (e.g., left part of the wall). After the first few iterations
(Figure 3(b)), the occluded regions and textureless areas are corrected by the
convex hull relaxation of the data term and our large-neighborhood smoothness
term. But the convex hull relaxation lacks sufficient discriminative power to
produce the correct disparities for repetitive structures. As iteration continues
(Figure 3(c)), the progressive convex filter gradually tightens the amount of re-
laxation and the disparity estimates become closer to ground truth. Figure 3(d)
shows the final converged result of our method.

6.2 Justification for Our Regression Based Regularization Model

Since [11] also uses a convex relaxation of data terms with pairwise regular-
ization for stereo matching, we compared our method with [11] to justify our
regularization model in Section 3, as opposed to the conventional weighted L1

penalties: wij |di − dj | and its second order version, which are used in [11].
We first compare the disparity maps of these two methods on Teddy and

Cones dataset. Figure 4 suggests both of these two methods can provide accurate
results in most of the area. Our method preserves sharp object boundaries (see
the sticks in Figure 4(b) and (d)) while keeping disparity smooth within other
regions (see the wall area in Figure 4(f) and (h)) using the same parameters
for these images. In this figure, Cones and Teddy results of [11] are downloaded
from the Middlebury evaluation page.
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(a) Result of [11] (c) Our method (e) Result of [11] (g) Our method

(b) Bad Pixel Rate
3.92% (non-occ)

(d) Bad Pixel Rate
2.17% (non-occ)

(f) Bad Pixel Rate
8.07% (non-occ)

(h) Bad Pixel Rate
4.56% (non-occ)

Cones Dataset Teddy Dataset

Fig. 4. Comparison between our method and [11] on Cones and Teddy dataset. Both
of these two methods can provide accurate results in most of the area. Our method
preserves sharp object boundaries ((b) and (d)) while keeping disparity smooth within
background region ((f) and (h)).

We further show that it is very difficult for [11] to set parameter to keep
both sharp boundaries and smooth regions. We implemented [11] in Matlab
and compared it with our method on Baby1 dataset. As Figure 5 shows, it is
difficult to set the weights for the L1 penalty that work well for all the pixels
in an image: using a large color bandwidth parameter leads to fuzzy weights
that cause over-smoothing across boundaries (Figure 5(c) and (d)), while using
a small color bandwidth leads to sharp weights that cause disparity discontinuity
in textured area (Figure 5(e) and (f)). Our regularization is much less sensitive to
the color bandwidth parameter setting (Figure 5(g) and (h)). More comparisons
are available in the supplementary material.

6.3 Evaluation on the Middlebury Benchmarks

We have evaluated our method on the Middlebury benchmarks [3]. We set
β1 = β2 = 2.5 × 10−4, λ = 10−3. Table 1 shows the ranking and percent-
age of bad pixels (error threshold = 1) of our method as well as two other

Table 1. Evaluation of our method on the Middlebury benchmarks

Algorithm Rank
Tsukuba Venus Teddy Cones

Avg.
nonocc all disc nonocc all disc nonocc all disc nonocc all disc

ADCensus[17] 1
1.07 1.48 5.73 0.09 0.25 1.15 4.10 6.22 10.9 2.42 7.25 6.95

3.97
(15) (11) (17) (2) (7) (3) (5) (3) (5) (6) (5) (7)

Our method 10
1.05 1.65 5.64 0.29 0.81 3.07 4.56 9.81 12.2 2.17 8.02 6.42

4.64
(12) (19) (13) (35) (45) (37) (9) (18) (9) (1) (15) (2)

InteriorPtLP[11] 56
1.27 1.62 6.82 1.15 1.67 12.7 8.07 11.9 18.7 3.92 9.68 9.62

7.26
(29) (15) (37) (77) (72) (87) (65) (36) (70) (54) (49) (45)
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(a) Left Image (c) [11] with color
bandwidth = 4

(e) [11] with color
bandwidth = 2

(g) Our method

(b) Ground Truth (d) Bad Pixel Rate
12.59%

(f) Bad Pixel Rate
12.40%

(h) Bad Pixel Rate
4.92%

Fig. 5. Comparison between our method and [11] on Baby1 dataset. The weighted
L1 penalty used in [11] makes its results sensitively depend on the color bandwidth
parameter. A large color bandwidth yields over-smoothing across discontinuity bound-
aries ((c) and (d)) and a small color bandwidth results in many isolated areas in the
background due to texture ((e) and (f)). Note that even with such a small band-
width parameter, there are still over-smoothed regions around the contour of the baby
and its base, which suggests it is very difficult to find a parameter that is suitable
for all the pixels. Our result ((g) and (h)) preserves the sharp boundary and smooth
background.

methods: the current top 1 performer, ADCensus [17], and InteriorPtLP [11],
which are compared visually in Sections 6.4 and 6.2 respectively. Our method is
ranked 10th and achieves the best non-occluded disparity accuracy in the Cones
dataset.

6.4 Temporal Consistency on Real-World Video Data

We have tested our method on publicly available, real-world videos used in pre-
vious papers. In particular, we compared with ADCensus [9], the current top
1 performer on the Middlebury website, and Smith et al [5], a frame-by-frame
method shown to have better temporal consistency than classic stereo meth-
ods. Visual comparison for two consecutive frames is shown in Figure 6. See the
supplementary video for better visual comparison of temporal consistency.

On the Plant data used in [5], our method produces more consistent results
than both [5] and [12]. Note that in [5], the result on this dataset is much
better because it is obtained using 5 images as input. Here we only use two of
the 5 images as input for fair comparison. Similarly, on the Book Arrival data
used in [17], our method shows dramatic improvement over [17] and [12], in
terms of preserving consistent boundaries across frames. More video examples
are provided in the supplementary video.
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Frames from data
used in [5]

Results by [5] Results by [12] Our results

Frames from data
used in [17]

Results by [17] Results by [12] Our results

Fig. 6. Evaluation on stereo videos used in previous literatures. Each two rows are
consecutive frames from real-world stereo videos. Our method noticeably outperforms
all the other methods in temporal consistency of boundary preserving performance.
The results by [17] are screen captures of their result video.

7 Discussion

In this paper, we present a local linear regression model that is based on the
local correlation between disparity values and intensity patterns, and is capable
of handling large neighborhood window. Our method produces accurate disparity
maps with sharp object boundaries in the Middlebury dataset. It outperforms
competitive methods with regard to temporal consistency. In the future, we hope
to pursue the following venues. First, we would like to implement the algorithm
using iterative linear system solvers in a coarse to fine framework for computation
efficiency. Second, we would like to investigate more robust weighting methods
for wi,j in the presence of pixel noise and compression artifact. Third, we would
like to explore this idea in optical flow estimation.
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