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Abstract. Motivated by the rising performances of object detection al-
gorithms, we investigate how to further precisely segment out objects
within the output bounding boxes. The task is formulated as a uni-
fied optimization problem, pursuing a unique latent object mask in non-
parametric manner. For a given test image, the objects are first detected
by detectors. Then for each detected bounding box, the objects of the
same category along with their object masks are extracted from the
training set. The latent mask of the object within the bounding box is
inferred based on three objectives: 1) the latent mask should be coherent,
subject to sparse errors caused by within-category diversities, with the
global bounding-box-level mask inferred by sparse representation over
the bounding boxes of the same category within the training set; 2) the
latent mask should be coherent with local patch-level mask inferred by
sparse representation of the individual patch over all spatially nearby
(handling local deformations) patches of the same category in the train-
ing set; and 3) mask property within each sufficiently small super-pixel
should be consistent. All these three objectives are integrated into a
unified optimization problem, and finally the sparse representation co-
efficients and the latent mask are alternately optimized based on Lasso
optimization and smooth approximation followed by Accelerated Proxi-
mal Gradient method, respectively. Extensive experiments on the Pascal
VOC object segmentation datasets, VOC2007 and VOC2010, show that
our proposed algorithm achieves competitive results with the state-of-
the-art learning based algorithms, and is superior over other detection
based object segmentation algorithms.

1 Introduction

Localizing and recognizing semantic objects efficiently and comprehensively in
a complex visual world is one of the amazing capabilities of human visual and
cognitive system. In recent years, many achievements have been witnessed in
object detection and segmentation [1],[2]. While purely bottom-up segmentation
based on local pixel and patch appearance is not well-posed for the object seg-
mentation problem, integrating object detector as guidance priors has been the
latest trend [3],[4].

The object detector can localize the coarse position of a certain object by a
bounding box [5],[6], yet lacks the accuracy to precisely identify the object at
pixel level as required in semantic object segmentation task [7],[1],[8],[2],[9],[10].
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Fig. 1. Exemplar images, ground truth and corresponding average masks

An intuitive solution is to learn a coarse average mask for each object category
based on the segmentation ground truths as well as the object detections on
training set, and then propagate the learnt mask to each detected bounding box
on the test set [11]. Some of the mask examples are shown in Figure 1.

Since the average masks learnt from detection results are far from representing
the accurate position of the semantic class at pixel level, especially for those cate-
gories having large within-class variance, to achieve semantic segmentation, some
compensatory information from the image itself should be integrated. Therefore
we propose a unified framework of coupled global and local sparse representa-
tions to refine towards a unique latent mask for each detected bounding box in
test images based on the coarse mask from object detection and the finer image
details.

As in Figure 2, the proposed framework pursues the optimal latent mask as
well as the optimal reconstructions for the sparse reconstruction constraints. The
coarse masks from the object detectors are input to the framework as initializa-
tions. It is worth noting that the proposed framework is convex, not relying on
initializations and thus global optimization can be obtained.

We introduce three objectives in our framework. Firstly, a test image and
its latent mask can be sparsely reconstructed using a set of training images
and their corresponding ground truth segmentation masks. Since the test and
training images are the foreground objects cropped and normalized from the
object detectors and encoded with visual words, such discriminative model using
global and local BOW features have verified that sparse coding is better than
KNN or other reconstruction methods in finding the related samples of a test
sample [12].

Beyond global reconstruction constraint, local reconstruction is also applied
using local image features and local masks, which are extracted on regularly
partitioned patches on training and testing images as well as masks. A certain
degree of spatial flexibility in the localized reconstruction is introduced using
neighborhood patches. These two constraints aim to find similar samples and
patches in the training set as well as a better reconstructed latent mask across
different within-category instances.

Since sparse reconstruction may bring artifacts to the learnt mask, we addi-
tionally introduce a smooth objective. We first perform super-pixel segmentation
[13] on the test image within the predicted bounding box area. Then we enforce
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Fig. 2. Illustration on the proposed framework. Given a test image, a bounding box is
predicted, then the mask is cropped and normalized within the bounding box. Based
on the training images and the corresponding ground truth segmentations from the
same category, the initial mask for the test image is refined through a coupled sparse
representation framework. For the global part, the global representation feature for
each cropped image are extracted and are sparsely reconstructed with the global masks,
while for the local part, the cropped image and mask are first regularly partitioned and
then reconstructed locally. Finally, the learnt mask is further refined through post-
processing to obtain the final result.

the latent mask elements corresponding to the same super-pixel to have the same
value, which will make the mask boundary more accurate.

2 Related Work

Image and semantic object segmentation are very important branches of research
in computer vision [7],[1],[2]. Traditional image segmentation approaches mainly
follow a bottom-up manner based on low-level image features such as color,
texture, and shape [14]. However, different with general image segmentation
problems, object segmentation need explore more information on object shape
and appearance structures across the whole object category. Hence many recent
works integrating top-down semantic information have been proposed [1],[10].

One popular line of research to combine top-down cues is based on Conditional
Random Field (CRF) model, [9],[8],[1]. Ladicky et al. [9] proposed a hierarchical
CRF of multiple scales, combining multi-layer image classification and contrast
sensitive pairwise smooth potentials, to assign a fixed number of category la-
bels to pixels. Ladicky et al. [8] introduced global co-occurrence statistics as
another top-down cue in the CRF model. A drawback of such pixel or super-
pixel based methods is merging many neighboring local patches from the same
object without modeling the object globally. Recently through adding object
detection bounding box constraints to the global potential functions [8] or to
the local unary and pairwise potentials [1], such limits are partially handled.
In addition, Li et al. [2] proposed an approach pipeline to categorize between
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multiple figure-ground hypotheses with large object spatial support, generated
by bottom-up computational processes. Both [2] and [1] achieved the state-of-
the-art performances on PASCAL VOC segmentation benchmark [15].

Another branch of framework was proposed in [11],[4] and [3], which applied
the idea of refining the masks from detectors built upon the state-of-the-art
part-based object detector by Felzenszwalb et al. [5]. Felzenszwalb et al. [11]
proposed the intuitive baseline to predict a coarse mask from detection. Yang
et al. [4] refined the prediction of the detector using color and depth order of
objects. Brox et al. [3] applied part-based poselet detector, which can predict
masks for numerous parts of an object, then aligned the poselet to the object
contours and aggregated them into a variational smoothing object, and finally
refined the segmentation based on self-similarity defined on small image patches.
This approach has achieved comparable performance on PASCAL VOC with the
CRF model, however the heavy manual labeling burden to annotate the poselet
samples poses a great limitation.

Our framework follows the detection-based framework, but different in its
non-parametric learning philosophy based on sparse representations. Non-
parametric or sample-based methods are proved as efficient as parametric mod-
els for object detection by Malisiewicz et al. [16]. Moreover, the sample-based
matching tends to be more semantically meaningful in obtaining the unique
object segmentations.

Sparse representation has seen significant impact in computer vision, several
variants of L1 minimization technique have been applied to face recognition [17],
image classification and segmentation [18],[19], motion and data segmentation
[20],[21], and so on.

In the next section, we introduce how to obtain the average masks based on
the state-of-the-art detectors and illustrate the details on how to formulate the
mask refinement as reconstructing image features and object masks, from global
and local view, respectively. Section 4 provides the optimization procedure to
solve the objective function. Section 5 shows some implementing details, while
Section 6 demonstrates the experimental results and the comparison analysis
with the state-of-the-art algorithms. Finally, we conclude the paper and propose
some discussion about possible future work in Section 7.

3 Problem Formulation

3.1 Object Masks from Detectors

In [22] [23], a latent hierarchical structural learning method for object detection
was presented, in which an object is represented by a mixture of hierarchical tree
models where the nodes represent object parts. The nodes can move spatially
allowing for some deformation. After learning the hierarchical model through a
latent SVM, object detection can be performed by scanning the sub-windows
using dynamic programming.

Based on the object detector above and the detection results of the training
samples with segmentation ground truths, we can learn a binary mask for each
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detection model and associate the mask with the detection bounding boxes to
generate segmentations for test images. Some exemplar object masks are shown
in Figure 1. The predicted segmentation accuracy of the average mask depends
on both the detection precision and within-category varieties. For regular and
convex shape objects like TV monitor and bottle, the mask can be quite se-
mantically meaningful, while for categories with large pose variations like birds
and persons, the unique contour information for each object instance is ignored
and thus the segmentation accuracy declines significantly. Therefore in order to
obtain accurate object segmentation, a better solution is desirable. A framework
of coupled global and local sparse representations is introduced right for such
purpose in the subsequent section.

3.2 Coupled Global and Local Sparse Representations

Given a test image and a set of training image from the same object category,
in order to remove the effect of the cluttered background and better utilize
the results of object detectors, the test image denoted as It is represented as
the foreground objects cropped and normalized based on the object detector
bounding boxes, while the N training images are foreground objects denoted as
{Ib}Nb=1 with segmentation mask {mb}Nb=1 cropped and normalized in the areas
extended by the ground truth segmentations. All subsequent procedures like
feature extraction and over-segmentation are performed within the normalized
bounding box areas. Since most of the test and the training bounding boxes have
enough consistency, by enforcing the sparsity of the reconstruction coefficients,
only a small subset of highly correlated training samples are selected, and the
linear combination of them will greatly reduce the boundary ambiguity than the
average mask learnt from all samples. Thus a global image1 and segmentation
mask reconstruction framework is proposed as,

min
y,m

1

2
‖x−By‖22 + λ1‖y‖1 + λ2‖m−My‖1, (1)

where y is the sparse reconstruction coefficient vector for both image and seg-
mentation mask reconstructions, x is a global representation vector for test
image It, B = [b1, . . . ,bN ] is a basis matrix consisting of the global features
of the N cropped and normalized training images from the same category, and
M = [m1, . . . ,mN ] is a mask matrix whose columns correspond to theN cropped
and normalized segmentation masks of the training images. In order to ensure
the reconstructed mask to be generally accurate except for few pixels caused by
possible locally spatial deformations, the mask reconstruction error is enforced
to be sparse.

To reduce the artifacts brought from the sparse reconstruction, an additional
smooth objective that enforces the consistency within each small super-pixels

1 Note that here after, the image reconstruction means the reconstruction of the nor-
malized bounding box within the test image, the same for the training images and
masks.
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is integrated. We first over-segment It into several visually coherent super-
pixels as in [13]. Assuming that all the pixels within a super-pixel share the
same mask label, the global segmentation mask m admits following specific
form,m = [s1, . . . , sp] [v1, . . . , vp]

T , where si is the binary value mask for the
ith superpixel, yet the latent mask is relaxed from binary values to continuous
real values between 0 and 1 to make the problem tractable. v = [v1, . . . , vp]

T
is

the selection vector, and the value of 1 means the super-pixel is selected as the
corresponding foreground object.

To further handle the local deformation, beyond such global reconstruction
consistency, the local patch reconstruction is also pursued as follows,

min
{yk,mk}

∑

k

1

2
|xk −Bkyk‖22 + γ1‖yk‖1 + 1

2
γ2‖mk −Mkyk‖22. (2)

The test and training images It and Ib are regularly partitioned into several
patches, indexed by k, xk and mk are the feature vector and patch mask for
the kth patch of the test image, respectively. Bk is a patch feature matrix where
each column is a feature vector corresponding to a patch in the training im-
ages. In order to handle within-category varieties, some local spatial flexibility
is allowed to some extent, and Bk = [BNk

1 , . . . ,BNk

N ], where N is the number of
the cropped and normalized training images from the same category. Nk means
the neighborhood of the kth patch, e.g., four nearest neighbors. Mk consists of
segmentation masks for the patches in Nk across all the training images from
the same category. By combining the Eqn. 1 and 2, we obtain the following
unified objective function,

min
y,m,{yk}

1

2
‖x− By‖22 + λ1‖y‖1 + λ2‖m−My‖1

+β

[
∑

k

1

2
‖xk −Bkyk‖22 + γ1‖yk‖1 + 1

2
γ2‖mk −Mkyk‖22

]
. (3)

Note that the above framework is convex, thus global optimization can be ob-
tained. Therefore, as long as the object area are accurately detected, by alterna-
tively optimizing the proposed framework, the object mask could be efficiently
located regardless of the initial predicted mask.

4 Optimization Procedure

Although the above objective function in Eqn. (3) is convex, it is not smooth
and thus very difficult to obtain a closed-form solution. Instead, we propose to
alternatively optimize w.r.t reconstruction coefficients {y,yk} and optimize w.r.t
the latent mask m. The optimization procedure is iterated between optimizing
y,yk while fixing m, and optimizing m while fixing y,yk.
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4.1 Optimization w.r.t. {y, yk}
Firstly, the objective function can be simplified as follows when fixing m,

min
y,{yk}

1

2
‖x−By‖22 + λ1‖y‖1 + λ2‖m−My‖1

+β

[
∑

k

1

2
‖x̃k − B̃kyk‖22 + γ1‖yk‖1

]
, (4)

where x̃k =
[
xT
k ,

√
γ2m

T
k

]T
and B̃k =

[
BkT ,

√
γ2M

kT
]T

. Since y and yk are

independent, the problem is decomposed into the following two subproblems.

Subproblem 1: y. The first subproblem is as follows,

min
y

1

2
‖x−By‖22 + λ1‖y‖1 + λ2‖m−My‖1. (5)

Let z = λ2

λ1
(m−My), namely [λ1I, λ2M ] [z;y] = λ2m. Let u = [z;y], then the

objective function in 5 can be reformulated as,

min
u

1

2
‖x− [0, B]u‖22 + λ1‖u‖1 + ρ‖[λ1I, λ2M ]u− λ2m‖22. (6)

Through some algebraic manipulation, the objective function can be reformu-
lated as

min
u

1

2
‖ṽ − D̃u‖22 + λ1‖u‖1, (7)

where ṽ = [xT ,
√
ρλ2m

T ]T , and D̃ =

[
0 B√
ρλ1I

√
ρλ2M

]
. The subproblem is a

standard sparse regularized optimization problem, which can be solved through
many software packages, like L1-magic toolbox [24].

Subproblem 2: {yk}. The second subproblem is a also a standard sparse
regularized optimization problem, which can be easily solved as Eqn. 7.

min
{yk}

∑

k

1

2
‖x̃k − B̃kyk‖22 + γ1‖yk‖1. (8)

4.2 Optimization w.r.t. m

By fixing y,yk, the objective function w.r.t. m is

min
m

1

2

∑

k

‖mk −Mkyk‖22 +
λ2

γ2β
‖m−My‖1. (9)
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Since m = [s1, . . . , sp]v = Sv and mk =
[
sk1 , . . . , s

k
p

]
v = Skv, where Sk is

the matrix corresponding to the superpixel mask on the kth patch, the above
objective function is equivalent to,

min
v

1

2

∑

k

‖Skv −Mkyk‖22 + η‖Sv −My‖1, (10)

where η = λ2

γ2β
. Let S̃ = [S1, S2, . . . , SK ]T and ỹ = [M1y1,M

2y2, . . . ,M
KyK ]T ,

then the objective function can be simplified as minv
1
2‖S̃v−ỹ‖22+η‖Sv−My‖1.

Since the above sparse regularization optimization problem is non-smooth,
according to [25], the subgradient methods to solve non-smooth convex problem
have efficiency estimate of the order O( 1

ξ2 ), where ξ is the desired absolute
accuracy of the approximate solution. Thus to improve the rate of convergence,
the non-smooth term of η‖Sv−My‖1 can be approximated by following smooth
function,

f̂μ(v) = max
‖w‖∞≤1

〈Sv −My,w〉 − μ

2
‖w‖22, (11)

where μ is a parameter to control the approximation accuracy.
For a fixed v, let w(v) denote the unique maximizer of Eqn 11. Then w(v) =

min {1,max{−1, (Sv−My)/μ}}, where operators min {·, ·} and max {·, ·} are
performed in element-wise for the involved vector. Moreover, the smooth approx-
imation in 11 is differentiable and its gradient Sw(v) is Lipschitz continuous with
the constant 1/μ‖S‖2.

The entire gradient for the smooth approximation function fμ(v) =
1
2‖S̃v −

ỹ‖22 + η̂fμ(v) is:∇fμ(v) = S̃T
(
S̃v − ỹ

)
+ ηSw, and its Lipschitz constant is

Lfµ = ‖S̃T S̃‖2 + η/μ‖S‖2, where ‖ · ‖2 denotes the spectral norm for a matrix.
The detailed smooth minimization procedure is shown in Algorithm 1 and the

entire optimization procedure is also demonstrated in Algorithm 2.

Algorithm 1. Smooth Minimization Procedure.

Input S̃, ỹ, η. Output v.
Initialization Calculate Lfµ . Initialize v(0), γ(0), and let θ(0) ← 0, t← 0.
Repeat until convergence
α(t) = (1− θ(t))v(t) + θ(t)γ(t), Calculate ∇fμ(α(t)),
γ(t+1) = γ(t) − 1

θ(t)Lfµ

∇fμ(α(t)), v(t+1) = (1− θ(t))v(t) + θ(t)γ(t+1),

θ(t+1) = 2
t+1

, t← t+ 1.

5 Implementation Details

In this section, we introduce some implementation details. For the detected
bounding boxes of each category, over-segmentation and feature extraction are
performed within the bounding box area. In the over-segmentation step, the
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Algorithm 2. Full Alternative Optimization Procedure.

Input x, m Output y, m
Initialization Initialize λ1, λ2, γ1, γ2, β and let t← 0.
Repeat until convergence
Fix m(t), optimize Eqn. 4 , update y(t+1) ← y(t),yk

(t+1) ← yk
(t)

Fix y(t+1),yk
(t+1), optimize Eqn. 9, update m(t+1) ←m(t), t← t+ 1

number of the superpixels is set to be 150. For the global image representa-
tion, according to [26], LLC (Locality-constrained Linear Coding)[26] is applied
to extract the Spatial Pyramid Representation (SPM) [27] vectors within the
bounding box area. For the local patch representation, the patch size are set to
be 16 by 16 pixels. Dense SIFT [28] features are extracted regularly at every other
pixel. Then LLC is also applied to code the SIFT features into a Bag-of-Word
patch representation.

The parameters λ1, λ2, γ1, γ2, β, μ in the optimization framework are learned
empirically with the validation set. On a PC with dual-core of 2.99 GHz Intel
CPU and 8GB memory, for a given test image, it takes on average around 1
minute to do the over-segmentation and about 3 - 10 minutes for the alternative
optimization framework to converge using the current un-optimized Matlab code,
further speedup could be expected if applying C++ implementation.

Post-processing. Since the latent mask learnt from the coupled sparse repre-
sentations framework is defined at super-pixel level, some post-processings are
proposed to further refine the mask to reduce the errors introduced by super-
pixels that are not well aligned to the object contours. For a given cropped and
normalized test bounding box, we first perform over-segmentation at different
scales, with super-pixel number set as 150, 200, and 250, respectively, then re-run
the coupled sparse representation framework three times, and finally calculate
the ultimate mask as the intersection of the three outputs.

6 Experiments

The experiments are divided into two parts. The first part demonstrates the
proof-of-concept studies, where several important aspects of the algorithm are
evaluated. In the second part, we show the results on the benchmark databases
with the comparison to other state-of–the-art algorithms.

6.1 Proof-of-Concept Experiments

We first evaluate the effects of different algorithm parts on the VOC2010 training
vs. validation sets. Table 1 shows the main results. It can be observed that
each part of the model improves the average performance, from the baseline
performance of 31.7% to the final full model performance of 36.4%. The baseline
model is calculated directly from the average masks predicted from the object
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Table 1. Study of the effects of different algorithm parts of the proposed method on
the VOC2010 training vs. validation sets. The BA is the average masks predicted from
the object detectors. +GL only applies the global sparse representation, +LO applies
the coupled global and local sparse representation framework, while the Full model
adds the extra post-processing to the coupled sparse representation framework.
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BA 78.5 35.6 14.6 25.8 22.6 39.1 54.3 46.1 24.8 5.2 33.5 9.8 24.5 29.2 42.1 33.7 17.6 30.8 19.2 39.1 40.1 31.7
+GL 80.1 39.3 19.7 31.9 27.1 41.0 58.5 47.8 28.4 5.5 37.1 12.7 28.1 32.9 46.2 37.4 20.3 34.5 23.5 40.7 40.8 34.9
+LO 80.5 41.9 20.9 33.8 28.5 41.2 58.7 49.1 29.2 6.8 38.7 13.9 29.0 34.4 48.7 39.2 22.1 36.7 23.8 41.2 40.5 36.1
Full 80.6 42.6 20.7 34.2 28.9 41.7 58.6 49.1 29.8 7.6 39.1 14.4 29.4 34.6 48.9 39.5 21.9 36.8 23.7 41.4 40.5 36.4

detectors. The best improvement is seen from the baseline to the global only
reconstruction, which makes sense because the sparse reconstruction framework
selects the most similar training masks and significantly refines the initial test
mask in the bounding box. In comparison, local reconstruction gets a relatively
lower improvement since it is introduced to handle local spatial deformations,
which only covers a small portion of the entire segmented masks.

6.2 Performance Comparison

We evaluate the proposed framework on two challenging datasets for object
class segmentation: PASCAL VOC2007 [11] and VOC2010 [15] segmentation
challenge. VOC2007 contains 632 images in total, with 20 foreground (objects)
classes and 1 background class, while VOC2010 extends to 2892 images. Quan-
titative analysis of VOC results is based on intersection vs. union measure 2. In
VOC2007, we compare the performance gain of our mask refinement technique
with the state-of-the-art algorithm of Thomas Brox’s poselet alignment [3], which
also applies a segmentation from detection framework. In VOC2010, we mainly
compare with all the state-of-the-art methods ever published (submitted to the
VOC2010 challenge or already published papers).

Performance Gain from Mask Refinement. In this subsection, we mainly
compare the performance gain obtained through the mask refine optimization
with Brox’s algorithm [3], which is based on poselet alignment and smoothing
from detection. To make it fair, we adopt the same experiment setting as pro-
posed in [3], which is evaluated on the combined Pascal VOC 2007 training,
validation and test set (632 images). In [3], the poselet classifiers are trained
on the training + validation set of the whole challenge excluding images from
VOC2007 segmentation challenge, which is the same training set for our object
detectors and coupled sparse representation framework. The detailed comparison
are shown in Table 2. From the table, we can observe that although our baseline
performance is a little bit higher than Brox’s, the improvement from the base-
line to the full model is higher. Furthermore, compared with Brox’s algorithm,

2 Defined as accuracy = TruePositives
TruePositive+FalseNegative+FalsePositive

.
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Table 2. Accuracy comparison at the same database setting in [3] for VOC2007. The
first two columns are performances before and after poselet alignment and smoothing
from Brox’s algorithm [3]. Our baseline is the results directly from the predicted average
masks, and our full model is the result after the mask refinement. The numbers in the
brackets are the performance gain from the baseline model to the full model. Our
model achieves higher performance gain in 13 classes among the 21 classes (including
background), and a higher overall gain.

Method Brox baseline Brox full model Our baseline Full model

background 78.58 79.23 (+0.65) 79.42 80.05 (+0.63)
aeroplane 26.63 36.26 (+9.63) 34.87 40.37 (+5.50)
bicycle 32.14 38.54 (+6.40) 16.72 18.69 (+1.97)
bird 12.70 16.57 (+3.87) 27.11 31.23 (+4.12)
boat 12.74 12.14 (-0.60) 18.77 26.67 (+7.90)
bottle 31.40 30.40 (-1.00) 34.11 38.68 (+4.57)
bus 29.24 33.20 (+3.96) 45.63 56.26 (+10.63)
car 39.25 42.15 (+2.9) 39.01 47.21 (+8.20)
cat 38.19 44.99 (+6.8) 22.69 27.54 (+4.85)
chair 7.89 10.33 (+2.44) 5.11 7.02 (+1.91)
cow 29.24 37.21 (+7.97) 32.41 36.58 (+4.17)

diningtable 11.37 10.69 (-0.68) 9.45 11.22 (+1.77)
dog 17.61 23.15 (+5.44) 19.74 27.31 (+7.57)
horse 35.41 43.92 (+8.51) 27.66 30.58 (+2.92)

motorbike 27.90 32.59 (+4.69) 36.21 45.63 (+9.42)
person 44.00 49.65 (+5.65) 31.18 37.21 (+6.03)

pottedplant 17.07 17.60 (+0.43) 15.68 19.32 (+3.64)
sheep 26.68 37.38 (+10.70) 27.41 33.79 (+6.38)
sofa 9.72 9.49 (-0.23) 14.24 21.58 (+7.34)
train 20.34 23.55(+3.21) 33.21 38.24 (+5.03)

tvmonitor 43.51 47.50 (+3.99) 31.15 37.59 (+6.44)
average 28.17 32.21 (+4.04) 28.66 33.94 (+5.28)

Table 3. Accuracy comparison of our method on VOC2010 test set with other well
performing methods [15]

Other Learning Based Detection Based
Method Stanford UC3M Bonn SVR CVC HCRF Brooks UOCTTI Brox Ours Ranking

background 80.0 73.4 84.2 81.1 70.1 80.0 82.2 81.7 3
aeroplane 38.8 45.9 52.5 58.3 31.0 36.7 43.8 46.2 3
bicycle 21.5 12.3 27.4 23.1 18.8 23.9 23.7 21.9 5
bird 13.6 14.5 32.3 39.0 19.5 20.9 30.4 36.9 2
boat 9.2 22.3 34.5 37.8 23.9 18.8 22.2 30.3 3
bottle 31.1 9.3 47.4 36.4 31.3 41.0 45.7 47.9 1
bus 51.8 46.8 60.6 63.2 53.5 62.7 56.0 62.8 2
car 44.4 38.3 54.8 62.4 45.3 49.0 51.9 50.2 4
cat 25.7 41.7 42.6 31.9 24.4 21.5 30.4 34.0 3
chair 6.7 0.0 9.0 9.1 8.2 8.3 9.2 10.4 1
cow 26.0 35.9 32.9 36.8 31.0 21.1 27.7 40.5 1

diningtable 12.5 20.7 25.2 24.6 16.4 7.0 6.9 15.9 5
dog 12.8 34.1 27.1 29.4 15.8 16.4 29.6 32.9 2
horse 31.0 34.8 32.4 37.5 27.3 28.2 42.8 43.7 1

motorbike 41.9 33.5 47.1 60.6 48.1 42.5 37.0 48.9 2
person 44.4 24.6 38.3 44.9 31.1 40.5 47.1 41.5 4

pottedplant 5.7 4.7 36.5 30.1 31.0 19.6 15.1 29.3 4
sheep 37.5 25.6 50.3 36.8 27.5 33.6 35.1 40.2 2
sofa 13.0 13.0 21.9 19.4 19.8 13.3 23.0 26.6 1
train 33.2 26.8 35.2 44.1 34.8 34.1 37.7 44.2 1

tvmonitor 32.3 26.1 40.9 35.9 26.4 36.5 48.5 46.8 2
average 29.1 27.8 39.7 40.1 30.3 31.8 34.9 39.7 2
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which requires extra manual annotation of the poselet, our method requires no
hand-labeling and thus is more practical and robust.

Comparison to State-of-the-Art Approaches. In order to compare with
other state-of-the-art object segmentation methods, we run the full model on
the test set of VOC2010 dataset. Table 3 shows our result with the top-ranking
methods in the challenge. Our approach achieves a performance of 39.7%, that is
comparable with the state-of-the-art approaches. Among the 20 object classes,
our approach shows the best results on 6 categories (tied with the best perform-
ing algorithms) and has an average ranking of 2 - 3 for other categories. We also
compare our approach with other detection based approach like UOCTTI and
the Brox’s poselet approach mentioned above. From Table 3, it is observed that
our approach significantly outperforms these two algorithms.

Figure 3 shows some exemplar segmentation results based on our algorithm
from the VOC2010 test set. The first 4 rows are mainly results with only one
category while the last row contains results with multiple categories. From these
results, it is observed that our method can handle background clutters, objects
with low contrast with the background and multiple objects in the same image.
Both the cat and boat in the middle column have particularly low contrast, while
the cat is partially occluded by the tree. The bird in the right column contains a
very cluttered background with low contrast against the foreground. In the last
row, the two horses in the middle image have quite different poses, while the
cars are partially visible behind the fence in the right image.

However, there still exist some failure cases, due to various different types of
reasons. First comes from the inability to correctly select masks, the detector
might predict a wrong label for the bounding box area. Also in some cases, the
algorithm does not successfully handle multiple interacting objects, especially

Potted plants 

Bird 

Fig. 3. Some exemplar segmentation results (Better viewed in color)



674 W. Xia et al.

when the neighboring objects have low mutual contrast and occlude each other,
such as man on the bicycle. From the last image in Figure 3, although the human
and bicycle are successfully segmented, the interacting part like the human legs
are still not well recovered. The third types of failure comes from the confusion
of similar category pairs, like cow and horse, dog and cat, etc.. Otherwise, if
the objects are correctly detected and labeled, which can be achieved through
choosing detection bounding boxes with relatively higher confidence scores, such
problems could be avoided. The last failure comes from the fact that sometimes
the detectors cannot determine the accurate spatial bounding box of objects,
especially for objects with rare poses or only partially visible. In some extreme
cases, such partially visible objects are neglected by detectors and the later mask
refinement procedure shall not be activated.

7 Conclusions and Future Work

In this paper, we presented a novel approach for object segmentation based
on object detection by coupled global and local sparse representations. Unlike
previous methods, we frame segmentation as a mask refinement problem from
the coarse masks predicted from object detectors. Through global sparse recon-
struction that could generally select the most similar training masks and local
reconstructions that could handle locally spatial deformation, the proposed al-
gorithm could achieve competitive results with the state-of-the-art algorithms
on VOC2007 and VOC2010 benchmarks and outperforms other detection based
object segmentation algorithms.

Current performance of object segmentation on VOC2010 benchmark is
around 40%, which remains a great potential for improvement. One key prop-
erty of our algorithm is that it heavily relies on object detection algorithms,
therefore, with better object detectors in future, such as the one that could well
handle partial objects and occlusions, significant improvement can be expected
for object segmentation performance.
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