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Abstract. For learning problems where human supervision is expens-
ive, active query selection methods are often exploited to maximise the
return of each supervision. Two problems where this has been success-
fully applied are active discovery — where the aim is to discover at least
one instance of each rare class with few supervisions; and active learn-
ing — where the aim is to maximise a classifier’s performance with least
supervision. Recently, there has been interest in optimising these tasks
jointly, i.e., active learning with undiscovered classes, to support efficient
interactive modelling of new domains. Mixtures of active discovery and
learning and other schemes have been exploited, but perform poorly due
to heuristic objectives. In this study, we show with systematic theoretical
analysis how the previously disparate tasks of active discovery and learn-
ing can be cleanly unified into a single problem, and hence are able for
the first time to develop a unified query algorithm to directly optimise
this problem. The result is a model which consistently outperforms pre-
vious attempts at active learning in the presence of undiscovered classes,
with no need to tune parameters for different datasets.

1 Introduction

Many real life learning problems start with relatively little prior knowledge about
a domain, and require both the space of classes in the domain to be discovered
as well as building classifiers to discriminate among said classes. Moreover, it
is often the case that the distribution of class frequencies is highly uneven, and
prior knowledge is limited to the majority background class, while the classes
of most interest for discovery and discrimination are relatively rare. This is the
task of learning to classify in the presence of undiscovered rare classes [1I2].
This problem is common in a wide range of scientific data analysis problems.
For example, in astronomy [3], most sky survey content is well understood and
only 0.001% may represent new phenomena of interest for study. In internet
traffic analysis, the majority of data is due to regular activity, whereas types
of network intrusions represent rare classes of interest [4]. In visual surveillance,
most observed activities are ordinary behaviours, but rarely there may be a dan-
gerous or malicious activity of interest to security services [5]. Finally, in learning
from large scale vision data [6], there is typically a long tailed distribution of
classes (Fig. [dl). In all these cases, labelling sufficient data to cover all classes
and model them well would be prohibitively costly since labelling each instance
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Fig. 1. Large scale visual learning problems such as face [6] and scene [7] recognition
typically contain highly imbalanced class distributions

requires significant time from a human expert. For this reason, there has been
recent interest in exploring a joint active discovery and active learning paradigm.

Active Learning. methods aim to iteratively select instances for human an-
notation such that classifier performance (on a known space of classes) is max-
imised with few supervisions. This is a large field, so we point the reader to the
survey in [8] and only highlight a few relevant studies here. The most common
approaches query instances exhibiting maximum uncertainty [9JI0]. More the-
oretically appealing approaches minimise the generalisation error in expectation
[ITT2/13JT4], or by an upper bound [I5]. Active learning methods, however, are
unsuitable for new domains as they typically require a known space of classes
on which to operate. One potential solution is to first apply active discovery.

Active Discovery. methods aim to find at least one instance of each class in
a dataset with few supervisions. Solutions to this problem have been varied,
but involve very different query criteria to active learning. For example: out-
lier detection, low-likelihood in Gaussian mixtures [3], gradient [16], mean-shift
hierarchical clustering [I7] and nearest neighbour [I8] criteria. This problem is
typically treated in isolation from subsequent classification, and is seriously sub-
optimal if the ultimate aim is to detect or classify the discovered classes.

Active Discovery and Learning. To support interactive modelling of new
domains, recent studies have tried to combine active discovery and learning to
efficiently solve active classifier learning with undiscovered classes. Simple se-
quential or iterative application of separate discovery and learning criteria in
fixed proportion was considered in [4]. However, this uses supervisions ineffi-
ciently, e.g., continually “wasting” discovery queries once all classes have been
discovered. To address this issue, [I] proposes a more flexible approach which
adapts between discovery and learning criteria based on their past success. This
outperforms the non-adaptive approach [4] significantly, but is still heuristic and
relies on careful selection of various free parameters. In contrast to [4] and [T,
which still use independent discovery and query criteria, more recent studies [2]
have made attempts at devising a single simple criterion which queries points
that are likely to either reveal new classes, or to improve classification. This
approach outperforms [I], but limited theoretical justification is provided.

A Unified View. In this paper, we make four key contributions. (i) We show
for the first time how active learning with undiscovered classes can be unified
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into a single problem with clear theoretical motivation. Our approach is based
on the expected utility of a classifier, exploiting a new Dirichlet process mixture
approximation. This allows the potential gain of classifier improvement vs class
discovery to be quantified in the same units, thus enabling direct optimisation
of classifier performance. (ii) We show how various existing models including [2]
are approximations to our full unified model. Similarly to other expected gen-
eralisation error approaches [I2/13], a naive implementation of our framework
is computationally expensive. To overcome this (iii) we show how to perform
efficient incremental computations and approximations, without loosing the gen-
erality of our model or introducing data-dependent parameters. Finally, (iv) we
conduct the largest empirical evaluation of active learning and discovery to date,
including for the first time various large scale vision datasets, and show that our
expected accuracy method significantly outperforms previous approaches.

2 Formulation

We will start with reviewing a general formalisation of the classifier learning task;
then show how this relates various existing active learning criteria and finally
derive query criteria suitable for use in the presence of undiscovered classes.

In classification, the goal is to learn a model pg (y|z), parameterized by 6, which
generalises across a space of input z € X and classes y € ). The performance of
the classifier for each input x is measured by its utility ¢, which is some function
of the true class y and the estimated class distribution at each point, pg(y|z).
The expected generalisation utility of classifier # over the domain is then:

ue) = / S U (), polyl)) plyle)p(z)dz. (1)

Note that equivalent converse formulations involving expected risk or loss are also
common [I2/T38]. In practice, one typically approximates Eq. () by summing
over a labelled training set D; = {(zi, y;) )1V,

~ 1
Up,(0) = > U(yi,polyla:)). (2)
Vier
For both classifier training and active learning, different definitions of utility
induce slightly different objectives. For example, one common definition of utility
[12] is 0/1 accuracy:

1 ify = argmax, pe(y'|x)
Uy, po(ylz)) = {0 otherwise : 3)

where optimising Eq. ([B]) corresponds to maximising the number of correct clas-
sifications in the training set. Alternatively, a common soft measure [I3J14] is the
probability of making the correct prediction U(y;, pe(y|x;)) = pe(yi|z:) where:
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Up, (0) = Z\lll Zpe(yz‘|$z‘)~ (4)
ieL
With this general formulation, we can see classifier learning as choosing the best
parameters 6 = argmaXQZ:lDl (0), possibly with an added regularisation term on
0 to avoid over-fitting, and active learning as choosing the best dataset D, =
argmaxp, maxoUp, ().
Finally, if we are not confident about the true labels (e.g., because of miss-
ing data, or active learning [T2JT3T4]), then as in Eq. (), we can include the
expectation over the true label distribution p(y;|x;), so Eq. {@]) becomes:

o, (0) = o+ 33 pludepoluilr), (5)

YieU i

where U now indexes an unlabelled dataset. Next, we use the above formalisation
to address issues in active learning and discovery.

2.1 Active Learning

In active learning, we have data D = {D;,D,} with both labeled D; =
{(x5,y:)}Y, and unlabelled D, = {z;}Y* subsets indexed by L and U respect-
ively. In first order active learning, we iteratively: (i) select the “best” element i*
of the unlabelled set U for labelling; (ii) remove z;« from D,, and add (z;«, y:+)
to D; and (iii) update classifier parameters 6 based on D;. A principled objective
for active querying is to pick at each iteration the element which maximises ex-
pected utility, i* = argmaXiZ:l pi (), where D denotes the dataset with i labeled
D' = {D; U (x;,v:), Du\(2;)}. To predict the utility of observing each i in ad-
vance, we take expectation over its true label y;:

Upi(0) = p(yilzi)Up, (as.y:).Du\a: (0) (6)

Yi

where Up, p,(#) indicates the expected utility based on both the available
labeled D; and unlabelled data D,,. If we use the probabilistic utility functions
of Egs. @) and (@) for labeled and unlabelled data respectively, then we obtain
the complete expression for the expected utility of querying point ¢:

i (0) = S plules) g (32 posslusles) + 3 S plugles o, (uile) |0

jELUI JEUNi vj

The term 6, ; reflects the updated classifier parameters after adding i to the train-
ing set with its putative label y;. Note that we do not know the true distribution
of the queried point p(y;|x;), or the unlabelled data (p(y;|x;) in Eq. (@) above).
We approximate these with the current classifier distribution p(y|z) ~ pg(y|z)
[12/1314]. The total dataset size is N = N; + N,,.
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Explanation of Existing Criteria. The formulation of Eq. (@) is similar to
to [I3U14] except that we do not constrain ourselves to binary classification. Our
approach is also a generalisation of [I2] in that we use probabilistic accuracy for
utility and evaluate the expectation on all the data instead of only unlabelled
data. To understand this, note that if we approximate the utility Eq. () on
only the unlabelled set, and use the 0/1-accuracy Eq. (@), or the log-loss utility
function, we obtain criteria Egs. (8) and (@) respectively as defined in [12]:

09 0) o S poluike) S max o, (4 12), ®)
Yi jeU Y

UBE0) o< Y po(wilzi) > poy.(ysle;) log pa, , (y;la;). 9)
Yi Jjeu

If we further assume that the classifier is not updated, so 61; ~ @, then optimising
utility gain Up:(0) — Up(0) for i reduces Egs. ) and (@) to the most two
commonly used [8] variants of uncertainty sampling: minimum certainty Eq.
([T |10] and maximum entropy Eq. () [8]:

15y = argmin,pg (4|, ), (10)

iy = argmax; — Y _ po(yi|z:) log pe (yilz:). (11)
Yi
This analysis reveals that commonly used heuristic uncertainty sampling criteria
can be seen as weak approximations to expected utility sampling.

2.2 Active Learning and Discovery

The focus of this paper is unifying active learning and discovery. We wish to
actively select a dataset from which we can learn to classify a space X :— )Y
where the set of classes ) is not known in advance. However, Egs. () and () for
expected accuracy based querying no longer apply: due to the sum over unknown
y € V; and importantly because approximating the true class distributions with
the current classifier p(y|x) &~ pp(y|z) would now be senseless as the classifier
distribution pg(y|x) has a support of known classes L while the true distribution
p(y|x) may focus on an unseen class.

Our key idea is to model the true distribution under the Dirichlet process
(DP) assumption [19120] to account for unseen classes. In particular, we use the
DP marginal over partitions — the Chinese Restaurant Process (CRP) — as a
prior on the true class distribution:

n¥ /(k—1+a) knowny

af(k—14a) novel y (12)

P(Yklyr:—1) = {

where « is the DP concentration parameter and n¥ is the number of instances
of class yy, seen so far. Compared to the general case of learning an unsupervised
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DP mixture [20], our situation is simpler as we are independently predicting the
label posterior of each point i solely based on D;, the labelled data so far. We
model the “true” and classifier distributions as Eqs. (I3) and (I4)):

po(x|ly)n?Y known

PE” (yl2) o<{ o(aly) v, (13)
po(z)a novel y

po(ylz) o< po(z[y)n?, (14)

where the individual class conditional likelihoods pg(x|y) are learned from Dy,
and pg(z) is the unconditional density of the entire dataset. Using Egs. (Bl and
([I3)-([@4), we can now generalise the criterion Eq. (7)) to active learning with
undiscovered classes:

Z;{E;A(e) ~ ZpgDP(yi‘Z‘Z‘)Z)gé(%,yi),U\xi (0) (15)
Yi
1
= Zpéjp(ydxz')N > poile) + D0 D el (wslai)pe.. (vilz))
i jeLui JEU\i vj

(16)

The classifier distribution pg(y|z) ranges over seen classes; but the approximate
true class distribution p}? (y;|z;) also accounts for unknown classes. There are
therefore two ways for expected accuracy to be penalised — either if a point j is
uncertain as before, or if it is likely to represent a new class. In principle, the two
sums over y in Eq. (I6) cover the full (unknown) set of classes Y. However, since
only matches to known classes can have a positive contribution to the utility,
the range of these is tractable.

The first sum over the putative labelling y; of point i is over all classes so
far in L plus a new class. In the new class case, the retrained classifier pg;
includes one more slot. The second sum over labels y; of unknown points j is
over all classes in L U ¢, plus another new class. Importantly, this means that
hypothesising a new class for point ¢ can potentially “explain away” any nearby
unlabelled js which would otherwise have have low expected accuracy. We name
this criterion Dirichlet Process Expected Accuracy (DPEA).

Explanation of pWrong. We investigate the connection of our DPEA criterion
to the most effective learning and discovery criterion in the literature, “pWrong”
[2]. The pWrong criterion queries the point most likely to be wrong, where a DP
posterior is used to model the possibility of (automatically) being wrong due to
a given point belonging to an unseen class:

p(yi is wronglz;) = 1 — pg' " (i),
§; = argmaxpg (yi| ;). (17)
€L
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(a) Min. Cert. (b) Gen. Error (c) pWrong (d) DPEA

Fig. 2. Illustrative examples of criteria preference for (a) and (b) active learning and (c)
and (d) active learning with undiscovered classes. Circles indicate observed points, other
symbols indicate classes. Background and symbol shading indicate criteria preferences.
Green points are queried. Best viewed in color.

In fact, pWrong approximates our DPEA criterion (Eq. (If)) in an analogous
way to the minimum certainty (Eq. (I0)) criterion’s approximation to the more
general expected utility (Eq. (@), Section 2I). Specifically, if we maximise ex-
pected utility gain of querying ¢ with DPEA (Eq. (I3])), but under the simpler
assumptions of: 0/1 accuracy utility measure (Eq. [@])); evaluating only unseen
data; and without classifier updates 6 =~ 6, ;, then we have:

Uy —up o [ S i (yilw)6(y, argmax,pe yi(y'|x5))
JEUNI Y5

= D2 8" (yylay)6(y, avgmax, pa(y'|2;)) |

JjeU vj

== pp P (yilai)d(y, argmax,py (y'|x;)). (18)
Yi

Choosing i* to maximise Eq. (I8)) is the same as choosing it to maximise Eq.
([I@). Therefore pWrong [2] is a rough approximation to our DPEA criterion.
Moreover, it can be seen as the discovery and learning problem analogue of the
popular minimum certainty criterion for vanilla active learning (Eq. (I0), [10]).

Illustrative Example. Let us first provide some insight into the criteria dis-
cussed by way of synthetic examples. Figs. 2 (a) and (b) contrast minimum
certainty and generalisation error active learning (Section 1) for a simple but
non-separable dataset of two classes (crosses and diamonds). One point from
each class is initially labeled (overlaid circles). The lightness of the background
(and red-blue shading of the data points) indicate the preference of each cri-
terion, and the starred point indicates the selected point. Minimum certainty
(Fig. 2l(a)) depends only on the two labeled points and simply prefers points at
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the current decision boundary. Generalisation error (Fig. 2I(d)) makes a more
holistic assessment based on the full pool of data where, in noticeable contrast
to minimum certainty, it avoids the overlapped decision boundary region (for
which any label outcome is of limited use), and instead focuses on the outer
region where a label could usefully disambiguate numerous points.

Figs. 2lc) and (d) contrast pWrong and DPEA discovery and learning criteria
for a simple dataset with a large majority class (crosses) and four smaller minority
classes (other symbols). A number of majority class points and one minority class
point are labeled (circles). In this example pWrong (Fig. 2(c)) focuses primarily
(bright background, bright red symbols) on the decision boundary between the
existing labeled classes: again a very myopic preference literally about which clas-
sification is likely to be wrong. Obtaining labels in regions of high overlap may not
be the most efficient way to improve performance. At the same time, the bright
corners illustrate the tendency of pWrong to blindly query outliers (since anything
with low conditional density is likely wrong). In contrast, DPEA (Fig. 2ld)) ig-
nores (for now) the decision boundary between the known classes in favour of the
undiscovered regions: because obtaining a label here would disambiguate more
points and increase expected accuracy more quickly.

2.3 Implementation Details

Various density models could be used for the class conditional likelihoods pg(z|y)
in our framework. A clean approach would be to use nested DP mixtures, where
each likelihood is itself modelled as an (unsupervised) Dirichlet process mixture;
however this would be prohibitively expensive. For computational efficiency, and
for clearer comparison to prior work, we therefore model the class likelihoods
using a mixture of Gaussians learned by the constant time incremental approx-
imation described in [21] and used for active learning and discovery in [2/T].
Naively, the computational complexity of the DPEA criterion is
O (N2C?KD?) where N is the pool size, C' is the number of classes, K is the
number of Gaussians in the likelihood mixture and D is the dimension of the
data. However, the GMM framework used permits a number of incremental
computations: the kernel distance matrix only needs to be rebuilt for definite
additions rather than putative additions (I6]); by caching the likelihood of the
pool for each class, the data likelihood only needs to be evaluated under the
hypothesised class; by caching the response of the data to each Gaussian com-
ponent, re-evaluation is only needed against a single kernel rather than the whole
mixture after each update; and the Cholskey decomposition of each component’s
covariance can be cached and only recomputed after an update. This results in
complexity O (N 20(C+D*+ K )) Finally, for the largest datasets, we use the
(similarly optimised) O (N(C + D? 4+ K)) pWrong to filter a subset of P points
to be considered by the full algorithm at each iterationl, and we only con-
sider the top @ most likely hypothetical class labels in approximating the outer
sum in (IG). The final result is therefore also complexity O (N(C + D? + K)).

! Since pWrong is an approximation to DPEA.
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Algorithm 1. Active learning with undiscovered classes
Input: Initial labeled L and unlabeled U samples.

1. Build unconditional GMM p(x) from L UU
2. Estimate o by LOO cross-validation on pg(x)

Repeat as training budget allows:

1. Train classifier pg(y|z) on L
2. For each point ¢ € U ([I6)
(a) Infer class posterior p& ¥ (y:|z:)
(b) For each potential class y;
i. Update classifier 6 with (z;, y;)
ii. Evaluate expected accuracy with 0, 4,
(c) Compute overall expected accuracy Up: (6)

3. Query i* = argmax,Up: (0)

Algorithm [0 summarises the procedural steps required to realise our DPEA
framework.

The only parameter in our learning and discovery model is the DP concentra-
tion «, which reflects prior belief about the concentration of classes. We learn «
at each iteration with the method [22]. We learn the GMM likelihood’s prior scale
parameter o using leave-one-out cross-validation on the full unlabelled training
dataset (as in [2II21T]) prior to estimating the unconditional density p(X). To
constrain the computation, we set a GMM component cap of K = 32 [2].

3 Experiments

In this section we compare the performance of our criterion DPEA to a variety of
alternatives. We followed [2/I] in experimental procedure: Evaluation was based
on the average classification accuracy per class (ensuring the accuracy at clas-
sifying each rare class is weighted equally with the majority class) summarised
over the area under the learning curve (AUC). Each dataset was evaluated by
two-fold cross-validation — training on one fold starting from a single labeled
example of the majority class and proceeding for 150 active learning iterations,
while testing on the held-out fold. This procedure was repeated 25 times and
the results averaged. We evaluated 15 public datasets. Eleven were UCI data-
sets chosen for containing naturally unbalanced class proportions. Three were
vision datasets (digits, gait and letters) previously subsampled to contain geo-
metric class proportions [2[T]. Finally, we studied two large scale vision datasets
with naturally unbalanced proportions: Yahoo faces in the news [0], from which
we pruned persons with less than 10 faces each and reduced the dimension of
the provided features to 32 using PCA, and SUN scene recognition [7]. The
largest datasets involve an order of magnitude more classes than previous active
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Table 1. Dataset properties. (N) number of instances. (d) dimension of data. (N.)
number of classes. (S%/L%) proportions of smallest and largest classes.

Dataset N d N.S% L% Dataset N d N. S% L%
Glass 214 10 6 4 36 Winequality 4893 11 6 .37 45
Ecoli 336 7 8 1.5 42 Letters 9276 16 26 .3 14
Yeast 1484 8 10 .27 31 Shuttle 20000 9 7 .01 78

Segment 635 18 7 1 48 KDD99 33650 23 15 .04 51

Pageblocks 5473 10 5 .5 90 CASIA Gait 2353 25 9 3 49
Covertype 5000 10 7 3.6 25 MNIST digits 13000 25 10 .1 50
Thyroid 720021 3 2.5 92 Faces [6] 10390 32 330 0.04 11
SUN Scene [7] 108754 32 397 .1 2

discovery papers have considered [2JT/I7I3IT6], and we evaluated 1000 iterations.
The properties of each dataset are detailed in Table [l

For comparison, we consider the two previously best performing active discov-
ery and learning models, Adapt [1I23] and pWrong [2]. We also include two new
alternatives composed by running one of two state of the art active discovery
models, NNDM [16] and RADAR [I8], for 1/3 of the query budget, followed by
minimum certainty (Eq (I0)) querying for the remaining 2/3s.

3.1 Results

The classification AUC for all 15 datasets are reported in Table[2] along with the
average over all datasets and the number of wins by each model. Our criterion,
DPEA (I8l scored the highest average and the most wins by a large margin,
followed by pWrong [2] and the others. Note that the models in [I] and [2] have
already been shown to decisively improve on random sampling and iterating
discovery and learning criteria [3].

The absolute difference in the mean performance of DPEA and the altern-
atives is 4-11% (Table [2 average). However, these figures miss some important
points: DPEA often performs similarly to pWrong, but it is rarely notably worse
(max 1%) and often significantly better. To illustrate this, Fig. B(a) plots the
change in performance of DPEA relative to the alternatives as a percentage.
Clearly, while performance is similar in many cases, it is frequently significantly
better, (e.g., 43% improvement on pWrong for Gait, 82% improvement on Ad-
aptive for Digits, 300% improvement vs RADAR on KDD, 90% improvement vs
NNDM on KDD). The mean improvement on the alternatives is 8%, 16%, 18%
and 44%. The improvement relative to pWrong can be understood because (as
discussed in Section 2:2)) by making very local decisions about individual points’
uncertainty, pWrong risks focusing on “impossible” points in overlapped regions
of space. DPEA in contrast, has greater robustness to such situations by consid-
ering the impact that labelling each point would have on the classification of the
other points and hence is better at querying points which will have actual im-
pact on performance. This difference in robustness explains the significant lead
in number of wins by DPEA, made up of similar performance in some datasets,
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Table 2. Area under classification curve for our model vs [I], [2], [16], [I8]

Classify Adapt[T] NNDM[16] RADAR[I8] pWrong[2] DPEA

Glass 65 66 65 71 70
Ecoli 61 62 63 59 59
Yeast 42 41 35 45 46
Segment 67 74 62 74 74
P. blocks 59 53 58 60 63
C. type 46 48 44 46 51
Thyroid 59 44 40 54 56
Wine 23 24 22 23 24
Letters 28 24 23 38 37
Shuttle 42 36 47 43 48
KDD99 58 38 17 63 74
Gait 57 61 43 42 60
Digits 28 44 36 49 51
Faces - 13 9 12 14
Scene - 1.2 1.2 1.3 1.4
Average 42 42 38 45 49
Wins 1 1 1 2 10

and significant improvement in other datasets. We note also that an even greater
improvement is made over Adapt [I|, despite the more powerful discriminative
SVM classifier available to the latter. Moreover, one further issue with strategies
based on SVMs is that their typical O(C?) training complexity renders them
slow for large multi-class datasets [6/7] compared to the other O(1) generative
models tested. Indeed [I] could not complete the full faces dataset due to the
libsvm component failing with hundreds of classes. Our matlab implementation
of DPEA proceeded at about 1sec per iteration for most of the datasets.

DPEA % Improvement on Alternatives

vs Adapt Class Discovery Classification
vs NNDM 1 =

P T 0.7

601 \" 1 vs RADAR
g = = =vs pWrong

~

% Change

—— DPEA
= = =pWrong
Adapt
NNDM
' RADAR

Average Accuracy
o o o o o
W

o o

o

0.2
10 15 0 50 100 150 0 50 100 150
Sorted Dataset Index Labeled Points Labeled Points

(a) DPEA Performance (b) Learning Example

Fig. 3. (a) Percentage improvement of AUC for DPEA over prior models [TI2JT6I/I8].
(b) Ilustrative learning and discovery curves.
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Table 3. Area under discovery curve for our model vs [IJ, [2], [16], [18]
Discover Adapt[I] NNDM[I6] RADARJI8| pWrong|2] DPEA

Glass 95 95 94 96 95
Ecoli 91 86 86 93 93
Yeast 88 86 82 92 91
Segment 94 93 92 96 93
P. blocks 95 94 97 99 96
C. type 93 95 95 93 96
Thyroid 93 91 95 96 93
Wine 93 80 84 94 93
Letters 70 66 71 85 74
Shuttle 90 74 85 87 74
KDD99 78 65 60 83 86
Gait 94 95 95 89 96
Digits 48 85 76 79 78
Faces - 53 59 58 58
Scene - 54 56 49 50
Average 86 81 82 86 84
Wins 1 1 2 7 4

As an illustrative example, Fig. Bl(b) shows the full learning curve for a vis-
ion dataset (covertype). Here all the methods are competitive at discovery, and
NNDM is initially best at classification, however all the more myopic criteria
are eventually outperformed by our DPEA. To provide additional insight, we
also present the area under the discovery curve (how quickly all classes are dis-
covered) in Table[Bl We reiterate that the objective is actively learning to classify
in the presence of unknown classes, not simply discovery per se. Interestingly,
pWrong is the best at discovery despite being weaker at classification, while
DPEA is weaker at discovery despite being best at classification. This highlights
the important point that there are multiple ways to improve performance in the
active learning with undiscovered classes context: by discovering new classes, or
learning to classify existing classes better. Adapt [1] addresses this with expli-
cit heuristics to balance these two sub-goals. pWrong aims to provide a single
objective, but its myopic outlier-preferring approach (Sec. [Z2]) is biased sub-
optimally in favour of discovery given its good performance there but poorer
overall performance (Table [2]). The bigger picture view of DPEA explains why
it can under-perform at the discovery subtask, while still performing best in
the overall classification task. NNDM and RADAR are sometimes worse and
sometimes better at discovery (e.g., letters vs digits). This illustrates the serious
issue with heuristic sequential combinations, i.e., knowing when to terminate
the discovery phase and start the learning phase, and hence the value in direct
optimisation of our unified parameter-free criterion.
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4 Conclusion

Summary In this study we proposed the first unified framework for the problem
of active learning in the presence of undiscovered classes by querying points which
maximise the expected probabilistic accuracy of a classifier — where the true av-
eraging distribution is estimated based on a Dirichlet Process mixture. This is
in contrast to most previous work which has focused on heuristic combinations
of active discovery and active learning criteria. In the process we show explicitly,
and to our knowledge for the first time, how various popular active learning
criteria such as maximum entropy and minimum certainty are special cases of
— or approximations to — a more general expected utility criterion. Notably, the
best previous attempt at active learning and discovery, pWrong [2], turns out to
be an approximation to our full framework. We also detailed the exploitation of
incremental computation required to speed up our DPEA criterion to the same
computational complexity as pWrong, albeit with larger constant. Finally, we
performed the largest empirical evaluation of active learning with undiscovered
classes to date. The value of our unified model is shown by consistently and
often significantly outperforming alternatives with sub-optimal heuristic object-
ives and free parameters. DPEA is therefore of significant value for interactive
modelling of new domains where supervision is expensive.

Future Work. Although DPEA often significantly outperforms pWrong, either
can be recommended for the discovery and learning task depending on the rel-
ative expense of computer time and supervision in a given application. It may
also be possible to develop models sensitive to both annotation and processing
costs [24] which can automatically determine the ideal criterion to use. Another
interesting question is customising the objective function to the goal of the task.
Here we optimised overall expected accuracy (Eq. ({)), but any potential object-
ive of interest could potentially be optimised (e.g., average accuracy per class,
precision, recall, f-measure). A related unaddressed but important question is
the significance of the common practice of optimising a particular (e.g., discrim-
inative) query criterion, while the underlying models are trained with a different
(e.g., generative maximum likelihood) criterion as in [I2/10]. Better results may
be obtained if the query criteria and underlying models can be aligned such that
they are optimised with the same objective. A final avenue for future work is
generalising our unified perspective to stream based discovery and learning [25].
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