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Abstract. The majority of current methods in object classification use
the one-against-rest training scheme. We argue that when applied to a
large number of classes, this strategy is problematic: as the number of
classes increases, the negative class becomes a very large and complicated
collection of images. The resulting classification problem then becomes
extremely unbalanced, and kernel SVM classifiers trained on such sets
require long training time and are slow in prediction. To address these
problems, we propose to consider the negative class as a background and
characterize it by a prior distribution. Further, we propose to construct
”hybrid” classifiers, which are trained to separate this distribution from
the samples of the positive class. A typical classifier first projects (by
a function which may be non-linear) the inputs to a one-dimensional
space, and then thresholds this projection. Theoretical results and em-
pirical evaluation suggest that, after projection, the background has a
relatively simple distribution, which is much easier to parameterize and
work with. Our results show that hybrid classifiers offer an advantage
over SVM classifiers, both in performance and complexity, especially
when the negative (background) class is large.

1 Introduction

One of the central problems in computer vision is recognizing objects in realistic
scenes. We deal with the classification problem, defined as predicting whether
at least one object of a given class is present in an image. The basic recipe for
this kind of problems has been 1) constructing a Bag of Visual Words or spa-
tial pyramids [1] of multiple features, 2) vector quantization, 3) training SVM
classifiers with histogram intersection[1], Fisher [3,4] or other kernels, and 4)
integrating classifiers using voting or MKL [5]. Recent work focused on devising
new and better features and kernels (e.g. [6]), various coding strategies (e.g. [7]),
etc. Most of these methods adopt a one-against-rest strategy for training SVM
classifiers, in which the positive class is composed of samples from a single class
and the negative class comprises samples from all remaining classes. When the
number of classes is relatively small, the one-against-rest training scheme was
shown to be as good as multi-class classifiers [8]. However, in real problems, the
negative class – the background – is much richer and includes all (up to tens of
thousands) object categories (all except the positive class). When the number of
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classes is large, the one-against-all scheme faces two major problems: extremely
unbalanced training sets, and high computational complexity [4].

Unbalanced Sets. It is a common observation that when trained on unbalanced
sets, the class-boundary learned by SVMs can be severely skewed towards the
smaller class and it becomes very sensitive to noise [9]. Several approaches have
been proposed to solve this problem (a review of previous work is provided in
[9,10]), including setting different penalties for misclassifying the positive class
relative to the negative one, various weighting techniques, undersampling the
majority class or oversampling the minority class, adjusting the class boundary
based on the spatial distribution of the support vectors, and various combina-
tions of the above. All these methods, however, do not consider the complexity
problem. Thus using weighted SVM or any other of these methods as a one-
against-rest classifier for a large data set is impossible, especially when a kernel
classifier is applied, since the number of support vectors increases linearly with
the number of training examples [11]).

High Computational Complexity. Kernel SVM was shown to be the most
successful among one-against-rest classifiers for object recognition tasks ([2,1,12]).
However, it cannot be used in large-scale problems, because its training is slow
and requires a large memory. Further, its prediction rule is too expensive when
the number of support vectors is large. To address the complexity problem of
kernel SVM, several methods have been proposed which can be divided into
three groups: 1) post-processing methods that replace the set of support vector
(SV) with an approximate sparser set (this requires to compute the original SV’s
first and thus it is not suitable for our problem), 2) methods that a-priori select
a set of basis vectors from the training set in order to approximate the kernel
matrix, 3) methods that choose vectors that are efficient for classification, and
approximate the kernel matrix (see [13,14] for a more detailed discussion). The
empirical evaluation of these methods [14] shows that all of them trade accuracy
for complexity. Although recent methods [14] come very close to the accuracy of
the exact SVM, they have only been applied to balanced problems.

In order to design a tractable nonlinear classifier for the large-scale categoriza-
tion problem, a special form of kernel, such as additive kernels [3] or an explicit
mapping [4] have been used. However, no efficient solution exists for the general
kernel formulation.

To summarize, there are solutions for unbalanced sets but these are computa-
tionally inefficient, and there are also solutions that approximate the kernel clas-
sifier efficiently, but these are not designed for unbalanced sets. Further, adding
a new category requires retraining all the one-against-rest classifiers, making the
approach even more problematic.

In visual classification problem, the negative class approaches the complement
of the positive class and thus it can be viewed as a general “background class”. In
this work we propose classifiers that are specifically designed to separate a class
from a rich background. By “background”wemean all images except the category
to be recognized. Learning this background from samples is highly problematic.We
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suggest replacing the background samples by a distribution. The idea is straightfor-
ward – instead of minimizing the number of background samples in the classifier’s
acceptance region, we minimize the overall probability volume of the background
prior in the acceptance region. This formulation eliminates the problem of unbal-
anced training set (since there are no negative samples) and the high complexity
due to the large number of “negative” support vectors. From now on we shall refer
to this type of classifiers as hybrid. The notion of hybrid classifier we use here char-
acterizes the mixed input to the training phase: samples from the positive class vs.
probability distribution on the background.

The idea of a hybrid classifier was first introduced in [15], but the solution
proposed there was restricted to grey-level images and applied a very simple
prior, which is not robust to illumination variation and image deformations.
Further, only a linear classifier was presented. Here we extend the basic paradigm
to realistic scenes and propose the following contributions:
1. Although modeling the background accurately is difficult, we observe that
in classification tasks typically one seeks to separate the values of the two cat-
egories (or in this case, a single category and the background) after they were
projected (either linearly, as in linear SVM, or by a more complicated function,
e.g. a kernel) into the real line. We show that the projection of a complicated
background can be well-approximated by a simple distribution (e.g., Gaussian).
Thus, we suggest that as the number of image categories in the background class
increases, the method described here will become even more suitable.
2. We built priors for robust features, such as Bag of Words constructed from
densely sampled SIFT features [16,17]. The prior assumed in [15] was based on
the observation that typical images are “smooth”, that is, most of their energy
is concentrated in the low frequencies. Although BoW features obviously do not
posses this property, we show that they can be successfully used with the hybrid
classifiers, suggesting that the basic paradigm is very general and can be applied
to other features and domains.
3. We developed a kernel hybrid classifier that can be used with a kernel of
general form, and is much more efficient than kernel SVM in both training and
classification, while it enjoys an even better classification accuracy.

1.1 Modeling the Background Distribution

Compared to a single object class, the background distribution is so wide that
it can be assumed to be approximately equal to the distribution of all natural
images, hence we can use this distribution to model the background class (this
model will therefore be applicable to all single classes one wishes to detect, thus
drastically reducing training complexity). Modeling the distribution of natural
images is, however, a challenging task. A number of energy-based models have
been proposed to learn this distribution from examples (e.g. [18,19,20,21]). These
models attempt to find a set of linear filters in order to decompose the image into
channels, as well as the corresponding energy functions. Training most of these
models is very long, which is not a burden if it’s computed once and then used
for an application that employs a fixed prior. We are interested in determining
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Fig. 1. Examples of 1D random projections of the background class. The two his-
tograms on the left correspond to grey-level with 8× 8 filter size (similarly to previous
work on image statistics). The projections are clearly non-Gaussian. The other two his-
tograms correspond to BoW of SIFT features (shown in blue solid line). The projections
are very close to Gaussians (dashed red line).

a suitable prior on natural images and applying it to classification. In light of
this we need to evaluate, during training, the probability of background images
to be accepted by the classifier; this probability reflects the percentage of false
positives, which the classifier seeks to minimize. Such an evaluation is performed
for each choice of parameters for the candidate classifier.

Since the final step in classification consists of thresholding a scalar-valued
function, we are interested in modeling the projections or outputs of scalar-
valued functions applied on the space of natural images. Modeling projections
of natural images has also been studied in low-level vision. The most striking
difference between the functions applied to features commonly used in object
recognition and the linear filters applied to grey-levels in low-level vision [18]
is the form of the distribution they produce. Applying linear filters, such as
derivative-like filters, wavelets etc. to natural images, represented by grey-levels,
produces outputs whose distribution is highly non-Gaussian – it is peaked at zero
and has heavy tails [21] (Figure 1). We are interested in non-linear functions of
grey-levels, such as Bag of Words [17], constructed from SIFT features [16]. Our
experiments suggest that projections of these representations are Gaussian-like
(Figure 1). As elaborated in Section 2, this allows to efficiently approximate the
distribution of the projections of the background class.

2 Hybrid Classifier

We propose to incorporate the background prior in a hybrid classifier f(x),
which is trained to attain positive scores on the samples of the target class and
for which

∫

H

Pr(z)dz is very small; z belongs to the background distribution and

H is the acceptance region of f(x) (i.e. all x for which f(x) ≥ 0). Thus the
standard constraints of excluding background samples are replaced by a single
constraint of excluding a large volume of background probability.

2.1 Linear Classifier

We search for a separating hyperplane (w, b) which yields a maximum margin
between itself and the positive samples, under the constraint that the integral
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Fig. 2. Relation between the percentage of
natural images in the positive half-space and
the Gaussian approximation in Eq.1 tested on
Caltech-256 and Scenes-15 data sets. The plot
is zoomed on the [0, 0.3] interval of the prob-
ability which is more relevant to the proposed
formulation.
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Fig. 3. Histograms of values of his-
togram intersection (top left), χ2

(top right), and SPM (bottom)
kernels with randomly selected pa-
rameters, applied to many back-
ground samples represented by a
BoW of SIFT features. The top
row corresponds to the Caltech-
256, the bottom to Scenes-15.

of the probability density of the background (natural images) in its acceptance
region H = {x|w · x ≥ b} is small. We bound the probability of natural im-
ages to fall in the acceptance region: Pr(w · x ≥ b) < δ, where the constant
δ is close to zero. Diaconis and Freedman [22] showed that under certain inde-
pendence conditions, low-dimensional projections of high-dimensional data are
typically close to Gaussian. We empirically demonstrate that this proposition
holds for one-dimensional random projections applied to two large sets of im-
ages: Caltech-256 [23] and Scenes-15 [1]. We used all 30,607 images of 256 cat-
egories from Caltech-256 and 3,000 images of 15 scenes from Scene-15. Images
in Caltech-256 are quite diverse and objects appear in various scales and orien-
tations; images of scenes contain many objects. Thus these sets can serve as an
approximation to the set of natural images. We used the BoW representation
provided in [5]1 for Caltech-256 and 3-level pyramids of BoW [1] for Scenes-15.
We tested hundreds of random projections for both sets, and all of them are
well-approximated by one-dimensional Gaussians (Figure 1, the two histograms
on the right). The first two images in Table 1 show that the distribution of the
projections which correspond to the learned classifiers is quite similar to the dis-
tribution of random projections, which supports the Gaussian assumption. Our
experiments show that the Gaussian approximation of the projections bounds
the background probability in the acceptance region of the learned classifiers in
all our tests (see Section 3).

In order to obtain a closed-form, general expression for the distribution of
the projections, we first estimate the mean and covariance matrix of the high-
dimensional distribution, denoted x̄ and Σx respectively. Then, the projection is
a random variable with mean wT x̄ and variancewTΣxw. Following the previous

1 http://www.vision.ee.ethz.ch/~pgehler/projects/iccv09/index.html

http://www.vision.ee.ethz.ch/~pgehler/projects/iccv09/index.html
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discussion, we approximate this variable by a Gaussian, thus the probability of
a background image to be accepted by the classifier is

Pr(w · x ≥ b) =
1

2

[

1− erf

(
1√
2

b−wT x̄
√
wTΣxw

)]

(1)

For the approximation to be valid, the real (empirical) probability of a back-
ground image to lie in a certain half-space should be close to the one derived
from the prior (or the “theoretical probability”). The empirical probability can
be estimated by testing many randomly chosen background images, while the
theoretical probability can be computed (as in Eq. 1). We tested the similarity
between the two probabilities on Caltech-256 and Scenes-15 using the image rep-
resentations, described above; results are presented in Figure 2. We used disjoint
sets: one to estimate the mean and the covariance of x and the other to estimate
the probability that a natural image falls in the “positive” half-space. We ran-
domly chose w, constraining its norm to be 1, and a value for b in the range [-0.5,
0,5]. For each choice of (w, b) we computed the expression in Eq. 1 and used it
as the x-coordinate of a point in the scatter plot in Figure 2. The y-coordinate
represents the empirical probability, and it is computed as the actual percentage
of the images that fall in the positive half-space. The scatter plot supports the
validity of the proposed approximation. A similar relation has been shown in
[15] for the class of natural images represented in the frequency domain. This
suggests that such relations hold for different features and different data sets.

Based on the above observations, the constraint on the probability of back-
ground misclassification is given by:

Pr(w · x ≥ b) =
1

2

[

1− erf

(
1√
2

b−wT x̄
√
wTΣxw

)]

≤ δ (2)

Since we seek to minimize Pr(w · x ≥ b), we assume that δ < 1/2, and thus
γ �

√
2erf−1(1− 2δ) > 0. By formulating the constraint in Eq. 2 in terms of γ,

and rearranging, we obtain a convex constraint:

γ
√
wTΣxw+wT x̄− b ≤ 0 (3)

A more general argument, which does not require the Gaussian approximation
assumption, can be applied to justify the constraint in Eq. 3. To show this we
apply a result from [24], which states that for a half space S = {w · y ≥ b}, and
all distributions y with expectation ȳ and covariance matrix Σy:

sup
y∼(ȳ,Σy)

Pr(w · y ≥ b) =
1

1 + d2
, d2 =

b−wtȳ

wtΣyw
(4)

Now, instead of constraining the probability, we constrain its supremum over all
distributions for x having mean x̄ and covariance Σx. Using Eq. 4 we obtain:

√
1− δ

δ

√
wTΣxw +wT x̄− b ≤ 0 (5)

which turns out to be the same as Eq. 3 with γ =
√

1−δ
δ .
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Using the above considerations, we define the linear hybrid classifier as the
solution to the following optimization problem: Given a set {xj}nj=1 of positive

examples: minimize ‖w‖2, subject to w ·xj−b ≥ 1 (j = 1, .., n) and the probabil-
ity constraint in Eq. 3. This formulation resembles the usual SVM algorithm but
with the many constraints on the negative examples replaced by one constraint
on the probability. Note that the background slackness is controlled by the pa-
rameter δ. Adding slacks to positive samples could be done similar to SVM, but
for a small number of positive examples it has no effect.

2.2 Kernel Classifier

We use a standard kernel decision function:

f(x) = sign(

l∑

i=1

αiK(si,x)− b)

where αi, si, and b are the model parameters. The si’s are chosen from a set of
unlabeled training examples, as described later.

To compute the probability

Pr(
l∑

i=1

αiK(si,x) ≥ b)

on the background class, we define a random variable in the kernel space z =
[z1, .., zl]

t, where zi � K(si,x) (i = 1, .., l), (x is a random variable in the input
space, representing the background). Then, we write the probability constraint as

Pr(

l∑

i=1

αizi ≥ b) ≤ δ (6)

This constraint has the same form as in our linear classifier. Similarly, we can
apply the Gaussian approximation and obtain the same expression as in Eq. 3,
with the only difference that x is replaced by z, which is obtained by applying
a non-linear function K(si,x). Thus the constraint is

γ
√
αtΣzα+ αtμz − b ≤ 0 (7)

where μz is the mean and Σz the covariance matrix of z.
Next, we check the validity of the proposed approximation for several kernels,

used in object recognition, namely, the histogram intersection, χ2, and Spatial
Pyramid Match (SPM) [1] kernels. Figure 3 shows examples of outputs of these
kernels. To create random projections in kernel space we randomly chose 1000
samples as si, i = 1...1000, and 1000 scalars as αi, i = 1...1000, and evaluated,
using a large collection of images x, the value of

∑
αiK(si,x) (where K() are the

above-mentioned kernels). Table 1 (images 3-6) depicts examples of projections
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on learned classifiers. These distributions do not differ much from the random
projections, which supports the Gaussian assumption.

The result from [24] can be applied to the kernel classifier too (here we consider
the supremum over all distributions for z having mean μz and covariance Σz)
and leads to the following constraint:

√
1− δ

δ

√
αtΣzα+ αtμz − b ≤ 0 (8)

which is essentially the same as Eq. 7.
We formulate the following convex optimization problem to learn the hybrid

kernel classifiers. Given a set {xj}nj=1 of positive examples:

min
α

l∑

i=1

l∑

j=1

αiαjK(si, sj) (9)

subject to
l∑

i=1

αiK(si,xj)− b ≥ 1 ∀j = 1, .., n

γ
√
αtΣzα+ αtμz − b ≤ 0

Here we use a standard kernel regularizer as an objective function (Eq. 9).
We now return to the question of choosing the si’s which define the classifier

f(x) =
∑

i αiK(si, x). The basic idea is to find a family {si} such that the
span of K(si, x) approximates all the functions K(s, x), where s ranges over
the sample space. A similar approximation problem has been addressed in [25]:
find a subset of indexes I = {i1, .., im} ⊂ [t] (where t is the size of the full
kernel matrix K) such that K̃i =

∑m
j=1 KijTji, where Ki are the columns of

the kernel matrix, T is an m× t matrix containing the expansion coefficients for
an approximation of the columns of K and Tiij = δij . I and T are chosen to

minimize the Frobenius norm ‖K̃ − K‖Frob. A greedy, probabilistic algorithm
from [25] chooses I in O(mt) time complexity per index. Here we define K to be
the kernel matrix of the unlabeled training samples and si = K̃i; then we apply
the algorithm from [25] for finding K̃i.

In our formulation, si’s represent the background, and are chosen indepen-
dently and prior to the training of the classifiers. Thus we will refer to this set as
the “common” si’s. To learn the classifier for a specific class, we add its positive
examples to the common si’s and run the optimization in Eq. 9. This is much
faster than training kernel SVM, as far less parameters need to be optimized
over. Our experiments also suggest that the number of common si’s required to
represent a rich background is small and it doesn’t increases as the number of
background categories increases.

2.3 Complexity

The training of hybrid classifiers consists of two steps. The first is performed only
once and it includes the selection of si’s (only for the kernel classifier) and the es-
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Table 1. Examples of 1D projections of test images on separating hyperplane corre-
sponding to different hybrid classifiers: the first four distributions correspond to clas-
sifiers trained on different categories from Caltech-256, the first two –linear classifier,
the third and forth – SPM kernel classifiers; the last two correspond to SPM kernel
trained on two different categories from Scene-15.
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timation of the the background covariance matrix. The second step is the actual
training of the classifier, which is done per object class and thus repeated the num-
ber of times equal to the number of classes one wishes to recognize. Recall that n is
the number of positive examples, m the number of common si’s, p the number of
unlabeled samples for selecting si’s, and C is the number of categories comprising
the background class in the one-against-rest training phase.

Linear

Estimation of the background covariance matrix: Even though an accurate esti-
mation of the covariance matrix of a high-dimensional random variable requires
many samples, here we are only interested in its 1D projections, thus an ap-
proximation of the covariance matrix suffices. We observed that the number of
background samples required to derive this approximation is relatively small: in
the Caltech 256 experiments, increasing the number of samples beyond five per
category had a negligible effect on the projection’s parameters as well as on the
performance. Note that the background covariance matrix has to be estimated
only once, and then it is applied for training classifiers for all classes.

Training a classifier per category: Our optimization has only n+1 constraints (n
positive examples and one probability constraint), while the number of constraints
in one-against-all SVM training is nC. Another important advantage is that we do
not need to keep a huge number of negative examples in memory, which allows us-
ing off-the-shelf solvers for convex optimization even for a large scale classification
problems. The classification process is the same as for linear SVM.

Kernel

Choosing si’s: To find the common si’s we use the algorithm from [25], which
runs in O(mp) per vector, thus the entire process runs in O(m2p). The selection
is performed only once, and even for a very rich background, the size of the basis
m is small (about 200). (Section 3.1).
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Estimation of the background covariance matrix: The size of the covariance ma-
trix is (m+n)2, of which the block of size m×m is identical for all classes (since
common si’s do not depend on the class one wishes to recognize), and the block
including the class-related si of size n×(m+n), that must be estimated for each
class. Typically both n and m are quite small (see Section 3.1), thus estimating
the covariance matrix is not a burden.

Training a category classifier: Our optimization is limited to m+n parameters,
compared to nC in kernel SVM trained in one-against-rest manner. Similarly to
the linear case, our formulation has n + 1 constraints. The space complexity is
O(m+ n)2, compared to O(C2n2) in SVM.

Classification using kernel classifier: In kernel SVM, the number of kernel eval-
uations required to classify an input image is equal to the number of support
vectors, which is linear in the size of the training set [11]. The number of kernel
evaluations when applying kernel hybrid classifier is (m + n), which is typi-
cally small and independent of the number of categories one wished to recognize
(Section 3 provides an empirical study, showing that beyond a small number of
categories the number of si’s doesn’t increase).

Kernel approximation methods (e.g. [14]) also solve the complexity problem of
kernel SVM. However, they trade accuracy for complexity and address only bal-
anced problems, while the main computational burden in one-against-all training
is due to the negative class (the “rest” class). The hybrid classifiers proposed
here significantly reduce the amount of computations since they replace the con-
straints on the negative examples with a single probability constraint and do not
use negative examples in training.

3 Experiments

We tested the proposed hybrid classifiers in a classification problem, formulated
as: given a class, predict the presence/absence of an example of that class in the
test image. We do not restrict the test image to a limited (small) number of cate-
gories. Our goal is to recognize a given class against a very rich background class.
The Caltech 256 [23] data set contains images from 256 diverse classes and thus
approximates the set of all natural images quite well. The Scene-15 data set [1]
contains far fewer classes, but images of scenes are richer than images containing
objects (as in the Caltech dataset), thus it also provides an approximation of a
rich background. Let us note here that even though these sets are usually used
for categorization, we do not address the multi-class problem. We are interested
in binary classification, and so we test hybrid classifiers on all classes from these
data sets and report the binary classification results.

Accuracy: For the Caltech 256 data set, we used the image representation pro-
vided in [5] for a codebookwith 1000words.We compared the performance of linear
and kernel hybrid classifiers to linear and kernel SVMs and their weighted versions
trained in one-against-restmanner.We usedSPMkernel [1] in the kernel classifiers.
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Table 2. Average EER. Each number
in the table corresponds to the aver-
age EER of 256 binary classifiers (of
the corresponding type) produced on a
test set constructed from 256 categories
of Caltech 256.

SVM weighted hybrid
SVM

linear 71% 73.9% 73.8%

kernel 83.4% 83.6% 84.0%

Table 3. Resource comparison of the
kernel SVM (and weighted SVM) and
kernel hybrid classifiers for Caltech 256

SVM (weighted)hybrid

number of kernel
evaluations 600-1000 230

number of parameters
in optimization 7680 230

number of constraints
in optimization 7680 31

memory usage 450M 4.5M

We used 30 images per class as a positive sample. In SVM the negative class
consequently contained the rest of the classes, resulting in 7650 samples. For
hybrid classifiers we used 1280 samples from the same domain to estimate the
mean and covariance matrix of the background. For each classifier we computed
the EER of the binary classification in which the positive class contained 25
test samples of the corresponding category and the negative class comprised
25 test images per category for all the other categories (in total 6350 negative
examples). We performed training and testing 10 times with random splits into
training and test sets and averaged the results. To train the hybrid classifiers we
used the CVX optimization package 2; the SVM was trained using C-SVC option
in LIBSVM 3. All the parameters have been chosen using cross validation. The
results are shown in Table 2. Hybrid classifiers outperformed SVM in both the
linear and kernel cases, and have accuracy similar to that of weighted SVM, but
the classification and training of hybrid classifiers enjoys much lower time and
space complexities.

The Scene-15 data set contains only 15 categories. We followed the same test
protocol as in Caltech 256 experiment, with 30 training and 30 test samples per
category, and used the SPM kernel. The average EER rate of the kernel hybrid
classifier was 89.36% and for kernel SVM it was 89.16%.

Probabilistic Model Validation: We tested the validity of the probability
constraint for the linear classifier (Eq. 3) and the kernel classifier (Eq. 7) by
projecting the test set on the separating boundaries corresponding to learned
classifiers (we used random splits of data to create different classifiers), and
measuring the empirical probability of the background class in their acceptance
regions. The histograms of the resulting probabilities are shown in Figure 4. The
value of the probability bound in the training was 0.006 for linear classifiers on
Caltech-256, 0.004 for kernel classifiers on Caltech-256 and 0.003 for kernel classi-
fiers on Scenes-15. These plots show that the proposed model indeed bounds the
probability volume of the background in the acceptance region of the classifiers.

2 http://cvxr.com/cvx/download/
3 http://www.csie.ntu.edu.tw/~cjlin/libsvm/

http://cvxr.com/cvx/download/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Fig. 4. Histograms of the background empirical probability values in the acceptance
region of the hybrid classifiers

Complexity: In Table 3 the computational and space requirements of hybrid
and SVM kernel classifiers are compared on 256 classes, showing a clear advan-
tage of the proposed method.

The number of support vectors and of common si’s on the much smaller Scene-
15 set was very similar, about 200. The training time of the hybrid classifiers
was still faster (we omit the details due to lack of space).

3.1 Scalability of the Kernel Hybrid Classifier

To check the scalability of the classifier vs. the diversity of the background class,
we investigate how the number of si’s grows as a function of the number of cat-
egories which appear in the background class. To this end, we used background
classes with increasing numbers of categories from the Caltech 256 data set. For
each size of the background class (the x-axis) we found the number of vectors re-
quired to reach a fixed reconstruction error (the y-axis); here the reconstruction
error was set to 0.005 (i.e., on the average the error in approximating a vector
was 0.005 of its norm), and other error thresholds yielded similar behavior. The
plot in Figure 5 shows the resulting dependency. The number of vectors is large
for a small number of categories and then decreases and hardly changes as the
number of categories increases. This behavior – which suggests that the com-
plexity of training and classification does not increase beyond a certain number
of categories – can be explained by the fact that we restrict the basis to be a
subset of the vectors which need to be approximated. When the background set
contains a small number of categories, its diversity is restricted, thus we have to
use many vectors to well-approximate the sample set. When the number of cat-
egories is large, we can choose fewer – but much better – vectors to approximate
the set. At some point the sample is rich enough to allow finding vectors that
approximate the entire background class, thus adding more categories does not
necessitate increasing the basis. A somewhat similar behavior can be observed
when looking at the effective dimension of PCA as a function of the number of
categories (Figure 5).
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Fig. 5. Left: the relation between the number of vectors required for approximation
(with a constant reconstruction error) of unlabeled samples (y-axis) vs. the number
of categories these samples were taken from (x-axis). Right: the relation between the
effective dimension of a set of unlabeled samples (y-axis) vs. the number of categories
these samples were taken from (x-axis).

4 Conclusions

We proposed to address problems arising when training SVM classifiers in one-
against-rest manner, by replacing the negative samples with a distribution rep-
resenting them. In real visual classification problems the negative class becomes
so rich that it can be viewed as a “background” class and it approaches the
distribution of all images. We introduced “hybrid” classifiers, which determine
a separating hyperplane between positive samples and this probability distri-
bution, and showed that modeling this distribution is simple, as we are only
interested in its projections. Further, we estimated the distribution of the back-
ground only once, and then used the same model in training the classifiers for all
visual classes. This significantly reduced training complexity, compared to SVM.

We tested the proposed approach in binary classification problems in which
the negative class comprises many categories and is much larger than the positive
class. In addition to performing well, hybrid classifiers proved to be faster to train
and apply than SVM.

Future work will concentrate on alternative models for the background, gen-
eralizing the proposed formulation to the multi-class problem, and application
to other domains, such as text and video classification.
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