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Abstract. When faced with an ellipse fitting problem, practitioners fre-
quently resort to algebraic ellipse fitting methods due to their simplicity
and efficiency. Currently, practitioners must choose between algebraic
methods that guarantee an ellipse fit but exhibit high bias, and geo-
metric methods that are less biased but may no longer guarantee an
ellipse solution. We address this limitation by proposing a method that
strikes a balance between these two objectives. Specifically, we propose
a fast stable algorithm for fitting a guaranteed ellipse to data using the
Sampson distance as a data-parameter discrepancy measure. We vali-
date the stability, accuracy, and efficiency of our method on both real
and synthetic data. Experimental results show that our algorithm is a
fast and accurate approximation of the computationally more expensive
orthogonal-distance-based ellipse fitting method. In view of these quali-
ties, our method may be of interest to practitioners who require accurate
and guaranteed ellipse estimates.

1 Introduction

In computer vision, image processing, and pattern recognition, the fitting of
ellipses to data is a frequently encountered challenge. For example, ellipse fitting
is used in the calibration of catadioptric cameras [9], segmentation of touching
cells [3, 28] or grains [30], in strain analysis [20], and in the study of galaxies in
astrophysics [26]. Given the rich field of applications, it is not surprising that
numerous ellipse fitting algorithms have been reported in the literature [1, 10–
12,16,21,24,25,27,29,31]. What then is the purpose of yet another ellipse fitting
algorithm? To address this question and motivate the principal contribution of
this work, we make the following observations.

Existing ellipse fitting algorithms can be cast into two categories: (1) methods
which minimise a geometric error, and (2) methods which minimise an algebraic
error. Under the assumption of identical independent homogeneous Gaussian
noise in the data, minimising the geometric error corresponds to the maximum
likelihood estimation of the ellipse parameters, and is equivalent to minimising
the sum of the orthogonal distances between data points and the ellipse.1 Due

1 Minimisation of the sum of the orthogonal distance between data points and a geo-
metric primitive is frequently referred to as orthogonal distance regression.
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to the non-linear nature of the ellipse fitting problem, the traditional iterative
scheme for minimising the geometric error is rather complicated. It requires, for
each iteration, computing the roots of a quartic polynomial as an intermediate
step [18,31]. While with the choice of a suitable parametrisation the root finding
step can be avoided [11,27], the iterative schemes, nonetheless, remain elaborate.

On the other hand, ellipse fitting methods based on minimizing an algebraic
error are conceptually simple, easy to implement, and efficient. Unfortunately,
they are plagued by two problems: they either do not guarantee that the estimate
will be an ellipse (sometimes producing hyperbolas or parabolas instead), or they
exhibit high bias resulting in a poor fit in some instances.

The first algebraic method to guarantee an ellipse fit was presented by Fitzgib-
bon et al. [10]. Due to its simplicity and stability, it has quickly become de
facto standard for ellipse fitting. However, as the authors noted in their origi-
nal work, the method suffered from substantial bias problems. Other algebraic
fitting methods have focused on minimizing the bias, but no longer guaranteed
that the resulting estimate will be an ellipse [2, 16].

Our contribution lies in devising an iterative guaranteed ellipse fitting method
that strikes a balance between the accuracy of a geometric fit, and the stability
and simplicity of an algebraic fit. For a data-parameter discrepancy measure, it
utilises the Sampson distance which has generally been accepted as an accurate
approximation of the geometric error that leads to good estimation results in
moderate noise scenarios [15]. Remarkably, our proposed algorithm is fast and
stable, and always returns an ellipse as a fit to data.

2 Background

A conic is the locus of solutions x = [m1,m2]
T in the Euclidean plane R

2 of a
quadratic equation

am2
1 + bm1m2 + cm2

2 + dm1 + em2 + f = 0, (1)

where a, b, c, d, e, f are real numbers such that a2 + b2 + c2 > 0. With
θ = [a, b, c, d, e, f ]T and u(x) = [m2

1,m1m2,m
2
2,m1,m2, 1]

T, equation (1) can
equivalently be written as

θTu(x) = 0. (2)

Any multiple of θ by a non-zero number corresponds to one and the same conic.
A conic is either an ellipse, or a parabola, or a hyperbola depending on whether
the discriminant Δ = b2−4ac is negative, zero, or positive. The condition Δ < 0
characterising the ellipses can alternatively be written as

θTFθ > 0, (3)
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where

F =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 2 0 0 0
0 −1 0 0 0 0
2 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Of all conics, here we shall specifically be concerned with ellipses.
The task of fitting an ellipse to a set of points x1, . . . ,xN requires a meaning-

ful cost function that characterises the extent to which any particular θ fails to
satisfy the system of copies of equation (2) associated with x = xn, n = 1, . . . , N .
Once a cost function is selected, the corresponding ellipse fit results from min-
imising the cost function subject to the constraint (3).

Effectively, though not explicitly, Fitzgibbon et al. [10] proposed to use for
ellipse fitting the direct ellipse fitting cost function

JDIR(θ) =
θTAθ

θTFθ
,

where A =
∑N

n=1 u(xn)u(xn)
T. The minimiser θ̂DIR of JDIR is the same as the

solution of the problem

min
θ

θTAθ subject to θTFθ = 1, (4)

and it is in this form that θ̂DIR was originally introduced. The representation
of θ̂DIR as a solution of the problem (4) makes it clear that θ̂DIR is always an
ellipse. Extending the work of Fitzgibbon et al., Haĺı̌r and Flusser [12] introduced

a numerically stable algorithm for calculating θ̂DIR.
Another cost function for ellipse fitting, and more generally for conic fitting,

was first proposed by Sampson [25] and next popularised, in a broader context,
by Kanatani [14]. It is variously called the Sampson, gradient-weighted, and
approximated maximum likelihood (AML) distance or cost function, and takes
the form

JAML(θ) =

N∑
n=1

θTAnθ

θTBnθ

withAn = u(xn)u(xn)
T andBn = ∂xu(xn)Λxn∂xu(xn)

T for each n = 1, . . . , N .
Here, for any length 2 vector y, ∂xu(y) denotes the 6 × 2 matrix of the partial
derivatives of the function x �→ u(x) evaluated at y, and, for each n = 1, . . . , N ,
Λxn is a 2 × 2 symmetric covariance matrix describing the uncertainty of the
data point xn [4,7,14]. The function JAML is a first-order approximation of a gen-
uine maximum likelihood cost function JML which can be evolved based on the
Gaussian model of errors in data in conjunction with the principle of maximum
likelihood. In the case when identical independent homogeneous Gaussian noise
corrupts the data points, JML reduces to—up to a numeric constant depending
on the noise level—to the sum of orthogonal distances of the data points and an
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ellipse. With a point θ in the search space of all length-6 vectors termed feasible
if θ satisfies the ellipticity condition (3), the approximated maximum likelihood

estimate θ̂AML is, by definition, the minimiser of JAML selected from among all
feasible points.

3 Constrained Optimisation

3.1 Merit Function

For optimising JAML so that the ellipticity constraint is satisfied, we develop a
variant of the barrier method. We form a merit function

P (θ, α) = JAML(θ) + αg(θ)

in which the barrier function g multiplied by the positive homotopy parameter
α is added to the cost function JAML to penalise the violation of the ellipticity
condition. The barrier function is taken in the form

g(θ) =
‖θ‖4

(θTFθ)2
,

with ‖θ‖ = (
∑6

j=1 θ
2
j )

1/2. This function tends to infinity as θ approaches the

parabolic boundary {θ | θTFθ = 0} between the feasible elliptic region {θ |
θTFθ > 0} and the infeasible hyperbolic {θ | θTFθ < 0} region of the search
space. The significance of g is that it ensures that if P is optimised in sufficiently
short steps starting from a feasible point, then any local miminiser reached on
the way is feasible; and if the homotopy parameter is small enough, this local
minimiser is a good approximation of a local minimiser of JAML.

The standard mode of use of P , and the likes of it, is as follows. Initially, a
relatively large value of α, α1, is chosen and, starting from some feasible point
θ0, P (·, α1) is optimised by an iterative process; this results in a feasible local
minimiser θ1. Next α1 is replaced by a smaller value of α, α2, and a feasible local
minimiser θ2 of P (·, α2) is derived iteratively starting from θ1. By continuing this
process with a whole sequence of values of α, (αk), chosen so that limk→∞ αk = 0,
a sequence (θk) of feasible points is generated. The limit of this sequence is a
feasible local minimiser of JAML.

Here we shall use P in a different mode. We take α to be a very small number
(of the order of 10−15) from the outset and keep it fixed. We then optimise
P (·, α) by a specific iterative process that we shall describe in detail later, using
a direct ellipse estimate as a seed. If the minimiser turns out to be feasible
(representing an ellipse), then we declare it to be a solution of our problem.
If the minimiser is infeasible (representing a hyperbola), then we go back to
the immediate predecessor of the iterate that constitutes the minimiser and, by
running another iterative process, correct it to a new feasible point, which we
subsequently take for a solution of our problem. The additional iterative process
in this last step could in theory be avoided and replaced by a refined version
of the original process, but at the expense of slower speed—with it, the overall
procedure converges very quickly.
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3.2 Optimisation Algorithm

To avoid possible problems with convergence for large data noise, we adopt the
Levenberg–Marquardt (LM) algorithm as a main ingredient of our algorithm for
optimising the merit function. To describe the specifics of the LM scheme, we
introduce r(θ) = [r1(θ), . . . , rN+1(θ)]

T such that

rn(θ) =

(
θTAnθ

θTBnθ

)1/2

for each n = 1, . . . , N , and

rN+1(θ) = α1/2 ‖θ‖2
θTFθ

.

With this definition in place, the function P can be given the convenient least-
squares form

P (θ) = r(θ)Tr(θ) = ‖r(θ)‖2.
A straightforward computation shows that the first-derivative row vectors of the
components of r(θ) take the form

(∂θrn(θ))
T = r−1n (θ)Xn(θ)θ,

Xn(θ) =
An

θTBnθ
− θTAnθ

(θTBnθ)2
Bn

for each n = 1, . . . , N , and

(∂θrN+1(θ))
T = 2α1/2Y(θ)θ,

Y(θ) =
I6

θTFθ
− ‖θ‖2

(θTFθ)2
F,

where I6 denotes the 6× 6 identity matrix. With the Jacobian matrix ∂θr(θ) of
r(θ) expressed as ∂θr(θ) = [(∂θr1(θ))

T, . . . , (∂θrN+1(θ))
T]T and with B(θ) =∑N

n=1 rn(θ)∂
2
θθrn(θ), the first-derivative row vector of P (θ) and Hessian ma-

trix ∂2
θθP (θ) of P (θ) are given by ∂θP (θ) = 2(∂θr(θ))

Tr(θ) and ∂2
θθP (θ) =

2
(
(∂θr(θ))

T∂θr(θ) + B(θ)
)
. The LM scheme uses the Gauss–Newton approx-

imation 2(∂θr(θ))
T∂θr(θ) of ∂2

θθP (θ) with the second-derivative matrix B(θ)
neglected. The algorithm iteratively improves on a starting estimate θ0 by con-
structing new approximations with the aid of the update rule

θk+1 = θk + ηk, (5)

ηk = −(
(∂θr(θk))

T∂θr(θk) + λkI6
)−1

(∂θr(θk))
Tr(θk), (6)

where λk is a non-negative scalar that dynamically changes from step to step [23].
On rare occasions LM can overshoot and yield an infeasible point θk+1 repre-

senting a hyperbola. When this happens, our ultimate algorithm, part of which
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is LM, backtracks to the previous iterate θk, which represents an ellipse close the
parabolic boundary, and improves on it by initiating another iterative process.
This new process ensures that the estimate never leaves the feasible region. The
modified update rule is

θk+1 = θk + δlξk,

where δl plays the role of a step length chosen so that, on the one hand, θk+1

still represents an ellipse, and, on the other hand, the objective function is suf-
ficiently reduced. A suitable value for δl is found using an inexact line search.
The direction ξk is taken to be

ξk = −(
(∂θr(θk))

T∂θr(θk)
)+

(∂θr(θk))
Tr(θk),

where, for a given matrix A, A+ denotes the Moore–Penrose pseudo-inverse of
A. The choice of ξk is motivated by the formula

ξk = − lim
λ→0

(
(∂θr(θk))

T∂θr(θk) + λI6
)−1

(∂θr(θk))
Tr(θk)

showing that ξk is the limit of LM increments as the damping parameter λ
approaches zero, in the scenario whereby LM acts venturously. The modified
update rule is a fast replacement for LM, which if it were not to overshoot, would
have to operate conservatively, taking many small steps in gradient-descent-like
mode.

The details of our overall optimisation procedure are given in Algorithms 3.1,
3.2, and 3.3.

We close this section by remarking that the implementation of (6) requires
some care. To explain the underlying problem, we partition r(θ) as r(θ) =
[r′(θ)T, rN+1(θ)]

T, where r′(θ) is the length-N vector comprising the first N
components of r(θ). Then, accordingly, we write (∂θr(θ))

T∂θr(θ) as

(∂θr(θ))
T∂θr(θ) = (∂θr

′(θ))T∂θr′(θ) + (∂θrN+1(θ))
T∂θrN+1(θ)

If θk is close to the parabolic boundary, then ‖∂θrN+1(θk)‖ assumes large val-
ues and the rank-1 matrix (∂θrN+1(θk))

T∂θrN+1(θk), with norm of the or-
der of (θT

kFθk)
−4, increasingly dominates (∂θr

′(θk))
T∂θr

′(θk) + λkI6 so that
(∂θr(θk))

T∂θr(θk) + λkI6 has a large condition number. This translates into
the computation of ηk becoming ill-conditioned. To remedy the situation, we
introduce a new dummy length-6 variable ξk and reformulate (6) as follows

[
(∂θr

′(θk))
T∂θr

′(θk) + λkI6 (θT
kFθk)

4(∂θrN+1(θk))
T∂θrN+1(θk)

I6 −(θT
kFθk)

4I6

] [
ηk

ξk

]

=

[−(∂θr(θk))
Tr(θk)

0

]
. (7)

The advantage of this approach is that the system (7) is much better conditioned
and leads to numerical results of higher precision.
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�

�

�

�

Algorithm 3.1: GuaranteedEllipseFit(̂θDIR, data points)

main
comment: initialise variables

keep going← true ; use pseudo-inverse← false ;

λ← 0.01 ; k← 1 ; ν ← 1.2 ; θ ← ̂θDIR ; γ ← 0.00005

comment: a data structure Ω = {r(θ), ∂θr(θ),H(θ), costθ , θ, λ, ν, γ, θ wasUpdated}
is used to pass parameters between functions

while keep going and k < maxIter

do

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Ωk.r(θ)← [r1(θ), . . . , rN+1(θ)]
T . . (residuals computed on data points)

Ωk.∂θr(θ)← [∂θr1(θ), . . . , ∂θrN+1(θ)]
T . . . . . . . . . . . . .(Jacobian matrix)

Ωk.H(θ)← (∂θr(θ))
T∂θr(θ) . . . . (approximate halved Hessian matrix)

Ωk.costθ ← r(θ)Tr(θ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(current cost)
Ωk.θ ← θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (current parameter estimate)
Ωk.λ← λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (damping parameter)
Ωk.ν ← ν . . . . . . . . . . . . . . . . . . . . . . . . . . . . (damping parameter multiplier)
Ωk.γ ← γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (used in line search)
Ωk.θ wasUpdated← false . . . . . . . . (indicates if θ was modified or not)
if not use pseudo-inverse
then Ωk+1 ← LevenbergMarquardtStep(Ωk)
else Ωk+1 ← LineSearchStep(Ωk)

if Ωk+1.θ
TFΩk+1.θ ≤ 0

then

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

comment: revert to previous iterate which was an ellipse

use pseudo-inverse← true
Ωk+1.θ ← Ωk.θ
if k > 1
then Ω.θk ← Ωk−1.θ

else if minε=±1

∥

∥

∥

Ωk+1.θ

‖Ωk+1.θ‖ + ε
Ωk.θ

‖Ωk.θ‖
∥

∥

∥ < tolθ and Ωk+1.θ wasUpdated

then keep going← false
else if |Ωk+1.costθ − Ωk.costθ| < tolcost and Ωk+1.θ wasUpdated
then keep going← false
else if ‖Ωk+1.Δθ‖ < tolΔ
then keep going← false

k← k + 1
output (Ωk.θ)

4 Experimental Results

To investigate the stability and accuracy of our algorithm, we conducted exper-
iments on both synthetic and real data. We compared our results with the max-
imum likelihood [31] and direct ellipse fitting [10,12] estimates, which represent
the gold standard and baseline methods, respectively. Both the maximum like-
lihood and our proposed approximate maximum likelihood method were seeded
with the result of the direct ellipse fit. All estimation methods operated on
Hartley-normalised data points [6].

4.1 Synthetic Data

For our synthetic experiments, we fixed the image size to 600 × 600 pixels and
generated ellipses with random centers, major/minor axes, and orientations of
the axes. Figure 1 shows a sample of ten such randomly generated ellipses. We
then conducted four simulation experiments, which focused on different segments
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�

�

�

�

Algorithm 3.2: LevenbergMarquardtStep(Ω)

comment: compute two potential updates based on different weightings of the iden-
tity matrix

Δa ← [Ω.H(θ) + Ω.λI6)]
−1(Ω.∂θr(θ))

TΩ.r(θ)
θa ← Ω.θ − Δa
Δb ← [Ω.H(θ) + (Ω.λ)(Ω.ν)−1I6)]

−1(Ω.∂θr(θ))
TΩ.r(θ)

θb ← Ω.θ − Δb

comment: compute new residuals and costs based on these updates

costθa ← r(θa)
Tr(θa)

costθb ← r(θb)
Tr(θb)

comment: determine appropriate damping and if possible select an update

if costθa ≥ Ω.costθ and costθb ≥ Ω.costθ

then

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Ω.θ wasUpdated← false . . . . . . (neither potential update reduced the cost)
Ω.θ ← Ω.θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (no change in parameters)
Ω.Δθ ← Ω.Δθ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (no change in step direction)
Ω.costθ ← Ω.costθ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (no change in cost)
Ω.λ← (Ω.λ)(Ω.ν) . . . . . . . . . . (next iteration add more of the identity matrix)

else if costθb < Ω.costθ

then

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Ω.θ wasUpdated← true . . . . . . . . . . . . (update ‘b’ reduced the cost function)
Ω.θ ← θb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (choose update ‘b’)
Ω.Δθ ← Δb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (store the step direction)
Ω.costθ ← costθb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (store the current cost)
Ω.λ← (Ω.λ)(Ω.ν)−1 . . . . . . . . . (next iteration add less of the identity matrix)

else

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Ω.θ wasUpdated← true . . . . . . . . . . . . . (update ‘a’ reduced the cost function)
Ω.θ ← θa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (choose update ‘a’)
Ω.Δθ ← Δa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (store the step direction)
Ω.costθ ← costθa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (store the current cost)
Ω.λ← Ω.λ . . . . . . . . . . . . . . . . . . (keep the same damping for the next iteration)

comment: return a data structure containing all the updates

return (Ω)

�

�

�

�

Algorithm 3.3: LineSearchStep(Ω)

comment: determine a step-size that still guarantees an ellipse

δ ← 0.5
repeat
⎧

⎪

⎪

⎨

⎪

⎪

⎩

Δa ← [Ω.H(θ)]+(Ω.∂θr(θ))
TΩ.r(θ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (compute update)

θa ← Ω.θ − δΔa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (apply update)
δ ← δ/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (halve the step-size)

costθa ← r(θa)
Tr(θa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (compute new residual)

until θT
aFθa > 0 and (costθa < (1− δγ)(Ω.costθ) or ‖Δθa‖ < tolΔ)

Ω.θ wasUpdated← true . . . . . . . . . . . . . . . . . . . . . . . . . (update reduced the cost function)
Ω.θ ← θa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (choose update)
Ω.Δθ ← Δa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(store the current search direction)
Ω.costθ ← costθa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (store the current cost)

comment: return a data structure containing all the updates

return (Ω)

of the ellipses. We characterised a point on an ellipse by its angle with respect to
the canonical Cartesian coordinate system, and formed four groups, namely 0◦–
180◦, 180◦–225◦, 180◦–360◦, and 270◦–315◦. For each simulation, we generated
200 ellipses and for each ellipse sampled 50 points from the angle groups 0◦–180◦
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Fig. 1. An example of ten randomly generated ellipses that were sampled in simulations
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(d) 270◦–315◦

Fig. 2. An example of four different regions of an ellipse that were sampled in simula-
tions

and 180◦–360◦, and 25 points from the angle groups 180◦–225◦ and 270◦–315◦

(see Figure 2 for an example). Every point on the ellipse segment was perturbed
by identical independent homogeneous Gaussian noise at a pre-set level. For
different series of experiments, different noise levels were applied.

The performance of the estimation methods was measured in terms of the
mean-root-square (RMS) orthogonal distance

√√√√ 1

2N

N∑
n=1

d2n,

with dn being the orthogonal distance between the nth data point and an ellipse,
which measures the geometric error of the ellipse with respect to the data points.
The process of computing the orthogonal distances dn is rather involved—the
detailed formulae can be found in [31].

The results of the four simulations are presented in Figure 3.

4.2 Real Data

It is known that the most challenging scenario for ellipse fitting is when an ellipse
needs to be fit to data coming from a short segment with high eccentricity [17].
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(b) 180◦–225◦
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(c) 180◦–360◦
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(d) 270◦–315◦

Fig. 3. Mean root-mean-square orthogonal distance error for varying noise levels. The
results are based on 200 simulations.

Such a situation may arise in the case of fitting an ellipse to a face region,
where the data lie on the chin line. The chin is a prominent and distinctive area
of the face which plays an important role in biometric identification and other
applications [8]. Hence, various chin-line detection methods have been reported
in the literature [13,19]. To investigate how our method compares with the gold
standard and baseline on real data, we selected three subjects and manually fit
an ellipse to their face. Only the segment of the ellipse corresponding to the
chin was used as input to the estimation methods. The results of the estimation
methods are presented in Figure 4.

4.3 Stability and Efficiency

For every experiment, we verified that our algorithm was indeed producing an
ellipse fit. We also studied the average running time of a MATLAB implementa-
tion of our algorithm [22] for varying noise levels. Figure 5 reports the running
times associated with the results in Figures 3a and 3b.
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(a) Ground Truth (b) ML (c) AML (d) Direct Fit

Fig. 4. Comparison of ellipse estimation methods on face fitting. Column (a) depicts
the manually fitted ground truth ellipses. Only the portion of the ground truth ellipses
corresponding to the chin of the subjects was used as input data for the estimation
methods. In columns (b), (c) and (d), the ellipses have a black border on the chin
indicating the input data.

5 Discussion

The experiments on synthetic data show that on average our algorithm produces
results that are indeed a good approximation of the maximum likelihood method.
For ill-posed problems, when the data points are sampled from a very short
ellipse segment (Figures 3b and 3d), the accuracy of our approximate maximum
likelihood estimate deteriorates more rapidly as noise increases. Nevertheless,
it is still substantially better than the direct ellipse fit. The observed accuracy
of the Sampson approximation is in agreement with the findings of Kanatani
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(b) 180◦–225◦ (see Figure 3b)

Fig. 5. Boxplots of the number of seconds that elapsed before our algorithm converged
for (a) well-posed and (b) ill-posed problems

and Sugaya [15]. However, even though the accuracy of the Sampson distance
was acknowledged by other researchers, we believe it has not found its way into
mainstream use for two important reasons: (1) it was unclear how to impose
the ellipse constraint in a straightforward manner, and (2) the numerical scheme
used to minimize the Sampson distance would break down even with moderate
noise [5, 16]. Our algorithm addresses both of these shortcomings.

The results on real data serve to further confirm the utility of our method. It
was noted in [10] that the direct ellipse fit produces unreliable results when the
data is coming from a short segment of an ellipse with high eccentricity. This
was confirmed on the real data set used in our experimentation—the proposed
method performs much better in the specific short-arc scenarios considered in
this case.

Another benefit of our technique is that it is very fast and, compared to the
maximum likelihood schemes [11,27,31], is easy to implement. When seeded with
the direct ellipse fit estimate and applied to a well-posed problem, it converges
rapidly (see Figure 5a). For ill-posed problems, the convergence of the method
is typically still very fast (see Figure 5b), although occasionally more than a
hundred iterations may be required to reach a solution.

6 Conclusion

We have demonstrated how the Sampson distance can be exploited to produce
a fast and stable numerical scheme that guarantees generation of an elliptic
fit to data. Our experiments have validated the stability and efficiency of the
proposed scheme, and have affirmed the superiority of our technique over the
baseline algebraic method. Experimental results also showed that our algorithm
produces on average accurate approximations of the results generated with the
use of the gold standard orthogonal-distance-based fitting method. The source
code for the algorithm can be found at [22]. On that website we have also made
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an interactive web-based application available, which can be used to explore in
more detail how our guaranteed ellipse fitting method compares with the direct
ellipse fit. The application gives the user control over the shape of the ellipse, the
arc from which data points are sampled, and the noise level. Practitioners are
now offered an ellipse-fitting technique that strikes a balance between simplicity,
accuracy, and efficiency.

The mechanism for guaranteeing generation of an ellipse estimate can be
extended to other ellipse fitting methods, and this will be the subject of our
future research.

Acknowledgements. This work was partially supported by the Australian
Research Council.
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