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Abstract. Single-shot structured light methods allow 3D reconstruc-
tion of dynamic scenes. However, such methods lose spatial resolution
and perform poorly around depth discontinuities. Previous single-shot
methods project the same pattern repeatedly; thereby spatial resolution
is reduced even if the scene is static or has slowly moving parts. We
present a structured light system using a sequence of shifted stripe pat-
terns that is decodable both spatially and temporally. By default, our
method allows single-shot 3D reconstruction with any of our projected
patterns by using spatial windows. Moreover, the sequence is designed
so as to progressively improve the reconstruction quality around depth
discontinuities by using temporal windows.

Our method enables motion-aware reconstruction for each pixel: The
best spatio-temporal window is automatically selected depending on the
scene structure, motion, and the number of available images. This signif-
icantly reduces the number of pixels around discontinuities where depth
cannot be recovered in traditional approaches. Our decoding scheme
extends the adaptive window matching commonly used in stereo by
incorporating temporal windows with 1D spatial windows. We demon-
strate the advantages of our approach for a variety of scenarios including
thin structures, dynamic scenes, and scenes containing both static and
dynamic regions.

Keywords: Structured light, motion-aware 3D reconstruction,
spatio-temporal decoding, adaptive window matching.

1 Introduction

Structured light (SL) based triangulation is one of the most reliable active tech-
niques for shape measurement in computer vision. The correspondence problem
in stereo vision is simplified by projecting known patterns from a projector,
which are imaged using a camera. For each camera pixel, the corresponding pro-
jector row or column is obtained by decoding the captured patterns, followed by
a ray-plane intersection to compute the 3D shape. Temporally coded patterns in-
cluding Gray codes [1–3] are widely used to provide high quality reconstructions
for static scenes.

Single-shot SL methods [4–15] project a single pattern that allows per-frame
reconstruction, and thus can be used for dynamic scenes and deforming objects.
However, such methods lose spatial resolution and perform poorly around depth
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discontinuities (e.g., thin structures), since a spatial neighborhood is required
to perform the decoding for each pixel. More importantly, previous single-shot
methods project the same pattern repeatedly for each time frame. Even if the
scene was static or if parts of the scene were slowly moving, previous methods will
still lose spatial resolution as if the entire scene was dynamic. Thus, traditional
single-shot approaches are not motion-aware.

In this paper, we present how to design a sequence of structured light patterns
that is decodable both spatially and temporally. These patterns allow motion-
aware 3D reconstruction in an automatic way (without any user interaction).
For example, if the scene consisted of both dynamic and static/slowly moving
parts, our design would automatically obtain better depth reconstruction on the
static/slowly moving parts by using temporal neighborhood information.

Previous single-shot SL approaches that employ a 1D stripe pattern can be
augmented to become motion-aware using our technique. In particular, we build
upon the 1D color De Bruijn stripe pattern (P1) proposed by Pagès et al. [4]
for single-shot reconstruction. We show how to design a sequence of N pat-
terns, P1, . . . , PN , by appropriately shifting the symbols of P1. The sequence
of patterns is projected repeatedly on the scene: P1, . . . , PN , P1, . . . , PN , . . .. By
default, each of the projected patterns Pi allows single-shot reconstruction using
spatial neighborhoods in a traditional manner, since it is a shifted version of P1.
In addition, the patterns are designed such that the size of spatial neighborhood
decreases as the number of patterns increases, leading to per-pixel reconstruction
using all N patterns. Since the spatio-temporal neighborhood is chosen automat-
ically, smaller spatial windows are used for slowly moving objects (1 pixel spatial
neighborhood for static scenes), leading to motion-aware reconstruction.

Previous single-shot SL approaches reconstructed depths at sparse feature
points such as edges [4, 7], intensity peaks [4] of color stripes, and 2D grid
points [9–11], by using complex mechanisms and heuristics for decoding. In
contrast, we demonstrate how to apply the plane sweeping algorithm [16] to
structured light decoding. Such techniques have been well-studied for comput-
ing depth maps using stereo/multi-view matching and allow us to compute dense
depth maps. Our reconstruction algorithm generates multiple layered images by
projecting each pattern onto several depth layers, computes matching scores with
the captured images for several spatio-temporal neighborhoods at each layer, and
selects the best depth layer that has the maximum score.

1.1 Contributions

Our paper has the following main contributions:

– We propose the concept of motion-aware structured light reconstruction,
which allows tradeoff between the amount of motion and reconstruction qual-
ity for dynamic scenes.

– We show how to design a sequence of stripe structured light patterns that
is decodable both spatially and temporally.

– We extend the plane sweeping algorithm for structured light decoding using
adaptive spatio-temporal windows.
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1.2 Related Work

For extensive review and classification of existing SL methods, we refer the reader
to a recent survey paper by Salvi et al. [17]. Below we discuss related work in
the area of single-shot SL.

Single-Shot Structured Light employs spatial multiplexing using both 1D
and 2D patterns to allow decoding at each frame. Techniques such as [4, 7] project
a 1D De Bruijn sequence having a window uniqueness property. This allows
unique decoding if a small spatial window of symbols is detected around a pixel.
Color stripe patterns are used to realize De Bruijn sequences, since more than two
symbols are required. Examples of 2D patterns include grid patterns [9–11] and
M-arrays and perfect sub-maps using various geometric shapes and colors [12–
15]. Recently, Kinect has emerged as a low-cost 3D sensor for computer vision and
human-computer interaction applications [18, 19]. Kinect projects an infrared
random dot 2D pattern as the single-shot pattern, which is captured using an
infrared camera. The matching is done per frame, and depth maps for a dynamic
scene can be obtained in real time. However, the depth maps are noisy especially
around depth discontinuities. All of the above methods project the same pattern
for every frame, process each frame independently, and are not motion-aware as
discussed earlier.

Izadi et al. [19] registered the depth maps obtained from Kinect and recon-
structed a static 3D scene with higher quality compared to raw depth maps
obtained from Kinect. Such a depth map fusion algorithm can be applied as
post-processing on the output from our approach if the scene is static. However,
our main focus in this paper is to improve the quality of individual depth maps
for dynamic scenes.

Spatio-Temporal Decoding: Ishii et al. [20] presented SL patterns that
are spatio-temporally decodable. However, their scheme requires disconnected
windows of pixels for decoding, and thus does not reduce the effective size of
spatial neighborhood as more patterns are used. Zhang et al. [7] also improved
spatial resolution by shifting a single-shot color stripe pattern one pixel at a time
and analyzing the temporal profile for each pixel [21, 22] using all the shifted
patterns. The key difference with ours is that their approach is not hierarchical. It
requires the entire scene to be static during the projection of all shifted patterns
to reduce the spatial neighborhood to a single pixel. In contrast, the design of
our patterns allows us to selectively use different number of frames (e.g., 1, 2, 4
or 8) at every pixel for decoding, even for dynamic scenes.

Flexible voxels [23] enable post-capture spatio-temporal resolution tradeoff for
reconstructing a video depending on the motion of each pixel. Our approach is
similar in spirit by allowing motion-aware depth reconstruction using SL systems.

Adaptive Window Matching: Spatio-temporal windows [24, 25] have been
used for stereo processing to improve the matching quality. Our decoding scheme
is motivated by previous work in this area. However, for stereo processing, the
size of the window is typically fixed for every pixel, or regular box-shaped win-
dows are used. In contrast, our goal is to select the optimal spatio-temporal
window for each pixel that allows decoding. Note that based on our patterns, we
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Fig. 1. Comparison between conventional 1D color stripe pattern and our approach.
(a) Conventional color stripe pattern based on a De Bruijn sequence with window
property k = 3 and stripe width l = 8. To uniquely determine the position at any pixel
in each row, k = 3 symbols are required, resulting in a minimum spatial neighborhood
of 17 pixels (8 pixels on left and right). (b) Our spatio-temporally decodable patterns
generated by shifting the base color stripe pattern. The size of the spatial neighbor-
hood window is reduced using temporal neighborhood. Note that each spatio-temporal
window includes a unique set of symbols, ensuring unique decoding.

only evaluate those spatio-temporal windows with minimal window sizes that
are sufficient for decoding, instead of regular box-like spatio-temporal windows.

2 Spatio-Temporal Decodable Patterns

We first describe the design of spatio-temporal decodable patterns for SL sys-
tems and then outline a reconstruction algorithm to choose the optimal spatio-
temporal neighborhood for each pixel.

2.1 Background on Single-Shot Decoding

Similar to previous single-shot methods, we use a color stripe as our base pattern.
De Bruijn sequences are typically used for designing the sequence of symbols
(color of each stripe) to ensure the uniqueness of local spatial neighborhood
windows. To uniquely determine the position in a De Bruijn sequence having
the window property of k, we need to observe at least k consecutive symbols,
encoded as colors in the pattern. Each stripe (symbol) is projected using a stripe
width of l projector pixels to avoid color bleeding in projected images and to
robustly detect the colors/edges of the stripes [4, 7].

For simplicity, let us assume a De Bruijn sequence with the window property
k = 3 and the stripe width l = 8. As shown in [4], using 4 different colors and
2 different intensity levels, a De Bruijn sequence of length 128 can be obtained,
which can be projected using 128 × l = 1024 pixels (sufficient for standard
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Table 1. Spatial window size s required at each frame for decoding using t frames

Current Pattern P1 P2 P3 P4 P5 P6 P7 P8

t = 1 17 17 17 17 17 17 17 17

t = 2 11† 5 7 5 7 5 7 5

t = 4 5 3 5 3 5 3 5 3

t = 8 1 1 1 1 1 1 1 1
† It can be 7 if we continuously shift the pattern, instead of using the 8
patterns periodically.

projectors). Figure 1(a) shows such a sequence, where the triplets of symbols
(A, B, C) and (B, C, D) are unique in the sequence.

Notice that for any target pixel, three unique symbols can be observed within
l = 8 pixel left and right neighborhoods, i.e., in a spatial window of 2×8+1 = 17
pixels (in the projector image). In general, for the window property of length k
and the stripe width l, a minimum spatial window of 2 × l × �k/2� + 1 pixels
is required to ensure unique decoding at each pixel; if the sequence is broken
due to depth discontinuities in this spatial window, the decoding cannot be
performed. Thus, the reconstruction using a single color stripe pattern performs
poorly around depth discontinuities and loses spatial resolution.

Our goal is to design a sequence of patterns such that the pixels from tem-
poral neighborhood can be used for decoding to reduce the size of the spatial
neighborhood.

2.2 Design of Pattern Sequence

The key idea is to arrange the transitions of symbols hierarchically in time
by shifting a base pattern. In general, the number of patterns in the sequence
required to enable pixel-wise decoding is equal to max(k, l). Figure 1(b) shows
our spatio-temporally decodable patterns for k = 3 and l = 8. The eight patterns
Pi(i = 1, . . . , 8) are generated by hierarchically shifting the base pattern P1 with
different shifts. Our pattern design is based on the following rules, where after
each step we double the number of patterns.

1. Initialization: P1 is set to the base pattern used.
2. Generate P2 by shifting P1 by − 3

2 l = −12 pixels.
3. Generate P3 and P4 by shifting P1 and P2 by 1

4 l = 2 pixels respectively.
4. Generate P5 to P8 by shifting P1 to P4 with 1

4 l + 1 = 3 pixels respectively.

We project P1 to P8 periodically. To decode a frame with a projected pattern
Pi, we use previous frames with projected patterns Pi−1, Pi−2, . . . for spatio-
temporal decoding.

Table 1 summarizes the spatial window size s required to observe unique
triplets of symbols (since k = 3) at any target pixel at different times using t
frames. Notice that the size of spatial neighborhood decreases as more tempo-
ral patterns are used. The spatio-temporal windows are not disjoint compared
to [20]. In addition, decoding can be done for any pixel in all projected patterns.
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Fig. 2. (a) Motion-aware spatio-temporal window selection. A spatially large window
causes decoding error if the target pixel is located near a depth discontinuity, while
a temporally large window causes error if the target pixel is not static. Our method
selects the best window depending on the motion of the target pixel. (b) Spatially
shiftable windows can be used to recover depth around depth discontinuities, if one
of the shifted windows can be placed on a planar region. The figure shows windows
shifted with ±�s/2� pixels only for simplicity. In practice, we use a total of 2�s/2�+ 1
windows shifted pixel-by-pixel within ±�s/2� pixels.

If all eight patterns are used, then the spatial window size is only one pixel,
allowing per-pixel reconstruction similar to temporally coded SL [1–3].

2.3 Motion-Aware Decoding

In the previous section, we described how different spatio-temporal windows can
be used for decoding at any target pixel. However, what is the optimal spatio-
temporal window to use for a given pixel?

Figure 2(a) depicts the principle of our motion-aware spatio-temporal window
selection. A spatially large window causes decoding error if the target pixel is
located near a depth discontinuity, while a temporally large window causes er-
ror if the target pixel is not static. An ideal window would have a small spatial
support for enabling decoding near depth discontinuities, while aggregating tem-
poral information if multiple frames are available and the target pixel is static
or slowly moving.

Shiftable Window is a well-known technique for stereo matching [26, 27].
Suppose a target pixel is located on a planar region, but near a depth disconti-
nuity. A spatial window centered at the target pixel would produce a decoding
error, while spatial windows shifted left and right within ±�s/2� pixels may
avoid the discontinuity and can provide the correct disparity value. Note that
we only need to use 1D spatial shifts, as shown in Figure 2(b), instead of 2D
shifts typical in stereo matching.

In the next section, we present a simple algorithm that automatically selects
the best window from the set of spatio-temporal windows depending on the
context of a target pixel.
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3 Reconstruction Algorithm

Single-shot SL systems using color stripe and 2D patterns typically reconstruct
depths at sparse points such as edges between strips [4, 7], intensity peaks [4],
or grid points [9–11]. Here we present a reconstruction algorithm that enables
pixel-wise dense depth recovery based on the plane sweeping algorithm [16].

We define D depth layers with depth values [di]
D
i=1 in the camera coordinate

system. Our goal is to find the best depth for each pixel in the camera. For each
depth layer, we compute a matching score between the captured images and the
patterns projected onto the depth layer using several spatio-temporal windows.

Let Q be the set of all spatio-temporal windows used for matching. Q depends
on the number of available frames. Let tmax be the maximum temporal window
size among all windows in Q. We refer to such decoding as tmax-frame decoding.
The matching score for a pixel x in the camera at depth di is defined as

S(x, di) = max
q∈Q

w(q)S(q,x, di), (1)

where S(q,x, di) is the matching score using the spatio-temporal window q at
the pixel x and the depth di, and w(q) is the weight for the window. For scenes
including large motions, we decrease the weight w(q) according to the temporal
window size t. To use shiftable windows, we simply augment Q by adding shifted
versions of the spatio-temporal windows. We set the weight w(q) for a shiftable
window such that it decays linearly with the amount of the spatial shift to avoid
strong staircase-like artifacts for slanted planes. Note that we need to determine
the size of the spatial window depending on the size of the stripes in the captured
images (not in the projector image as in Figure 1(b)). In experiments, we assume
that the size of the stripes does not change considerably over the image.

Matching Score: We use normalized cross correlation (NCC) as the match-
ing score. To efficiently compute the NCC score for several spatio-temporal win-
dows with different sizes, we use 2D integral images [28]. The integral images
for patterns projected onto depth layers can be computed offline; we only need
to compute those for captured images online. In the results shown in the paper,
we reconstruct the depth value for each pixel x by finding the the maximum
score, Smax = maxi S(x, di), after smoothing the scores with a small local win-
dow (3 × 3). If the maximum score Smax is smaller than a threshold (0.8 in
experiments), we mark the pixel as unknown, depicted with the black color in
depth maps. Unknown pixels are caused by decoding errors and also include
pixels in the occlusion (shadow) regions. Note that one can use global optimiza-
tion techniques such as graph cuts or belief propagation [27] by using the scores
S(x, di) as the data term. However, all our results show raw estimated depth
values without any global optimization for fair comparisons.

4 Experiments and Results

We show extensive evaluation of our method on various scenes captured with
a projector-camera pair. We projected 1024× 768 pixel patterns using an NEC
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LT170 projector and captured 800× 600 pixel images using a Point Grey Flea2
camera. We performed geometric calibration between the camera and projec-
tor using checkerboards [29] and performed color calibration by computing the
projector-camera coupling matrix [30] and an RGB offset due to ambient light.

As our base pattern, we used a De Bruijn sequence with color stripes as
shown in Figure 1(a). Similar to Pagès et al. [4], we alternated the intensities
of neighboring stripes with high (1) and low (0.5) values, while using 4 hues
(45◦, 135◦, 225◦, 315◦) to encode 8 symbols with the window property of 3.

We compare three different cases: (a) 1-frame decoding without shiftable win-
dows (similar to traditional single-shot methods), (b) 1-frame decoding with
shiftable windows, and (c) multi-frame decoding with or without shiftable win-
dows. The goal of (b) is to demonstrate that our reconstruction algorithm can
improve traditional single-shot methods around depth discontinuities. The goal
of (c) is to demonstrate that our designed patterns achieve motion-aware recon-
struction. Note that in all our experiments, t-frame decoding means that up to t
frames are used for the spatio-temporal window selection, as defined in Section 3.

4.1 Static Scenes

We first show that our sequence of patterns allows similar per-pixel dense recon-
struction as temporally coded SL systems on static scenes. As a reference, we
use temporally coded Gray codes that maximize the minimum stripe width as
proposed in [31]. These Gray codes perform better than traditional Gray codes
in the presence of diffuse inter-reflections and other global illumination effects.
We captured 20 images corresponding to the 10 Gray code patterns and their
inverse patterns, and decoded the symbols as described in [31]. For our method,
we captured only eight images using our eight patterns P1, . . . , P8.

Reconstruction around Depth Discontinuities: Figure 3 shows recon-
struction results for a piece-wise planar static scene. Firstly, notice that 1-frame
decoding without using shiftable windows fails to recover pixels around depth dis-
continuities. This demonstrates the inherent limitations of previous single-shot
methods at depth discontinuities. Secondly, by employing shiftable windows in
the decoding process, pixels around depth discontinuities can be recovered us-
ing 1-frame decoding. Thus, our reconstruction algorithm can be directly used
to improve previous single-shot methods. However, using shiftable windows with
1-frame decoding leads to staircase-like artifacts on the slanted planes, since this
method tends to perform piece-wise smooth reconstruction. Finally, notice how
our method improves the reconstruction accuracy around depth discontinuities
as the number of frames used for decoding increases. Our 8-frame decoding pro-
vides accurate results similar to using temporally coded SL (using Gray codes).

Thin Structures: Figure 4 shows results on a scene including thin struc-
tures. As discussed earlier, pixels around thin structures and depth discontinu-
ities cannot be recovered using 1-frame decoding due to the large size of spatial
neighborhood required for decoding. Employing shiftable windows does not help
in this case, since the depth discontinuities are not well-separated. In contrast,
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Fig. 3. Reconstruction results for a piece-wise planar static scene using different num-
bers of frames. Black pixels correspond to unknown pixels as described in Section 3.
First row: One of the 8 captured images for our method and depth map reconstructed
using Gray codes. Second row: Depth maps computed without shiftable windows. Pixels
around depth discontinuities cannot be recovered using 1-frame decoding, while using
multiple frames those pixels can be progressively recovered. Third row: Depth maps
computed with shiftable windows. Shiftable windows allow better reconstruction using
1-frame decoding, but produce staircase-like artifacts on slanted planes. Fourth row:
Distance profiles along the white dotted line for different methods.

our sequence of patterns improves the reconstruction accuracy as more frames
become available using spatially small and temporally large windows.

4.2 Dynamic Scenes

Motion-Aware Reconstruction: Figure 5 illustrates motion-aware recon-
struction for a scene including both static and dynamic regions. In this example,
we pick objects one by one and capture a single image after removing each ob-
ject. We reconstruct the depth map at each time instant by using the current
and previous frames (up to 8 frames). For parts of the scene changed by the
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Fig. 4. Results for a static scene with thin structures using different numbers of frames.
As more frames are used, the reconstruction quality around thin structures and depth
discontinuities improves. Shiftable windows do not improve the reconstruction quality
since the depth discontinuities are not well-separated spatially (e.g., rightmost fork).

picking, our method automatically selects a larger spatial window for decoding,
recovering depth at a coarser resolution. However, for the other parts of the
scene that remain static, the reconstruction accuracy improves as more frames
become available (see the close ups in Figure 5). Thus, motion-aware reconstruc-
tion would be useful in applications such as robotic bin picking [32, 33].

Dynamic and Deforming Objects: Even for dynamic scenes, if a region
remains static or is slowly moving for several consecutive frames, our method
can improve the reconstruction accuracy. Figure 6 demonstrates this effect on
a moving and deforming hand. Notice that even using 1-frame decoding, our
reconstruction algorithm using shiftable windows produces better results than
that without using shiftable windows. Using multiple frames, our method further
improves the accuracy by using temporal information for regions that remained
static or were slowing moving in previous frames. Notice the reduction in the
number of unknown pixels around depth discontinuities that cannot be decoded
as more frames are utilized. Compared to recent single-shot results using 2D
patterns [15] (resolution of 150×100 on hand sequence), our results are at much
higher resolution. Please see supplementary materials for video results.

5 Discussion and Conclusions

Limitations: Our algorithm assumes that in each spatio-temporal window, the
local image patch is front-parallel and has similar reflectance property. Slanted
planes, curved surfaces, and highly textured regions violate these assumptions.
As we decrease the size of spatial window using more frames, our multi-frame
approach can improve the reconstruction quality for these regions. Our technique
also shares the limitations of color-based SL systems in handling colorful scenes:
If a region does not reflect all the pattern colors, it cannot be decoded.



842 Y. Taguchi, A. Agrawal, and O. Tuzel

1-Frame Decoding

1

4-Frame Decoding

2-Frame Decoding

4-Frame Decoding

2-Frame Decoding

4-Frame Decoding

4-Frame Decoding

8-Frame Decoding

2 3 4

5 6 7 8

Fig. 5. Motion-aware reconstruction for a dynamic scene with static and moving parts.
We captured a single projected pattern at each time, while removing a single object
(shown by the arrow) after the capture. Thus, some parts of the scene remain static
while others change dynamically. At each time, the depth map was reconstructed using
the current and previous frames (up to 8 frames). In static regions, the reconstruction
accuracy improves as more frames are used (see the close ups), while we can recover
coarser depth for the dynamic regions using a larger spatial window.

Figure 7 shows results for a static colorful scene. Notice that the number of
unknown pixels where depth cannot be estimated is substantially reduced using
our multi-frame algorithm. However, regions with vibrant colors and dark regions
do not reflect all the pattern colors. In those regions, decoding can fail even for
multi-frame decoding algorithm as evident from Figure 7. Our approach can also
fail in the presence of global illumination effects such as strong inter-reflections,
and on objects with non-Lambertian BRDF (highlights, specularities, etc.).

Accuracy vs. Run Time: The accuracy of our reconstruction depends on
the number of depth layers D, which causes the tradeoff between the accuracy
and run time; if the depth variation of the scene is large, more depth layers are
required to achieve similar depth resolution, increasing the run time. Typical
single-shot reconstruction algorithms using color stripes [4, 7] do not have this
tradeoff, because they find symbols at feature points (edges or intensity peaks) in
each row of an image and use them for triangulation. Such algorithms compute
depth values only for the detected feature points, while our algorithm computes
pixel-wise dense depth maps. We set D to 60 for Figure 5 (a depth range of
525mm to 560mm), 80 for Figure 4 (520mm to 560mm), and 100 for Figures 3
(520mm to 640mm) and 6 (470mm to 565mm). On a standard PC with an Intel
Core i7-950 processor, the NCC score computation for each depth layer took
about 10 msec for 1-frame decoding and 70 msec for 8-frame decoding.
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Captured Images

1-Frame Decoding without Shitable Windows

1-Frame Decoding with Shitable Windows
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Fig. 6. Captured images and depth maps for several frames of a video of a deforming
hand. The inset numbers show the percentages of unknown pixels computed over the
entire image (excluding the top-right region, which is out of the field-of-view of the
projector). For 1-frame decoding, shiftable windows improve reconstruction accuracy
around depth discontinuities. Our motion-aware reconstruction algorithm using 8-frame
decoding produces even better results by fusing temporal information for pixels that are
static/slowly moving for several consecutive frames. Supplementary materials contain
a video of the reconstructed depth maps.

One of the Captured ImagesScene 1-Frame Decoding 8-Frame Decoding

Fig. 7. Results for a colorful scene. Since color boundaries act as spatial discontinuities,
decoding using a large spatial window fails to recover depth around color boundaries.
By using a smaller spatial window with multiple frames, the reconstruction improves.
However, even 8-frame decoding fails to recover depth for regions that do not reflect
all projected colors. This limitation applies to all existing color-based SL systems.
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Conclusions: We described a motion-aware structured light system that can
handle dynamic scenes with different motions in different parts of the scene.
Compared to traditional approaches, our system improves depth reconstruction
for static/slowly moving parts of the scene and results in better estimation of
depth discontinuities. We showed how structured light patterns that are decod-
able both spatially and temporally can be designed for motion-aware reconstruc-
tion. Our reconstruction algorithm extends stereo matching techniques using
adaptive windows and can be easily implemented on GPU for faster processing.

Acknowledgments. We thank Jay Thornton, Gowri Somanath, Makito Seki,
and Yukiyasu Domae for their helpful comments and support.
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