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Abstract. Learning to hash involves learning hash functions from a
set of images for embedding high-dimensional visual descriptors into a
similarity-preserving low-dimensional Hamming space. Most of existing
methods resort to a single representation of images, that is, only one
type of visual descriptors is used to learn a hash function to assign bi-
nary codes to images. However, images are often described by multiple
different visual descriptors (such as SIFT, GIST, HOG), so it is desir-
able to incorporate these multiple representations into learning a hash
function, leading to multi-view hashing. In this paper we present a se-
quential spectral learning approach to multi-view hashing where a hash
function is sequentially determined by solving the successive maximiza-
tion of local variances subject to decorrelation constraints. We compute
multi-view local variances by α-averaging view-specific distance matri-
ces such that the best averaged distance matrix is determined by min-
imizing its α-divergence from view-specific distance matrices. We also
present a scalable implementation, exploiting a fast approximate k-NN
graph construction method, in which α-averaged distances computed in
small partitions determined by recursive spectral bisection are gradually
merged in conquer steps until whole examples are used. Numerical exper-
iments on Caltech-256, CIFAR-20, and NUS-WIDE datasets confirm the
high performance of our method, in comparison to single-view spectral
hashing as well as existing multi-view hashing methods.

1 Introduction

Similarity search, which involves retrieving semantically relevant images given a
query, is a core problem in computer vision and information retrieval community.
Ever-increasing availability of image data on the Web entails the need of scalable
search of relevant images. For example, content-based image retrieval (CBIR)
takes an image as a query and returns its nearest neighbors, computing similarity
between visual descriptors of the query and of images in database.

A naive solution to nearest neighbor search is linear scan where all items in
database are sorted according to their similarity to the query, requiring linear
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complexity. In practical applications, however, linear scan is not scalable due to
the size of examples in database. Approximate nearest neighbor search, which
trades accuracy for scalability, becomes more important than ever. Earlier work
[1] is a tree-based space partition approach that exploits spatial partitions of data
space via various tree structures. While tree-based methods are successful for
low-dimensional data, their performance is not satisfactory for high-dimensional
data and does not guarantee faster search compared to linear scan [2]. Most of
visual descriptors, such as SIFT [3], GIST [4], and HOG [5], constitute high-
dimensional vectors, so tree-based space partition approach is not preferred in
CBIR applications.

Hashing refers to methods for embedding high-dimensional data into a low-
dimensional Hamming space such that similar objects are indexed by binary
codes with small Hamming distances. It is categorized into data-independent
and data-dependent methods. A notable data-independent method is locality
sensitive hashing (LSH) [2, 6] where random projections followed by rounding
are used to generate binary codes such that two similar objects in database are
shown to have a higher probability of collision. The performance of LSH is not
satisfactory when short binary codes are used [7]. Data-dependent hashing meth-
ods have drawn extensive attractions recently, where binary codes are learned
from visual descriptors for indexing images, in unsupervised [8–10], supervised
[11], or semi-supervised [12, 13] manner. Spectral hashing (SH) [8], which we base
our method on, is a widely-used unsupervised hashing method, where a subset
of eigenvectors of a graph Laplacian is rounded to determine binary codes.

Most of existing data-dependent hashing methods are categorized as single-
view hashing since only one type of visual descriptors is used to learn a hash
function. In practice, images are often described by several different types of
visual descriptors such as GIST [4], HOG [5], SIFT [3], to name a few, and each of
those descriptors has its own characteristics. Thus, it is desirable to incorporate
these heterogenous visual descriptors into learning hash functions, leading to
multi-view hashing, as shown in Fig. 1. Recently a few methods for multi-view
hashing were developed, where spectral hashing was extended for cross-view
similarity search [14] and a linear sum of view-specific similarity matrices was
exploited [15]. In this paper we present a sequential spectral learning approach
to multi-view hashing which contains the following contributions which were not
explored in previous work:

– We determine a hash function sequentially by solving the successive max-
imization of local variances subject to decorrelation constraints, which re-
quires only the largest eigenvector of a data-driven matrix at each step,
in contrast to existing methods [15, 14] which require the repeated eigen-
decomposition or the generalized eigen-decomposition.

– We compute multi-view local variances by α-averaging view-specific dis-
tances such that the best averaged distance matrix is determined by min-
imizing its α-divergence from view-specific distance matrices, whereas the
arithmetic mean was only considered in [15].
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Fig. 1. Pictorial illustration for multi-view hashing. Two visual descriptors (GIST and
HOG) are fed into a system where a hash function is determined to accommodate these
two types of features, indexing images by integrated binary codes such that Hamming
distance between the query and its relevant images is small.

– We also present a scalable implementation, exploiting a fast approximate
k-NN graph construction method, in which α-averaged distances computed
in small partitions determined by recursive spectral bisection are gradually
merged in conquer steps until whole examples are used.

2 Related Work

We briefly review spectral hashing [8] and its two multi-view extension [14, 15].
Suppose that {xi}Ni=1 is a set of N objects. We denote object i with K different

views by {x(1)
i , . . . ,x

(K)
i }, where each view-specific example is given by x

(k)
i ∈

R
dk where dk is the dimension associated with corresponding visual descriptors.

Then, the view-specific data matrix is defined as X(k) = [x
(k)
1 , . . . ,x

(k)
N ]. We also

denote by y
(k)
i ∈ {−1,+1}M a binary code of length M associated with x

(k)
i .

Then the binary code matrix is given by Y (k) = [y
(k)
i , . . . ,y

(k)
N ]. In the case

of single-view hashing, the binary code matrix is represented by Y (without
the superscript). Multi-view hashing seeks an integrated binary code matrix
Y ∗ = {y∗

i }Ni=1 ∈ R
M×N which well captures the average similarities between

objects across views.

2.1 Spectral Hashing

Spectral hashing [8] counts on a subset of thresholded eigenvectors of the graph
Laplacian to seek similarity-preserving compact binary codes. Spectral hashing
requires the average Hamming distance between similar neighbors to be mini-
mized. In addition, the codes of length M are also required to be balanced and
uncorrelated. Thus, spectral hashing involves the following optimization:
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argmin
Y

N∑

i=1

N∑

j=1

Sij‖yi − yj‖22,

subject to Y ∈ {−1,+1}M×N , Y 1N = 0,
1

N
Y Y � = IM , (1)

where Sij is the similarity between xi and xj , ‖yi‖2 is the Euclidean norm of
yi, IM ∈ R

M×M denotes the identity matrix, and 1N ∈ R
N is the vector of all

ones. The last two constraints represent the balancing condition and pairwise
decorrelation condition.

The formulation in spectral hashing is equivalent to a particular form of graph
partitioning, which is known to NP-hard. The problem is relaxed by discarding
binary constraints yi ∈ {+1,−1}M . Then rounding a subset of eigenvectors
of the graph Laplacian of the similarity graph leads to binary codes for spec-
tral hashing. For out of sample extension, data are assumed to be generated
from separable multi-dimensional uniform distribution and eigenfunctions of the
weighted Laplace-Beltrami operators defined on manifold are used to determine
binary codes of unseen data points.

2.2 Existing Work on Multi-view Hashing

Two recent methods for multi-view hashing are briefly reviewed, including ’com-
posite hashing with multiple information sources’ (CHMIS) [15] and ’multi-view
hashing for cross-view similarity search’ (MVH-CS) [14]. These methods share
a similar idea with ours, but it will be emphasized what are differences later.

Suppose that for each view (k = 1, . . . ,K), a hash function is parameterized

by an embedding matrix W (k) and a bias b(k), so that view-specific binary code
is given by

y
(k)
i = sgn

(
W (k)�x(k)

i + b(k)
)
,

where sgn(·) is the sign function. We assume that view-specific data are centered,

i.e., X(k)1N = 0, then the bias b(k) = − 1
NW (k)�X(k)1N = 0 is neglected

throughout this paper.
CHMIS [15] considers a linear sumof view-specific similarities as an average sim-

ilarity S∗
ij =

∑K
k=1 S

(k)
ij that is plugged into the spectral hashing framework (1):

argmin
Y ∗

N∑

i=1

N∑

j=1

S∗
ij‖y∗

i − y∗
j‖22,

subject to Y ∗1N = 0,
1

N
Y ∗Y ∗� = IM , Y ∗ ∈ {−1,+1}M×N . (2)

For out of sample extension in CHMIS, binary codes of unseen examples are deter-

mined by a convex combination of linear hash functions, i.e.,
∑K

k=1 βkW
(k)�x(k)

i
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with
∑K

k=1 βk = 1. EmbeddingmatricesW (k) and coefficients βk for k = 1, . . . ,K
are estimated by solving the following regularized regression problem

N∑

i=1

‖y∗
i −

K∑

k=1

βkW
(k)�x(k)

i ‖22 + η

K∑

k=1

‖W (k)‖22, (3)

where y∗
i computed in (2) are treated as response variables and η is the trade-off

parameter for regularizer.
Since y∗

i are coupled with βk when (2) is solved, spectral hashing (2) and
consistency requirements (3) are alternatively optimized, dropping binary con-
straints for y∗

i . CHMIS involves the eigen-decomposition of an N -by-N dense
matrix, which is not scalable for a large scale problem. There is no systematic
study on how to integrate similarities involving multiple representations of im-
ages to estimate the integrated binary codes. This motivates us to investigate
various averages to find better average similarity matrix in our method, which
is explained in Section 3.2.

MVH-CS [14] is another recently-developed multi-view hashing method which
was mainly applied to the problem of cross-view similarity search. The main idea
in MVH-CS is to find view-specific binary codes such that similar objects are
mapped to similar binary codes across all the views. Once again, assuming a lin-

ear hash function W (k)�x(k)
i for each view, embedding matrices W (k) are deter-

mined by minimizing the Hamming distance between the binary codes summed

over all the views dij =
∑K

k=1

∑K
k′≥k ‖y(k)

i −y
(k′)
j ‖22. MVH-CS finds view-specific

binary codes instead of integrated binary codes, so the integrated binary code is

constructed by concatenating view-specific binary codes, i.e., y∗
i = [y

(1)
i ;y

(2)
i ].

See [14] for more details.

3 Multi-view Spectral Hashing

This section presents the main contribution of this paper, referred to as multi-
view spectral hashing (MVSH), where embedding matrices are determined by
the successive maximization of local variances with decorrelation constraints
satisfied (see Section 3.1) and the α-average is employed to integrate K view-
specific distance matrices (see Section 3.2).

3.1 Algorithms for MVSH

Given the α-averaged similarity matrix S∗ (which will be described in Section

3.2) which combines K view-specific similarity matrices {S(k)}Kk=1, we begin
with the spectral hashing framework:

argmin
Y ∗

N∑

i=1

N∑

j=1

S∗
ij‖y∗

i − y∗
j‖22,

subject to Y ∗1N = 0,
1

N
Y ∗Y ∗� = IM , Y ∗ ∈ {−1,+1}M×N , (4)
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Fig. 2. Pairs of triangles connected by red solid lines are similar ones and pairs con-
nected by blue dotted lines are dissimilar ones in the original space. Both embeddings
well preserve locality, however, similarities in the Hamming space are not preserved
after binary quantization (left panel), while similarities are still preserved even after
binary quantization (right panel). A proper rotation by minimizing the quantization
error improves the performance, as demonstrated in [9].

where ‖y∗
i − y∗

j‖22 =
∑K

k=1

∑K
k′=1 ‖y(k)

i − y
(k′)
j ‖22 and y

(k)
i = sgn

(
W (k)�x(k)

i

)
.

We use a linear hash function such that the binary code is computed by

y
(k)
i = sgn

(
W (k)�x(k)

i

)
, where W (k) = [w

(k)
1 , . . . ,w

(k)
M ] ∈ R

dk×M . Relaxing

binary constraints Y ∗ ∈ {+1,−1}M×N by discarding the sgn(·) function, as in
[16, 14], the objection function in (4) becomes

N∑

i=1

N∑

j=1

S∗
ij

{
K∑

k=1

K∑

k′=1

‖W (k)�x(k)
i −W (k′)�x(k′)

j ‖22
}

. (5)

However, such relaxation might cause an undesirable embedding, as shown in
the left panel in Fig. 2.

In order to avoid an undesirable embedding, we now consider the following
expansion without dropping the sign function:

‖y(k)
i − y

(k′)
j ‖22 = 2M − 2

M∑

m=1

sgn
(
w(k)�

m x
(k)
i

)
sgn

(
w(k′)�

m x
(k′)
j

)
. (6)

Note that y
(k)�
i y

(k)
i is always M . We now discard the sign function because the

terms with the same sign are more favored than the terms with the different
sign, regardless of their magnitudes. Neglecting the constant M in (6), we have

‖y∗
i − y∗

j‖22 ≈ −
K∑

k=1

K∑

k′=1

tr
(
W (k)�x(k)

i x
(k′)�
j W (k′)

)
,

= −tr

((
K∑

k=1

W (k)�x(k)
i

)(
K∑

k′=1

x
(k′)�
j W (k′)

))
. (7)

This justifies that the integrated binary codes are approximately calculated as

y∗
i ≈∑K

k=1 W
(k)�x(k)

i .
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We define concatenatedmatrices as W̃ = [W (1); · · · ;W (K)] ∈ R
(d1+···+dK)×M

and X̃ = [X(1); · · · ;X(K)] ∈ R
(d1+···+dK)×N .With these definitions and invoking

the approximation (7), we convert the minimization problem (4) to the following
maximization problem:

argmax
˜W

tr
(
W̃

�
X̃S∗X̃

�
W̃
)
,

subject to W̃
�
X̃X̃

�
W̃ = IM , (8)

where the solution W̃ is determined by solving the generalized eigenvalue prob-

lem for the matrix pencil (X̃S∗X̃
�
, X̃X̃

�
). This method is referred to as

GE-MVSH.
GE-MVSH does not work well in the case where binary code length is large,

because the relaxed decorrelation constraint W̃
�
X̃X̃

�
W̃ = IM deteriorates

the performance. Good hash functions are obtained from the directions that
have large variance [12], but GE-MVSH minimizes the global variance, so that
the performance decreases as the code size increases.When naively discarding the
sign function of the decorrelation condition, the diagonal entries lead to minimize
the global variances. Considering the sign function, the diagonal entries in the
decorrelation constraints are always satisfied, since sgn(w̃�

mx̃i) sgn(w̃
�
mx̃i) =

1 for m = 1, . . . ,M . Thus we now consider only off-diagonal entries in the
constraints 1

NY ∗Y ∗� = I, which require

sgn(w̃�
i X̃) sgn(X̃

�
w̃j) = 0, for i = 2, ...,M and j = 1, ..., i− 1. (9)

Plugging (9) into a penalty term of objective function in (8), we determine w̃i

one by one by successively solving

argmax
˜wi

w̃�
i X̃S∗X̃

�
w̃i − μ

i−1∑

j=1

λi−j(w̃�
i X̃X̃

�
w̃j)

2, (10)

subject to w̃�
i w̃i = 1, where μ is a trade-off parameter and λ is a decaying

parameter to de-emphasize the decorrelation requirements for the current weight
vector and earlier-computed weight vectors. The sequential maximization (10)
is solved by computing the largest eigenvector of the adjusted local covariance
matrix:

X̃S∗X̃
� − μ

i−1∑

j=1

λi−jX̃X̃
�
w̃jw̃

�
j X̃X̃

�
. (11)

This method is referred to as SU-MVSH, which is summarized in Algorithm 1.
Note that our sequential formulation is different from [17], even if both methods
are designed to compute binary codes in a sequential manner. In [17], each
new hash function is learned to correct the errors made by the previous hash
functions, using (pseudo-)label information. However, our formulation does not
require label information, because it directly approximates the decorrelation
condition.
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Algorithm 1. Sequential Update for Multi-View Spectral Hashing (SU-MVSH)

Input: training data as X̃ = [X(1); . . . ;X(K)], test data point x̂ = [x̂(1); . . . ; x̂(K)],
α-value and M (binary code length).

Output: binary code ŷ associated with x̂

1: Construct multi-view local covariance: X̃S∗X̃
�
, where S∗

ij = exp(− 1
σ∗2D

∗2
ij ), D

∗
ij

is α-average distance (see Section 3.2) and σ is set by local-scaling [18].

2: w̃1 ← the largest eigenvector of X̃S∗X̃
�
.

3: for i = 2, . . . ,M do

4: w̃i ← the largest eigenvector of the adjusted local covariance: X̃S∗X̃
� −

μ
∑i−1

j=1 λ
i−jX̃X̃

�
w̃jw̃

�
j X̃X̃

�
.

5: end for
6: Return M -bit integrated binary code: ŷ = sgn(W̃

�
x̂), where W̃ = [w̃1, . . . , w̃M ].

3.2 α-Average Similarity

One of core components in MVSH is to construct an average similarity ma-
trix which well integrates K view-specific similarity matrices. To this end, we
adopt the α-average [19] which includes various widely-used averages (such as
arithmetic, geometric, harmonic means) as its special cases.

Given K view-specific distance matrices, D(1), . . . ,D(K), we compute the
average distance matrix D∗ by minimizing the α-divergence from view-specific
distance matrices,

argmin
D∗

J [D∗] =
K∑

k=1

N∑

i=1

N∑

j=1

wkDα[D
(k)
ij ‖D∗

ij], (12)

where wk is the scaling factor for k-th view (wk ≥ 0), D
(k)
ij = ‖x(k)

i −x
(k)
j ‖2, and

Dα[a‖b] is the α-divergence between two positive numbers a and b, defined as

Dα[a‖b] =
⎧
⎨

⎩

b− a+ a log a
b , α = −1,

a− b+ b log b
a , α = 1,

2
1+αa+

2
1−αb− 4

1−α2 a
1−α
2 b

1+α
2 , α �= ±1.

As shown in [19], the solution D∗ to the problem (12) is given by

D∗
ij = f−1

α

(
K∑

k=1

wifα

(
D

(k)
ij

))
, (13)

where fα(x) is a differentiable monotonic function given by

fα(x) =

{
x

1−α
2 , for α �= 1,

log x, for α = 1.
(14)

In practice, the weight factor, wk, is chosen as 1/σk, where σk is the median of
pairwise distances of k-th view (due to the different scale of distance for k-th
view). This α-average distance is used for SU-MVSH (algorithm 1).
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The α-average (13) reduces to the maximum, arithmetic mean, geometric
mean, harmonic mean, and minimum when α = −∞,−1, 1, 3,∞, respectively.
Note that as α increases, the smaller values become more important, while as
α decreases, the larger values are taken more seriously. Note also that when
α = −1 with uniform scaling factors and Euclidean distance is used for view-
specific distance, the α-average distance is equivalent to the Euclidean distance
between concatenated data over all views. The α-average distance matrix was
originally used in manifold integration [20].

We observe that the performance of proposed method (SU-MVSH) is changed
with respect to various α values on three datasets (Caltech-256, CIFAR-20, and
NUS-WIDE) in Fig. 3. We observe that α ≥ 1 achieves the best performance,
leading that higher α value is proper in this case since it is natural to put more
weight on small distance. Note that we have the better averaged distance rather
than simple feature concatenation (α = −1).
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Fig. 3. Performance of SU-MVSH with respect to various α values. Detailed experi-
mental settings are found in section 4.

3.3 Scalable Implementation

The direct application for α-average to large-scale distance matrices is infeasible.
Since full distance matrix over all pairs of examples requires O(N2) of space and
O(dN2) of computation time (d is the data dimension), we use approximate
k-NN graph based on recursive spectral bisection [21], which runs in divide-
and conquer fashion as follows. The data is split into two overlapping subsets
recursively until the size of subset is sufficiently small to compute the exact
k-NN graph, then conquer the results (k-NN graphs of the subsets) to a final
approximate k-NN graph.

The straightforward way to construct α-average k-NN graph is to compute
approximate k-NN graphs for each view and to apply α-average process into
the k-NN graphs. This näıve implementation leads the α-average k-NN graph of
which most elements are zero, for α = 1, since we perform element-wise product
of highly sparse k-NN graphs. To avoid the undesirable α-average k-NN graph,
we propose small modifications (yet, effective) in the divide step to incorporate
α-average process into approximate k-NN based on spectral bisection.

In the divide step, data is split into two overlapping subsets using the princi-
pal direction of the data matrix concatenating all views, which can be computed
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linearly with respect to N and d 1. Given the concatenated data points, X̃ =

[x̃1, . . . , x̃N ], we compute the largest singular triplet (σ,u,v) of X̃ with u�X̃ =
σv�. The Lanzos method is used to compute an well-approximated largest sin-
gular vector with O(dN) time complexity [21]. Then the data is split into two
overlapped subsets:

X̃+ = {x̃i|u�x̃i ≥ −c(r)}, X̃− = {x̃i|u�x̃i < c(r)}, (15)

where c(r) is a constant to retain that (100r)% of the elements to be overlapped

in both X̃+ and X̃−. When the subset is small enough to compute the exact
k-NN in brute-force way, we apply α-average into the pair-wise distance matrices
of view-specific data, which leads to the α-average k-NN graph of the subset.

In the conquer step, we use the same conquer step as in [21]. Two k-NN graphs
of each subset is merged into a larger k-NN graph in the following way: if a data
point is overlapped in both subsets X+ and X−, then its k-nearest neighbors
are chosen from its neighbors in each subset (a further refinement step can be
applied) [21]. We gradually merge the two k-NN graphs into a larger one until a
final approximate k-NN graph is constructed.

By this simple modification, we can avoid having too many zeros in the final
approximate α-average k-NN graph. The time complexity remains the same with
the original approximate k-NN construction, which is O(dN t), where t ∈ (1, 2)
is governed by a parameter r. The parameter r controls how many points are
overlapped in the divide step. Although the algorithm gets slower as r increases,
it runs fast enough with moderate values of r (r = 0.2, in our experiment). We
use α-average approximate k-NN graph for the α-average distance matrix D∗ in
algorithm 1.

4 Experiments

We evaluate our methods on three different datasets: Caltech-256 [22], CIFAR-20
[23], and NUS-WIDE [24]. Caltech-256 consists of 29,780 images, each of which
is associated with one of 256 object categories. CIFAR-20, which is a subset of
80-million tiny images [25], contains 60,000 images with 20 coarse labels. In each
of these two datasets, we form a query set by randomly choosing 1,000 images
and construct a training set using the rest of images. We use GIST [4] (512-
dimension for Caltech, 384-dimension for CIFAR) and HOG [5] (2048-dimension
for Caltech, 1152-dimension for CIFAR) descriptors to produce two views of each
image.

– GIST: For Caltech-256, we apply Gabor filters with 8 different orientations
and 4 scales. Each Gabor-filtered image is averaged over 4-by-4 grid [7],
which results in a 512-dimensional vector (8× 4× 16 = 512). For CIFAR-20,
we use Gabor filters with 8 different orientations and 3 scales, which results
in 384-dimensional vector.

1 CCA cannot be used in this case, because the time complexity is not linear with
respect to N and d.
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– HOG: For both Caltech and CIFAR datasets, we compute the image gra-
dients of non-overlapping windows, where the orientation of gradients is
quantized into 8 bins and normalized with 4 different metrics, as in [5].
For Caltech-256, we resize each image into 64-by-64, leading to 64 6-by-6
non-overlapping windows, which results in a 2048-dimensional vector (8 ×
4 × 64 = 2048). For CIFAR-20, 36 4-by-4 non-overlapping windows yield
1152-dimensional vectors.

NUS-WIDE contains 270,000 images with 81 concept classes. As in [10], we only
use the most frequent 21 concept classes. In such a case, there exist unlabeled
data, but we put them into the training set (even if the unlabeled data are not
used, the trends in all figures remain the same). We use 2,100 images (100 images
per class) as the query set, and the rest of images are used as the training set.
NUS-WIDE provides 6 different features (bag-of-words, wavelet coefficient, color
histogram, and etc.), so each of which is treated as a single view, leading to 6
different views.

We compare our methods (SU-MVSH and GE-MVSH) with three existing
multi-view hashing algorithms (MVH-CS, MVH-CCA and CHMIS) as well as
spectral hashing with features concatenated over multiple views. MVH-CS [14]
and CHMIS [15] were briefly reviewed in Section 2.2 and note that MVH-CCA
is a special case of MVH-CS when the averaged similarity matrix fixed as the
identity matrix. For SU-MVSH, we set λ = 0.9 and choose μ as one of values
in {10−4, 10−3, 10−2, 10−1} which yields the best performance by 5-fold cross-
validation. For SU-MVSH, GE-MVSH and MVH-CS, we employ scalable imple-
mentation to calculate the α-average (with k = 10), described in Section 3.3,
where the value of α ∈ {−2,−1, 1, 3, 5} is determined by 5-fold cross-validation.
For CHMIS, we use an approximate k-NN graph method (k = 10) [21]. Since
CHMIS is not scalable for large-scale data, we use a subset of training set (10,000
examples) to learn hash functions. All experiments are repeated five times to
produce error bars in Fig. 4 and 5.

As a performance measure, we use Hamming ranking [12, 10] where rank-
ings are measured by Hamming distance between query and data points. We
calculate the precision at the top 100 examples for Caltech-256, and at the top
500 examples for other datasets, as shown in Fig. 5. A tie breaks at random,
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Fig. 4. Performance of SU-MVSH when a single descriptor is used, or both descriptors
are used together via the α-average
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Fig. 5. Performance comparison with respect to different number of bits
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Fig. 6. Precision when the number of top returned images varies from 200 to 600 (or
500 to 3000), for various code sizes (64, 128, and 256 bits)

in the Hamming distance. Fig. 4 shows the performance of SU-MVSH when a
single descriptor is used, or both descriptors are used together via the α-average,
demonstrating that integrating multiple descriptors improves the performance.
As shown in Fig. 5, our method SU-MVSH outperforms GE-MVSH as well as
existing multi-view hashing methods (MVH-CS, MVH-CCA and CHMIS) and
spectral hashing with concatenated descriptors, especially when the code size is
large, since the decorrelation condition is better considered in SU-MVSH, com-
pared to any other methods in comparison. Fig. 6 shows the precision when the
number of top returned images varies from 200 to 600 (or 500 to 3000), for var-
ious code sizes (64, 128, and 256 bits). In most of cases, SU-MVSH shows the
best performance. More experiments can be found in the longer version [26].

5 Conclusions

We have presented sequential updating algorithm for multi-view spectral hashing
(SU-MVSH), where hash functions are sequentially determined by the maximiza-
tion of local variance subject to the decorrelation condition. We incorporated
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multiple visual descriptors into the best average distance matrix determined
by minimizing its α-divergence from view-specific distance matrices. We also
presented a scalable implementation to construct α-average k-NN graph, ex-
ploiting spectral bisection. Numerical experiments validated the usefulness of
the proposed method, compared to the multi-view hashing methods as well as
single-view spectral hashing.
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