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Abstract. This paper introduces a new image representation for scene
recognition, where an image is described based on the response maps of
object part filters. The part filters are learned from existing datasets with
object location annotations, using deformable part-based models trained
by latent SVM [1]. Since different objects may contain similar parts, we
describe a method that uses a semantic hierarchy to automatically deter-
mine and merge filters shared by multiple objects. The merged hybrid fil-
ters are then applied to new images. Our proposed representation, called
Hybrid-Parts, is generated by pooling the response maps of the hybrid
filters. Contrast to previous scene recognition approaches that adopted
object-level detections as feature inputs, we harness filter responses of ob-
ject parts, which enable a richer and finer-grained representation. The use
of the hybrid filters is important towards a more compact representation,
compared to directly using all the original part filters. Through extensive
experiments on several scene recognition benchmarks, we demonstrate
that Hybrid-Parts outperforms recent state-of-the-arts, and combining
it with standard low-level features such as the GIST descriptor can lead
to further improvements.

1 Introduction

The construction of good image representations is of fundamental importance in
many computer vision problems. Great progress has been achieved in the past
years with the invention of local invariant descriptors like SIFT [2] and repre-
sentations such as the bag-of-features [3] and its augmented version, the spatial
pyramids [4]. Although promising results were shown from using these low-level
representations, more recent research suggests that mid-level representations,
where each dimension is associated with a semantic meaning, are more flexible
and powerful for visual recognition [5–7]. The mid-level semantics, a.k.a. at-
tributes (e.g., objects and scenes), can be learned offline, using existing datasets
or open data on the Web.

In this paper, we propose a new image representation called Hybrid-Parts,
which is built upon a large set of object part filters generated automatically
by deformable part-based models (DPM) [1]. Starting from publicly available
image sets annotated with object-level bounding boxes, DPM is employed to
learn local part filters using Felzenszwalb’s latent SVM formulation [1]. Since
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Fig. 1. An illustration of Hybrid-Parts representation. A large set of object part filters
are firstly learned from existing object labels (object class names are shown below the
part filters and sub-image exemplars). Similar part filters are then merged to generate
hybrid filters, which are applied to an input image at multiple scales. The response maps
are consolidated with a spatial pyramid of three levels to produce the final Hybrid-Parts
representation, which simply concatenates the max response values of each hybrid filter
in each image scale and spatial grid (#filters×#scales×(1+2×2+3×1) dimensions).

different objects may share similar parts, we further introduce a method to
determine and merge such common patterns, leading to a smaller set of hybrid
part filters. The discovery of the common parts is done by a simple variant of
random ferns [8], operated on top of a semantic hierarchy. Finally, given an
input image, filter responses of the hybrid parts are consolidated into a semantic
level representation, with each dimension indicating the likelihood of seeing an
(hybrid) object part in the image.

Figure 1 illustrates our approach. As can be seen on the left side of the figure,
some part filters show visually very similar patterns, e.g., the “person head”
part from object classes “jockey” and “referee”. This confirms the fact that the
part filter set learned from multiple objects contains a significant amount of
redundant information. In Hybrid-Parts, a more compact representation can be
achieved with a smaller number of hybrid filters. Note that it is important to
merge the filters before generating the response maps, because the other option,
i.e., fusing the response maps of multiple part filters, apparently demands more
computational workloads.

The idea of constructing mid-level image representations has been taken in
several previous works, e.g., the Object Bank by Li et al. [7]. Compared to these
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approaches using image-level object or scene classification outputs as features,
our Hybrid-Parts representation is based on the detections of local object parts.
The utilization of finer-grained part-based semantics makes Hybrid-Parts more
discriminative than the existing works. Our approach shows very competitive
results on popular scene recognition benchmarks.

The remainder of this paper is organized as follows. Section 2 discusses re-
lated works and Section 3 briefly reviews the deformable part-based models.
Our proposed Hybrid-Parts representation is described in Section 4 and exten-
sively evaluated in scene recognition experiments in Section 5. Finally, Section 6
concludes this paper.

2 Related Works

Numerous efforts have been devoted to the design of effective image representa-
tions. In this section, we mainly discuss literatures on mid-level representation,
which are more related to this work.

In [9], Farhadi et al. proposed to describe objects using mid-level semantics,
namely attributes, including shape (e.g., cylindrical), part (e.g., head), and ma-
terial (e.g., glass). In addition to textually describing objects, the attributes were
also applied to learn new object classes with few or no examples. This method
was further extended in [10] where the outputs of localized object detectors were
used as attributes. Lampert et al. [11], Rohrbach et al. [12], and Yu et al. [13]
explored a similar pipeline that selects and transfers pre-computed attributes
for learning unseen objects. Wang and Forsyth [14] used multiple instance learn-
ing to learn attributes and object classes jointly and showed that an iterative
refinement procedure leads to substantial performance improvement. The joint
modeling of objects and attributes was also attempted by Wang and Mori [15],
using an undirected graphical model. Torresani et al. [6] proposed Classemes as
a descriptor for object recognition, which is generated by the classification out-
puts of 2659 semantic concepts (each can be viewed as an attribute). In addition
to object recognition and detection, Hauptmann et al. [16] used a large set of
semantic concept classifiers for improved video retrieval. Liu et al. [17] proposed
to use attributes for action recognition. Berg et al. [18] presented an approach
for automatic attribute discovery and modeling by mining noisy Web data. The
learned attributes were applied to product image search.

Several works have studied mid-level representations in scene recognition [5,
7, 19]. In [5], Vogel and Schiele proposed to detect a set of visual concepts
locally over image regions and the images were represented by the frequency of
the detected local concepts. Parikh and Grauman [19] further proposed relative
attributes to model the relative strength of seeing an attribute, rather than
using hard binary occurrence labels. Another work more related to ours is the
Object Bank [7], where hundreds of object detectors were trained with off-the-
shelf approaches like the DPM [1]. The outputs of object detectors were then
consolidated to form the final image representation.
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These existing approaches construct mid-level representations using image-
level attribute predictions [6, 9, 11–13, 15, 16], region-based classification [5], or
local object detection [7, 10]. Hybrid-Parts is similar to the latter ones [7, 10]
in the sense that we also rely on object detection. However, instead of using the
final object detection outputs like [7], we adopt the filter responses of object
parts. Detectors of object parts were also used in [10] to enhance whole object
detection, where the object parts were pre-defined and manually annotated. In
contrast, the part filters in our approach are automatically learned by DPM,
which requires much less annotation efforts. Very recently, DPM was employed
by Pandey and Lazebnik [20] directly for scene recognition and the learned scene
parts from DPM may correspond to recurring elements or objects in a scene
class. Our approach is fundamentally different from [20] in its design since we
use object parts learned from external data. Moreover, as will be shown in the
experiments, Hybrid-Parts outperforms these state-of-the-art methods.

3 Deformable Part-Based Models

This section briefly introduces the DPM framework proposed in [1], which is
adopted in this work to learn the basic object part filters.

First, Histogram of Oriented Gradients (HOG) [21] is computed to repre-
sent an image in a multi-scale feature pyramid. Using multi-scale features is a
standard setup for scale-invariant object detection. For the parameters in the
HOG feature, e.g., the number of pyramid levels and orientations, we follow the
original settings of [1]1.

DPM uses a star model to characterize an object, which consists of a coarse
root filter that roughly covers the entire object and several part filters that cover
small object parts. A filter (rectangular template) is defined by an array of weight
vectors. Let w be a long vector obtained by concatenating the weight vectors of
a filter in row-major order. Let H be the HOG feature pyramid and p specify
the level of the pyramid and a candidate position. The score of the filter vector
w at p can be computed as the dot product of w and φ(H, p), where φ(H, p)
returns a vector that concatenates the feature values in a subwindow of H with
top-left corner at p, also in row-major order.

Denote z = (pr, p1, . . . , pn) as a hypothesis of an object which specifies the
positions of the root filter (pr) and the part filters (pi, i = 1, . . . , n). The score
of the object hypothesis z is defined as

s(z) = wr · φ(H, pr) +
n∑

i=1

wi · φ(H, pi)−
n∑

i=1

di · φd(dxi, dyi) + b, (1)

wherewr is the root filter vector,wi is the vector of the ith part filter, φd(dxi, dyi)
computes the displacement of the ith part relative to its anchor position, di is a
deformation cost vector for the ith part, and b is a bias term to make the output
scores of multiple models comparable.

1 Codes from the authors of [1] are at http://www.cs.brown.edu/~pff/latent/

http://www.cs.brown.edu/~pff/latent/
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A latent SVM formulation is used to learn the DPM parameters, denoted by a
single vector β = (wr,w1, . . . ,wn,d1, . . . ,dn, b). In the latent SVM, an example
X is scored by a function of the following form:

fβ(X) = max
z

β ·Φ(X, z), (2)

where z are latent values (for a hypothesis); Φ(X, z) is a concatenation of sub-
windows from a feature pyramid of X according to the latent values in z. Model
training is conducted by alternatively executing two steps. First, the parame-
ters in β are fixed and optimization is performed for the latent values over all
the positive examples. After that, the latent values are fixed and β is optimized
using an objective function similar to standard SVM. The training procedure
also includes several important settings such as the selection of suitable negative
samples and the initialization of model parameters. We refer the reader to [1]
for more details.

4 Hybrid-Parts

We now elaborate the construction of Hybrid-Parts. We start by introducing
the object labels used for training the part filters, followed by a method that
determines and merges the filters shared by multiple objects, i.e., the generation
of the hybrid filters.

4.1 Object Labels

The selection of a suitable set of object labels is important to the success of
Hybrid-Parts. Ideally we want a comprehensive collection of objects so that
we can find some of them under any scene setting. As pointed out by [7], the
objects used here should not be limited to the traditional ones like “washer” and
“banana”. Some generalized object classes like “volcano” and “bookshop” may
also be included. With these in mind, we selected the object labels from ImageNet
[22]. Images in ImageNet are organized by the WordNet hierarchy [23], where
each class is called a synset. Local object-level bounding box annotations2 are
available for around 3,000 synsets (object classes). This set was further filtered
by two criteria. First, to make sure the DPM has adequate training samples,
classes with less than 100 example images were removed. Second, among the
remaining ones, we further removed several higher level classes in the WordNet
hierarchy and only kept the leaf nodes, as examples of the high-level classes
may be visually too diverse to train a good DPM. This leads to a final set of
580 object classes, covering a wide range of entities in the visual world, such
as appliance (e.g., “washer”), fruit (e.g., “banana”), fabric (e.g., “paper towel”)
and structure (e.g., “bookshop”). Figure 2 shows several example images with
object bounding box annotations.

2 Download link: http://www.image-net.org/download-bboxes

http://www.image-net.org/download-bboxes
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Fig. 2. Example training images with object bounding box annotations

4.2 Generating Hybrid Filters

DPM is trained for each of the object classes, producing one root filter and six
part filters. The part filters can be directly applied to a test image and generate
a mid-level representation by pooling the corresponding response maps on a
spatial pyramid. However, many objects may share similar parts, resulting in a
significant amount of redundant information in the part filter set. In this section,
we introduce a simple method that merges similar part filters to generate hybrid
parts. The use of hybrid parts not only largely reduces the dimensionality of the
final representation, but also offers a semantically more balanced representation,
since some frequently “repetitive” parts in the original part filter set (e.g., the
head part of person-related objects) may dominant the infrequent ones.

Central to the generation of the hybrid parts is to identify the sets of similar
part filters. Intuitively the similarity of the part filters may be computed by
comparing their corresponding weight vectorsw. But we have found this way not
very effective (cf. Section 5.2 for evaluations). We therefore pursue an exemplar-
based approach that measures part similarity based on exemplar sub-images.
To find the exemplar sub-images, we run DPM object detection back on the
training images, which produces bounding boxes of both the entire object and
its deformable parts for each detection. This way we can easily generate a set of
exemplars for each part filter. Figure 3 shows some examples.

With the exemplar sets, the similarity of object parts can be estimated based
on the proximities of their corresponding exemplars in feature space. Instead of
exhaustively computing proximities among all the exemplar sets, here we propose
to impose a semantic constraint which only allows to merge the filters from
objects that are close in semantic space. In other words, we are more interested
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Fig. 3. Three object part filters, each with a few sub-image exemplars obtained from
the ImageNet training set

in the relations among the parts of objects like “dog” and “cat”, rather than
that of “dog” and “table”. To this end, we adopt the hierarchical structure of
WordNet to merge the filters in a bottom-up manner. Lowest common ancestors
(LCA) of the leaf-node objects are picked (in total there are 145 LCA nodes),
and hybrid filters are generated for each LCA node by merging similar part
filters from its child nodes.

Formally, let S be an exemplar set of an LCA node O, which is simply the
pool of all the exemplars from the child nodes of O. We employ a variant of the
random ferns [8] (i.e., a simplified random forest [24]) to determine similar parts
from the child nodes, by quickly estimating the similarities of the corresponding
exemplars in S. HOG features are computed for the exemplar sub-images using
the same number of grids, orientations and pyramid levels. Denote the HOG
feature of an exemplar x as vx. S is split into two sets by a linear random
projection (with parameters p and t) in the HOG feature space:

x ∈
{Sl if p · vx ≤ t,
Sr otherwise.

(3)

To make sure the split is “balanced”, several candidates for p and t are generated,
and we choose the one that maximizes the information gain below:

ΔE = −
J∑

j=1

(
|Sj

l |
|Sj |E(Sj

l ) +
|Sj

r |
|Sj |E(Sj

r )), (4)

where J is the number of the child-node classes under the LCA node O; Sj is
the exemplar set of the jth child-node object class; Sj

l and Sj
r are the split sets

of Sj by the random projection. The function E(·) computes the entropy of a
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set, defined as E(Sj
l ) = −∑n

i=1 P (aji |Sj
l ) log2(P (aji |Sj

l )), where aji indicates the
ith part of the jth child-node class, n is the total number of parts of the class,
and P (aji |Sj

l ) is the proportion of exemplars in Sj
l belonging to part aji .

Based on a random fern defined by a selected random projection, we measure
the part similarities in a part set A = {ak}Kk=1 as

M(A) =
1

2

(
∏

k

P (ak|Sc(ak)
l ) +

∏

k

P (ak|Sc(ak)
r )

)
, (5)

where c(ak) returns the index of the child-node class to which ak belongs. As can
be understood from the above definition, the function value ofM(·) is maximized
when the exemplars of the parts in A are all on the same side of the random
fern projection. Therefore M(·) reflects the similarities of the parts in A. But
one random fern is obviously not enough. In our experiments, 50 random ferns
are used and the mean value of M(·) is adopted to measure the overall part
similarities of a part set.

Now that we have an efficient way to estimate part proximities in a set.
Given an LCA node, its candidate part sets are formed by choosing at most one
part from each child-node class. Each candidate part set is then evaluated by
Equation (5) and finally the sets with high M(·) values are selected. Since the
part similarity is estimated by the grid-based HOG feature of the corresponding
exemplars, the part filters in a selected set not only share similar appearance but
also have similar spatial configurations. Therefore we simply align the part filters
in each set at their top-left corner and average them to generate a hybrid filter.
Given a test image, the Hybrid-Parts representation is generated by pooling
the response scores of the hybrid filters over a spatial pyramid, as illustrated in
Figure 1. Generating hybrid filters for a selected part set is preferred compared
to averaging the response maps of all the filters in the set, since we only need
to compute one response map for the former, which is apparently much more
efficient.

5 Experiments

We evaluate the proposed Hybrid-Parts representation on three popular datasets:
MIT Indoor Scene [25], Fifteen Natural Scene [4], and UIUC Sports [26]. The
MIT Indoor Scene contains 15,620 images labeled over 67 classes. We adopt the
official train/test split of [25] to use 80 images per class for training and 20 for
testing. The Fifteen Scene dataset [4] contains 15 classes, with 200–400 images
per class. We follow the standard setup of this dataset to randomly select 100
images from each class for training and use the rest for testing. The UIUC Sports
has 8 complex sports scene classes (e.g., badminton and croquet). Each class has
around 200 images. Following [26], we use 70 randomly drawn images per class
for training and 60 for testing. For both Fifteen Scene and UIUC Sports, we
perform ten random selections of the training and testing images and report
the mean accuracy over the ten runs. Throughout the experiments, we use the
highly efficient multi-class linear SVMs for scene classification.
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Table 1. Classification accuracy for MIT Indoor Scene dataset. We compare Hybrid-
Parts with several baselines and state-of-the-art approaches. Hybrid-Parts offers the
best single representation performance, and fusing it with a few baseline descriptors
leads to a significant performance gain.

Approach Accuracy

GIST [27] 22.0%
GIST-color [27] 29.7%

Baselines HOG [21] 22.8%
Spatial Pyramid (SP) [4] 34.4%

GIST-color + SP 38.5%

ROI + GIST [25] 26.5%
CENTRIST [28] 36.9%

State of Object Bank [7] 37.6%
the arts Classemes [6] 38.6%

DPM [20] 30.4%
DPM + GIST-color + SP [20] 43.1%

Our Hybrid-Parts 39.8%
results Hybrid-Parts + GIST-color + SP 47.2%

5.1 Results and Comparison

We first evaluate the performance of Hybrid-Parts and compare it with sev-
eral state-of-the-art approaches. There are a few parameters in Hybrid-Parts,
including the number of image scales for filtering, spatial pyramid levels, and
the number of hybrid filters generated per LCA node (based on the function
value of M; see Section 4.2). In this set of experiments, we use 3 image scales, 3
spatial pyramid levels (1×1, 2×2, and 3×1), and generate 12 hybrid filters per
LCA node (145×12=1740 hybrid filters in total). The effect of these parameters
will be evaluated in the next subsection.

MIT Indoor. Table 1 summarizes the average classification accuracies of all
the classes in the MIT Indoor dataset. We compare Hybrid-Parts with several
baselines and state-of-the-art approaches. Among them, the first group contains
several well-known baseline descriptors, including GIST [27], GIST-color (con-
catenation of GIST descriptors of RGB color channels), HOG [21], and Spatial
Pyramid (SP) [4]. These baseline performance numbers are from Pandey and
Lazebnik [20]. From the table we see that Hybrid-Parts outperforms all the
baseline descriptors as well as the state-of-the-art approaches shown in the mid-
dle part of Table 1 (except the fusion results of multiple classifiers, indicated by
“+”), including a very recent holistic image descriptor CENTRIST [28], scene
category modeling directly by DPM [20], and two mid-level representations Ob-
ject Bank3 [7] and Classemes [6]. The substantial performance gains over the

3 The Object Bank performance in Table 1 is from [7]. We also implemented the
Object Bank representation using our object set (580 classes in total) and 3 spatial
pyramid levels. The classification accuracy is 31.0%.
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Table 2. Per-class classification rates (%) for MIT Indoor Scene dataset, using
“Hybrid-Parts” (H) and “Hybrid-Parts+GIST-color+SP” (HGS). The classes are
sorted in descending order of the “Hybrid-Parts” performance.

H HGS H HGS H HGS H HGS

cloister 85 85 inside bus 55 63 gym 35 75 kindergarden 26 46
corridor 82 84 bowling 54 63 bathroom 35 33 grocerystore 25 53
elevator 73 76 trainstation 52 59 clothingstore 35 43 operating room 25 38

studiomusic 71 60 kitchen 50 57 hairsalon 33 57 auditorium 24 55
greenhouse 67 67 library 47 38 laboratorywet 33 41 shoeshop 24 50

buffet 62 45 videostore 47 29 museum 33 50 livingroom 23 27
concert hall 62 57 bedroom 45 37 restaurant kitchen 33 50 waitingroom 22 17

closet 61 62 warehouse 44 50 fastfood restaurant 32 30 mall 20 40
pantry 59 55 computerroom 43 38 casino 31 65 toystore 19 22

church inside 58 56 dentaloffice 43 57 lobby 30 41 artstudio 18 24
florist 58 67 nursery 41 46 poolinside 30 44 winecellar 17 31

inside subway 58 55 subway 40 65 airport inside 29 25 locker room 14 43
movietheater 57 61 classroom 39 46 gameroom 29 58 restaurant 13 27
laundromat 56 48 meeting room 38 44 tv studio 29 80 jewelleryshop 10 22

garage 56 58 bookstore 36 29 children room 27 36 deli 6 20
prisoncell 56 73 dining room 36 42 bakery 27 20 office 4 24
stairscase 56 48 hospitalroom 36 28 bar 26 40

state of the arts confirm the effectiveness of using object parts as the basic
elements for mid-level image feature construction. Another interesting observa-
tion is that the three mid-level representations (Object Bank, Classemes, and
Hybrid-Parts) are better than all the other single feature/model approaches.
This highlights the advantages of using mid-level representations to bridge the
semantic gap between low-level features and high-level semantics.

We also study the fusion performance by combining the Hybrid-parts rep-
resentation with two baseline descriptors GIST-color and SP. Results are also
given in Table 1. The fusion is done by simply multiplying the softmax trans-
formed prediction scores from multiple SVM classifiers as [20], and an image is
assigned to the class with the highest score (confidence) after multiplication. As
shown in the table, fusing Hybrid-Parts with two baseline descriptors leads to an
accuracy of 47.2%, which is significantly higher than the fusion accuracy of [20]
(43.1%). Table 2 lists the per-class performance of Hybrid-Parts and its fusion
with GIST-color and SP.

Fifteen Scene. Results on the Fifteen Scene datasets are presented in Figure 4,
where the accuracy numbers of GIST-color, SP and Classemes are based on our
implementation. For GIST-color and Classemes, we use the software released by
the authors of [27]4 and [6]5 respectively. For SP, we use a SIFT vocabulary of
500 codewords and 3 spatial pyramid levels. As can be seen from Figure 4-Left,
Hybrid-Parts shows very competitive performance with a classification accuracy
of 84.7%, which is significantly better than that of the other two mid-level rep-
resentations Object Bank and Classemes. The approach LScSPM [29] is also a
spatial pyramid representation, but is generated by Laplacian sparse coding of
low-level local descriptors. We believe that Hybrid-Parts is also complementary
to LScSPM since they focus on different levels of information, which is never-
theless difficult to verify since there is no public software for LScSPM.

UIUC Sports. We now report results on the UIUC Sports dataset [26],
as summarized in Figure 5. Similar to the experiments on Fifteen Scene, the

4 Available at http://people.csail.mit.edu/torralba/code/spatialenvelope/
5 Available at http://www.cs.dartmouth.edu/~lorenzo/projects/classemes/

http://people.csail.mit.edu/torralba/code/spatialenvelope/
http://www.cs.dartmouth.edu/~lorenzo/projects/classemes/
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Approach Accuracy

GIST-color [27] 69.5%
SP [4] 81.4%

SP-pLSA [30] 83.7%
CENTRIST [28] 83.9%

HIK [31] 84.1%
HG [32] 85.2%

LScSPM [29] 89.8%
Object Bank [7] 80.9%
Classemes [6] 80.6%

Hybrid-Parts 84.7%
Hybrid-Parts+GIST-color+SP 86.3%

Fig. 4. Results for Fifteen Scene dataset. Left. Classification accuracy. Right. Con-
fusion matrix of the results using Hybrid-Parts representation.

Approach Accuracy

GIST-color [27] 70.7%
SP [4] 81.8%

Graphical Model [26] 73.4%
LDA [33] 66.0%

CENTRIST [28] 78.3%
HIK [31] 84.2%

LScSPM [29] 85.3%
Object Bank [7] 76.3%
Classemes [6] 84.2%

Hybrid-Parts 84.5%
Hybrid-Parts+GIST-color+SP 87.2%

Fig. 5. Results for UIUC Sports dataset. Left. Classification accuracy. Right. Confu-
sion matrix of the results using Hybrid-Parts representation.

GIST-color, SP, and Classemes numbers are based on our implementation, partly
using the authors’ codes. Again, Hybrid-Parts shows better results than the other
two mid-level representations. Fusing it with the two simple baseline descriptors
GIST-color and SP, we obtain an accuracy of 87.2%, which outperforms all the
approaches under comparison, including the LScSPM.

5.2 Evaluation of Parameters and Alternative Implementation

In this subsection, we evaluate a few parameters and an alternative implemen-
tation for generating Hybrid-Parts. We report results on the MIT Indoor Scene
dataset as it is larger and more challenging than the other two.

Number of Image Scales. Just like the general object detection task where
a detector needs to run on multiple image scales to achieve scale-invariance,
Hybrid-Parts also favors multi-scale image filtering. Figure 6-Left shows the clas-
sification accuracy of our Hybrid-Parts representation generated by performing
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Fig. 6. Evaluation of Hybrid-Parts parameters on the MIT Indoor Scene dataset. Left.
Classification accuracy w.r.t. the number of image scales for filtering. Middle. Classi-
fication accuracy with various spatial pyramid levels (a: 1×1, b: 2×2, c: 3×1, d: 4×4).
Right. Classification accuracy w.r.t. the number of hybrid filters per LCA node. See
texts for more details.

part filtering on different number of image scales. We observe significant perfor-
mance gains when the number of image scales increases from one to three. Using
more scales does not improve the performance.

Spatial Pyramid Levels. We also evaluate the effect of spatial pyramid levels
in Hybrid-Parts representation. As shown in Figure 6-Middle, the best results
is obtained by using three spatial pyramid levels (1 × 1, 2 × 2, and 3 × 1).
These coarse partitions of image regions are preferred compared to fine-grained
partitions like 4 × 4 since the latter may incur significant mismatch problems
when similar scene patterns appear in different regions. This is consistent with
the observations from recent research on object/scene recognition [34].

Number of Hybrid Filters per LCA Node. Recall that the hybrid filters
are generated from the selected part sets, based on the function value of M(·)
shown in Equation (5). In Figure 6-Right we plot the classification accuracy
versus the number of hybrid filters per LCA node. Using only 3 hybrid filters
per LCA node, we can already get an accuracy of 37.9%. Adding more filters
further boosts the accuracy until 12 (39.8%), after which the performance tends
to be saturate. We also found that this result is similar to the accuracy of using
all the 3480 (580 × 6) original part filters of the child-node objects (40.4%),
indicating that around half of the computation6 can be saved by Hybrid-Parts
with marginal performance drop.

Hybrid Filter Generation. Our last experiment evaluates an alternative
method for selecting the object part sets in hybrid filter generation. As mentioned
earlier, the similarities of part filters may be computed by directly comparing their

6 Hybrid-Parts has 1740 filters in total (145 LCA nodes, each with 12 hybrid filters).
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corresponding weight vectorsw. This is achieved by firstly aligning the filters and
then computing the similarity of the weights corresponding to the overlapped ar-
eas. The part similarities computed in this way can be used to select the part filter
sets and generate hybrid filters. With the same spatial pyramid levels, we obtain
an accuracy of 38.6%, which is not as good as the exemplar-based method de-
scribed in Section 4.2 (39.8%).

6 Conclusions

We have introduced Hybrid-Parts, a mid-level image representation based on
the responses of object part filters. Through an extensive set of scene recog-
nition experiments, we have shown that Hybrid-Parts is more effective than
existing mid-level representations, generating very competitive results on popu-
lar benchmark datasets. Compared with directly employing all the original part
filters of the leaf-node objects, Hybrid-Parts offers similar performance using a
much smaller number of hybrid filters. Moreover, we also observed that Hybrid-
Parts is complementary to popular baseline descriptors like the GIST, and com-
bining them can further boost the recognition accuracy. For future work, we
plan to incorporate more object classes into Hybrid-Parts, and also explore this
representation in other tasks.
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