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Abstract. We introduce a clustering method that combines the flexibil-
ity of Gaussian mixtures with the scaling properties needed to construct
visual vocabularies for image retrieval. It is a variant of expectation-
maximization that can converge rapidly while dynamically estimating
the number of components. We employ approximate nearest neighbor
search to speed-up the E-step and exploit its iterative nature to make
search incremental, boosting both speed and precision. We achieve supe-
rior performance in large scale retrieval, being as fast as the best known
approximate k-means.
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1 Introduction

The bag-of-words (BoW) model is ubiquitous in a number of problems of com-
puter vision, including classification, detection, recognition, and retrieval. The
k-means algorithm is one of the most popular in the construction of visual vocab-
ularies, or codebooks . The investigation of alternative methods has evolved into
an active research area for small to medium vocabularies up to 104 visual words.
For problems like image retrieval using local features and descriptors, finer vo-
cabularies are needed, e.g. 106 visual words or more. Clustering options are more
limited at this scale, with the most popular still being variants of k-means like
approximate k-means (AKM) [1] and hierarchical k-means (HKM) [2].

The Gaussian mixture model (GMM), along with expectation-maximization
(EM) [3] learning, is a generalization of k-means that has been applied to vo-
cabulary construction for class-level recognition [4]. In addition to position, it
models cluster population and shape, but assumes pairwise ‘interaction’ of all
points with all clusters and is slower to converge. The complexity per iteration
is O(NK) where N and K is the number of points and clusters, respectively,
so it is not practical for large K. On the other hand, a point is assigned to the
nearest cluster via approximate nearest neighbor (ANN) search in [1], bringing
complexity down to O(N logK), but keeping only one neighbor per point.

Robust approximate k-means (RAKM) [5] is an extension of AKM where the
nearest neighbor in one iteration is re-used in the next, with less effort being
spent for new neighbor search. This approach yields further speed-up, since
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Fig. 1. Estimating the number, population, position and extent of clusters on an 8-
mode 2d Gaussian mixture sampled at 800 points, in just 3 iterations (iteration 2
not shown). Red circles: cluster centers; blue: two standard deviations. Clusters are
initialized on 50 data points sampled at random, with initial σ = 0.02. Observe the
‘space-filling’ behavior of the two clusters on the left.

the dimensionality D of the underlying space is high, e.g. 64 or 128, and the
cost per iteration is dominated by the number of vector operations spent for
distance computation to potential neighbors. The above motivate us to keep
a larger, fixed number m of nearest neighbors across iterations. This not only
improves ANN search in the sense of [5], but makes available enough information
for an approximate Gaussian mixture (AGM) model, whereby each data point
‘interacts’ only with the m nearest clusters.

Experimenting with overlapping clusters, we have come up with two modifica-
tions that alter the EM behavior to the extent that it appears to be an entirely
new clustering algorithm. An example is shown in Figure 1. Upon applying
EM with relatively large K, the first modification is to compute the overlap
of neighboring clusters and purge the ones that appear redundant, after each
EM iteration. Now, clusters neighboring to the ones being purged should fill in
the resulting space, so the second modification is to expand them as much as
possible. The algorithm shares properties with other methods like agglomerative
or density-based mode seeking. In particular, it can dynamically estimate the
number of clusters by starting with large K and purging clusters along the way.
On the other hand, expanding towards empty space apart from underlying data
points boosts convergence rate.

This algorithm, expanding Gaussian mixtures (EGM), is quite generic and
can be used in a variety of applications. Focusing on spherical Gaussians, we
apply its approximate version, AGM, to large scale visual vocabulary learning
for image retrieval. In this setting, contrary to typical GMM usage, descriptors
of indexed images are assigned only to their nearest visual word to keep the
index sparse enough. This is the first implementation of Gaussian mixtures at
this scale, and it appears to enhance retrieval performance at no additional cost
compared to approximate k-means.
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2 Related Work

One known pitfall of k-means is that visual words cluster around the densest
few regions of the descriptor space, while the sparse ones may be more infor-
mative [6]. In this direction, radius-based clustering is used in [7], while [8], [9]
combine the partitional properties of k-means with agglomerative clustering.
Our approximate approach is efficient enough to initialize from all data points,
preserving even sparse regions of the descriptor space, and to dynamically purge
as appropriate in dense ones.

Precise visual word region shape has been represented by Gaussian mixture
models (GMM) for universal [10] and class-adapted codebooks [4], and even by
one-class SVM classifiers [11]. GMMs are extended with spatial information
in [12] to represent images by hyperfeatures. None of the above can scale up as
needed for image retrieval. On the other extreme, training-free approaches like
fixed quantization on a regular lattice [13] or hashing with random histograms
[14] are remarkably efficient for recognition tasks but often fail when applied to
retrieval [15]. The flat vocabulary of AKM [1] is the most popular in this sense,
accelerating the process by the use of randomized k-d trees [16] and outper-
forming the hierarchical vocabulary of HKM [2], but RAKM [5] is even faster.
Although constrained to spherical Gaussian components, we achieve superior
flexibility due to GMM, yet converging as fast as [5].

Assigning an input descriptor to a visual word is also achieved by nearest
neighbor search, and randomized k-d trees [16] are the most popular, in par-
ticular the FLANN implementation [17]. We use FLANN but we exploit the
iterative nature of EM to make the search process incremental, boosting both
speed and precision. Any ANN search method would apply equally, e.g. product
quantization [18], as long as it returns multiple neighbors and its training is fast
enough to repeat within each EM iteration.

One attempt to compensate for the information loss due to quantization is
soft assignment [15]. This is seen as kernel density estimation and applied to
small vocabularies for recognition in [19], while different pooling strategies are
explored in [20]. Soft assignment is expensive in general, particularly for recog-
nition, but may apply to the query only in retrieval [21], which is our choice as
well. This functionality is moved inside the codebook in [22] using a blurring
operation, while visual word synonyms are learned from an extremely fine vo-
cabulary in [23], using geometrically verified feature tracks. Towards the other
extreme, Hamming embedding [24] encodes approximate position in Voronoi cells
of a coarser vocabulary, but this also needs more index space. Our method is
complementary to learning synonyms or embedding more information.

Estimating the number of components is often handled by multiple EM runs
and model selection or split and merge operations [25], which is impractical
in our problem. A dynamic approach in a single EM run is more appropriate,
e.g. component annihilation based on competition [26]; we rather estimate spa-
tial overlap directly and purge components long before competition takes place.
Approximations include e.g. space partitioning with k-d trees and group-wise
parameter learning [27], but ANN in the E-step yields lower complexity.
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3 Expanding Gaussian Mixtures

We begin with an overview of Gaussian mixture models and parameter learn-
ing via EM, mainly following [3], in section 3.1. We then develop our purging
and expanding schemes in sections 3.2 and 3.3, respectively. Finally, we discuss
initializing and terminating in the specific context of visual vocabularies.

3.1 Parameter Learning

The density p(x) of a Gaussian mixture distribution is a convex combination of
K D-dimensional normal densities or components,

p(x) =

K∑

k=1

πkN (x|µk,Σk) (1)

for x ∈ R
D, where πk,µk,Σk are the mixing coefficient, mean and covariance

matrix respectively of the k-th component. Interpreting πk as the prior proba-
bility p(k) of component k, and given observation x, quantity

γk(x) =
πkN (x|µk,Σk)∑K
j=1 πjN (x|µj ,Σj)

(2)

for x ∈ R
D, k = 1, . . . ,K, expresses the posterior probability p(k|x); we say that

γk(x) is the responsibility that component k takes for ‘explaining’ observation
x, or just the responsibility of k for x. Now, given a set of i.i.d. observations or
data points X = {x1, . . . ,xN}, the maximum likelihood (ML) estimate for the
parameters of each component k = 1, . . . ,K is [3]

πk =
Nk

N
(3)

µk =
1

Nk

N∑

n=1

γnkxn (4)

Σk =
1

Nk

N∑

n=1

γnk(xn − µk)(xn − µk)
T, (5)

where γnk = γk(xn) for n = 1, . . . , N , and Nk =
∑N

n=1 γnk, to be interpreted
as the effective number of points assigned to component k. The expectation-
maximization (EM) algorithm involves an iterative learning process: given an
initial set of parameters, compute responsibilities γnk according to (2) (E-step);
then, re-estimate parameters according to (3)-(5), keeping responsibilities fixed
(M-step). Initialization and termination are discussed in section 3.4.

For the remaining of this work, we shall be focusing on the particular case of
spherical (isotropic) Gaussians, with covariance matrix Σk = σ2

kI. In this case,
update equation (5) reduces to

σ2
k =

1

DNk

N∑

n=1

γnk‖xn − µk‖2. (6)
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Comparing to standard k-means, the model is still more flexible in terms of
mixing coefficients πk and standard deviations σk, expressing the population
and extent of clusters. Yet, the model is efficient because σk is a scalar, whereas
the representation of full covariance matrices Σk would be quadratic in D.

3.2 Purging

Determining the number of components is more critical in Gaussian mixtures
than in k-means due to the possibility of overlapping components. Although one
solution is a variational approach [3], the problem has motivated us to devise a
novel method of purging components according to an overlap measure. Purging
is dynamic in the sense that we initialize the model with as many components
as possible and purge them as necessary during the parameter learning process.
In effect, this idea introduces a P-step in EM, that is to be applied right after
the E- and M-steps in every iteration.

Let pk be the function representing the contribution of component k to the
Gaussian mixture distribution of (1), with

pk(x) = πkN (x|µk,Σk) (7)

for x ∈ R
D. Then pk can the treated as a representation of component k itself.

Note that pk is not a normalized distribution unless πk = 1. Also, let

〈p, q〉 =
∫

p(x)q(x)dx (8)

be the L2 inner product of real-valued, square-integrable functions p, q—again
not necessarily normalized—where the integral is assumed to be over RD. The
corresponding L2 norm of function p is given by ‖p‖ =

√〈p, p〉. When p, q are
normal distributions, the integral in (8) can be evaluated in closed form.

Theorem 1. Let p(x) = N (x|a,A) and q(x) = N (x|b,B) for x ∈ R
D. Then

〈p, q〉 = N (a|b,A +B). (9)

Hence, given components represented by pi, pk, their overlap in space, as mea-
sured by inner product 〈pi, pk〉, is

〈pi, pk〉 = πiπkN (µi|µk, (σ
2
i + σ2

k)I) (10)

under the spherical Gaussian model. It can be computed in O(D), requiring only
one D-dimensional vector operation ‖µi − µk‖2, while squared norm ‖pi‖2 =
〈pi, pi〉 = π2

i (4πσ
2
i )

−D/2 is O(1). Now, if function q represents any component
or cluster, (10) motivates generalizing (2) to define quantity

γ̂k(q) =
〈q, pk〉∑K
j=1〈q, pj〉

, (11)
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Algorithm 1: Component purging (P-step)

input : set of components C ⊆ {1, . . . ,K} at current iteration
output: updated set of components C′ ⊆ C, after purging

1 K ← ∅ // set of components to keep
2 Sort C such that i < k → πi ≥ πk for i, k ∈ C // re-order components i. . .
3 foreach i ∈ C do // . . . in descending order of πi

4 if ρi,K ≥ τ then // compute ρi,K by (12)
5 K ← K ∪ i // keep i if it does not overlap with K
6 C′ ← K // updated components

so that γ̂ik = γ̂k(pi) ∈ [0, 1] is the generalized responsibility of component k for
component i. Function pi is treated here as a generalized data point, centered
at μi, weighted by coefficient πi and having spatial extent σi to represent the
underlying actual data points. Observe that (11) reduces to (2) when q collapses
to a Dirac delta function, effectively sampling component functions pk.

According to our definitions, γ̂ii is the responsibility of component i for itself.
More generally, given a set K of components and one component i /∈ K, let

ρi,K =
γ̂ii

γ̂ii +
∑

j∈K γ̂ij
=

‖pi‖2
‖pi‖2 +

∑
j∈K〈pi, pj〉

. (12)

Quantity ρi,K ∈ [0, 1] is the responsibility of component i for itself relative to K.
If ρi,K is large, component i can ‘explain’ itself better than set K as a whole;
otherwise i appears to be redundant. So, if K represents the components we have
decided to keep so far, it makes sense to purge component i if ρi,K drops below
overlap threshold τ ∈ [0, 1], in which case we say that i overlaps with K.

We choose to process components in descending order of mixing coefficients,
starting from the most populated cluster, which we always keep. We then keep a
component unless it overlaps with the ones we have already kept; otherwise we
purge it. Note that τ ≥ 1

2 ensures we cannot ‘keep’ two identical components.
This P-step is outlined in Algorithm 1, which assumes that C ⊆ {1, . . . ,K} holds
the components of the current iteration. Now K refers to the initial number of
components; the effective number, C = |C| ≤ K, decreases in each iteration.
This behavior resembles agglomerative clustering—in fact, inner product (8) is
analogous to the average linkage or group average criterion [28], which however
measures dissimilarity and is discrete.

We perform the P-step right after E- and M-steps in each EM iteration. We
also modify the M-step to re-estimate πk, µk, σk according to (3), (4), (6) only
for k ∈ C; similarly, in the E-step, compute γnk = γk(xn) for all n = 1, . . . , N
but only k ∈ C, with

γk(x) =
πkN (x|µk,Σk)∑
j∈C πjN (x|µj ,Σj)

, (13)

where the sum in the denominator of (2) has been constrained to C.
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3.3 Expanding

When a component, say i, is purged, data points that were better ‘explained’ by i
prior to purging will have to be assigned to neighboring components that remain.
These components will then have to expand and cover the space populated by
such points. Towards this goal, we modify (6) to overestimate the extent of each
component as much as this does not overlap with its neighboring components.
Components will then tend to fill in as much empty space as possible, and this
determines the convergence rate of the entire algorithm.

More specifically, given component k in the current set of components C, we
use the constrained definition of γk(x) in (13) to partition the data set P =
{1, . . . , N} into the set of its inner points

Pk = {n ∈ P : γnk = max
j∈C

γnj}, (14)

contained in its Voronoi cell, and outer points, Pk = P \ Pk. We now observe
that re-estimation equation (6) can be decomposed into

Dσ2
k =

Nk

Nk
Σk +

Nk

Nk
Σk, (15)

where Nk =
∑

n∈Pk
γnk, Nk =

∑
n∈Pk

γnk, and

Σk =
1

Nk

∑

n∈Pk

γnk‖xn − µk‖2, Σk =
1

Nk

∑

n∈Pk

γnk‖xn − µk‖2. (16)

Since Nk +Nk = Nk, the weights in the linear combination of (15) sum to one.
The inner sum Σk expresses a weighted average distance from µk of data points
that are better ‘explained’ by component k, hence fits the underlying data of
the corresponding cluster. On the other hand, the outer sum Σk plays a similar
role for points ‘explained’ by the remaining components. Thus typically Σk < Σk

though this is not always true, especially in cases of excessive component overlap.
Now, the trick is to bias the weighted sum towards Σk in (15) as follows,

Dσ2
k = wkΣk + (1− wk)Σk, (17)

where wk =
Nk

Nk
(1 − λ) and λ ∈ [0, 1] is an expansion factor, with λ = 0 reduc-

ing (17) back to (6) and λ = 1 using only the outer sum Σk.
Because of the exponential form of the normal distribution, the outer sum Σk

is dominated by the outer points in Pk that are nearest to component k, hence
it provides an estimate for the maximum expansion of k before overlaps with
neighboring components begin. Figure 2 illustrates expansion for the example
of Figure 1. The outer green circles typically pass through the nearest clusters,
while the inner ones tightly fit the data points of each cluster.
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Fig. 2. Component expansion for iterations 1, 2 and 3 of the example of Figure 1.
Blue circles: two standard deviations with expansion (17) and λ = 0.25, as in Figure 1;
magenta: without expansion (6); dashed green: inner and outer sum contributions.

3.4 Initializing and Terminating

It has been argued [7][6] that sparsely populated regions of the descriptor space
are often the most informative ones, so random sampling is usually a bad choice.
We therefore initialize with all data points as cluster centers, that is, K = N .
Using approximate nearest neighbors, this choice is not as inefficient as it sounds.
In fact, only the first iteration is affected because by the second, the ratio of
clusters that survive is typically in the order of 10%. Mixing coefficients are
uniform initially. Standard deviations are initialized to the distance of the nearest
neighbor, again found approximately.

Convergence in EM is typically detected by monitoring the likelihood function.
This makes sense after the number of components has stabilized and no purging
takes place. However, experiments on large scale vocabularies take hours or even
days of processing, so convergence is never reached in practice. What is important
is to measure the performance of the resulting vocabulary in a particular task—
retrieval in our case—versus processing required.

4 Approximate Gaussian Mixtures

Counting D-dimensional vector operations and ignoring iterations, the complex-
ity of the algorithm presented so far is O(NK). In particular, the complexity of
the E-step (13) and M-step (3), (4), (16)-(17) of each iteration is O(NC), where
C = |C| ≤ K ≤ N is the current number of components, and the complexity
of the P-step (Algorithm 1) is O(C2). This is clearly not practical for large C,
especially when K is in the order of N .

Similarly to [1], the approximate version of our Gaussian mixtures clustering
algorithm involves indexing the entire set of clusters C according to their center
µk and performing an approximate nearest neighbor query for each data point
xn, prior to the E-step of each iteration. The former step is O(Cα(C)) and the
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Algorithm 2: Incremental m-nearest neighbors (N-step)

input : m best neighbors B(xn) found so far for n = 1, . . . , N
output: updated m best neighbors B′(xn) for n = 1, . . . , N

1 for n = 1, . . . , N do // for all data points
2 B(xn)← C ∩ B(xn) // ignore purged neighbors
3 (R, d)← NNm(xn) // R: m-NN of xn; d: distances to xn

// (such that d2k = ‖xn − µk‖2 for k ∈ R)
4 for k ∈ B(xn) \ R do // for all previous neighbors. . .
5 d2k ← ‖xn − µk‖2 // . . . find distance after µk update (M-step)

6 A ← B(xn) ∪R // for all previous and new neighbors. . .
7 for k ∈ A do // . . . compute unnormalized. . .
8 gk ← (πk/σ

D
k ) exp{−d2k/(2σ2

k)} // . . . responsibility of k for xn

9 Sort A such that i < k → gi ≥ gk for i, k ∈ A // keep the top-ranking. . .
10 B′(xn)← A[1, . . . ,m] // . . .m neighbors

latter O(Nα(C)), where α expresses the complexity of a query as a function of
the indexed set size; e.g. α(C) = logC for typical tree-based methods. Respon-
sibilities γnk are thus obtained according to (13) for n = 1, . . . , N , k ∈ C, but
with distances to cluster centers effectively replaced by metric

d2m(x,µk) =

{‖x− µk‖2, if k ∈ NNm(x)
0, otherwise,

(18)

where NNm(x) ⊆ C denotes the approximate m-nearest neighborhood of query
point x ∈ R

D. Each component k found as a nearest neighbor of data point xn is
subsequently updated by computing the contributions γnk, γnkxn, γnk‖xn−µk‖2
to Nk (hence πk in (3)), µk in (4), σ2

k in (16)-(17), respectively, that are due
to xn. The M-step thus brings no additional complexity. Similarly, the P-step
involves a query for each cluster center µk, with complexity O(Cα(C)). It follows
that the overall complexity per iteration is O(Nα(C)). In the case of FLANN,
α(C) is constant and equal to the number of leaf checks per query, since we are
only counting vector operations and each split node operation is scalar.

Now, similarly to [5], we not only use approximate search to speed up clus-
tering, but we also exploit the iterative nature of the clustering algorithm to
enhance the search process itself. To this end, we maintain a list of the m best
neighbors B(xn) found so far for each data point xn, and re-use it across it-
erations. The distance of each new nearest neighbor is readily available as a
by-product of the query at each iteration, while distances of previous neighbors
have to be re-computed after update of cluster centers (4) at the M-step. The
list of best neighbors is updated as outlined in Algorithm 2.

This incremental m-nearest neighbors algorithm is a generalization of [5],
which restricts to m = 1 and k-means only. It may be considered an N-step
in the overall approximate clustering algorithm, to be performed prior to the
E-step—in fact, providing responsibilities as a by-product. The additional cost
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is m vector operations for distance computation at each iteration, but this is
compensated for by reducing the requested precision for each query. As in [5],
the rationale is that by keeping track of the best neighbors found so far, we may
significantly reduce the effort spent in searching for new ones.

5 Experiments

5.1 Setup

We explore here the behavior of AGM under different settings and parameters,
and compare its speed and performance against AKM [1] and RAKM [5] on large
scale vocabulary construction for image retrieval.

Datasets.We use two publicly available datasets, namelyOxford buildings1 [1]
and world cities2 [29]. The former consists of 5, 062 images and annotation
(ground truth) for 11 different landmarks in Oxford, with 5 queries for each.
The annotated part of the latter is referred to as the Barcelona dataset and
consists of 927 images grouped into 17 landmarks in Barcelona, again with 5
queries for each. The distractor set of world cities consists of 2M images from
different cities; we use the first one million as distractors in our experiments.

Vocabularies. We extract SURF [30] features and descriptors from each
image. There are in total 10M descriptors in Oxford buildings and 550K in
Barcelona. The descriptors, of dimensionality D = 64, are the data points we
use for training. We construct specific vocabularies with all descriptors of the
smaller Barcelona dataset, which we then evaluate on the same dataset for pa-
rameter tuning and speed comparisons. We also build generic vocabularies with
all 6.5M descriptors of an independent set of 15K images depicting urban scenes,
and compare on the larger Oxford buildings in the presence of distractors.

Evaluation protocol. Given each vocabulary built, we use FLANN to assign
descriptors, keeping only one NN under Euclidean distance. We apply soft assign-
ment on the query side only as in [21], keeping the first 1, 3, or 5 NNs. These are
found as in [15] with σ = 0.01. We rank by dot product on 	2-normalized BoW
histograms and tf-idf weighting. We measure training time in D-dimensional
vector operations (vop) per data point and retrieval performance in mean aver-
age precision (mAP) over all queries. We use our own C++ implementations for
AKM and RAKM.

5.2 Tuning

We choose Barcelona for parameter tuning because, combined with descriptor
assignment, it would be prohibitive to use a larger dataset. It turns out how-
ever, that AGM outperforms the state of the art at much larger scale with the
same parameters. The behavior of EGM is controlled by expansion factor λ and
overlap threshold τ ; AGM is also controlled by memory m that determines ANN
precision and cost, considered in section 5.3.

1 http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/
2 http://image.ntua.gr/iva/datasets/wc/

http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/
http://image.ntua.gr/iva/datasets/wc/
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Fig. 3. Barcelona-specific parameter tuning. (left) mAP performance versus iteration
during learning, for varying expansion factor λ and fixed τ = 0.5. (right) mAP versus
overlap threshold τ for different iterations, with fixed λ = 0.2.

Figure 3 (left) shows mAP against number of iterations for different values
of λ. Compared to λ = 0, it is apparent that expansion boosts convergence rate.
However, the effect is only temporary above λ = 0.2, and performance eventually
drops, apparently due to over-expansion. Now, τ controls purging, and we expect
τ ≥ 0.5 as pointed out in section 3.2. Since ρi,K is normalized, τ = 0.5 appears to
be a good choice, as component k ‘explains’ itself at least as much as K in (12).
Figure 3 (right) shows that the higher τ the better initially, but eventually
τ = 0.55 is clearly optimal, being somewhat stricter than expected. We choose
λ = 0.2 and τ = 0.55 for the remaining experiments.

5.3 Comparisons

We use FLANN [17] for all methods, with 15 trees and precision controlled
by checks, i.e. the number of leaves checked per ANN query. We use 1, 000
checks during assignment, and less during learning. Approximation in AGM is
controlled by memory m, and we need m FLANN checks plus at most m more
distance computations in Algorithm 2, for a total of 2m vector operations per
iteration. We therefore use 2m checks for AKM and RAKM in comparisons.
Figure 4 (left) compares all methods on convergence for m = 50 and m = 100,
where AKM/RAKM are trained for 80K vocabularies, found to be optimal.

AGM not only converges as fast as AKM and RAKM, but also outperforms
them for the same learning time. AKM and RAKM are only better in the first
few iterations, because recall that AGM initializes from all points and needs a
few iterations to reach a reasonable vocabulary size. The relative performance
of RAKM versus AKM is not quite as expected by [5]; this may be partly due
to random initialization, a standing issue for k-means that AGM is free of, and
partly because performance in [5] is measured in distortion rather than mAP in
retrieval. It is also interesting that, unlike the other methods, AGM appears to
improve in mAP for lower m.
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Fig. 4. (Left) Barcelona-specific mAP versus learning time, measured in vector opera-
tions (vop) per data point, for AGM, AKM and RAKM under varying approximation
levels, measured in FLANN checks. There are 5 measurements on each curve, corre-
sponding, from left to right, to iteration 5, 10, 20, 30 and 40. (Right) Oxford buildings
generic mAP in the presence of up to 1 million distractor images for AGM and RAKM,
using query-side soft assignment with 1, 3 and 5 NNs.

Table 1. mAP comparisons for generic vocabularies of different sizes on Oxford Build-
ings with a varying number of distractors, using 100/200/200 FLANN checks for
AGM/AKM/RAKM respecively, 40 iterations for AKM/RAKM, and 15 for AGM.

Method RAKM AKM AGM

Vocabulary 100K 200K 350K 500K 550K 600K 700K 550K 857K

No distractors 0.430 0.464 0.471 0.479 0.486 0.485 0.476 0.485 0.492

20K distractors 0.412 0.427 0.439 0.440 0.448 0.441 0.437 0.447 0.459

For large scale image retrieval, we train generic vocabularies on an indepen-
dent dataset of 15K images and 6.5M descriptors, and evaluate on Oxford build-
ings in the presence of up to one million distractors from world cities. Because
experiments are very expensive, we first choose the best competing method for
up to 20K distractors as shown in Table 1. We use m = 100 in this experiment,
with 40 iterations for AKM/RAKM, and only 15 for AGM. This is because
we are now focusing on mAP performance rather than learning speed, and our
choices clearly favor AKM/RAKM. It appears that 550K is the best size for
RAKM, and AKM is more or less equivalent as expected, since their difference
is in speed. AGM is slightly better with its vocabulary size C = 857K being
automatically inferred, keeping λ = 0.2, τ = 0.55 as explained in section 5.2.

Keeping exactly the same settings, we extend the experiment up to 1M dis-
tractors for the RAKM 550K and AGM 857K vocabularies under query-side
soft-assignment, as depicted in Figure 4 (right). Without any further tuning
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compared to that carried out on Barcelona, AGM maintains a clear overhead of
up to 3.5% in mAP, e.g. 0.303 (0.338) for RAKM (AGM) at 1M distractors.

The query time of RAKM (AGM) is 354ms (342ms) on average for the full 1M
distractor index, so there appears to be no issue with the balance of cluster pop-
ulation. Spatial verification and re-ranking further increases mAP performance
to 0.387 (0.411) for RAKM (AGM) at an additional cost of 323ms (328ms) us-
ing Hough pyramid matching [29] on a shortlist of 200 images at 1M distractors.
Variants of Hamming embedding [24], advanced scoring or query expansion are
complementary, hence expected to further boost performance.

6 Discussion

Grouping 107 points into 106 clusters in a space of 102 dimensions is certainly
a difficult problem. Assigning one or more visual words to 103 descriptors from
each of 106 images and repeating for a number of different settings and competing
methods on a single machine has proved even more challenging. Nevertheless,
we have managed to tune the algorithm on one dataset and get competitive
performance on a different one with a set of parameters that work even on our
very first two-dimensional example. In most alternatives one needs to tune at
least the vocabulary size. Even with spherical components, the added flexibility
of Gaussian mixtures appears to boost discriminative power as measured by
retrieval performance. Yet, learning is as fast as approximate k-means, both in
terms of EM iterations and underlying vector operations for NN search.

Our solution appears to avoid both singularities and overlapping components
that are inherent in ML estimation of GMMs. Still, it would be interesting
to consider a variational approach [3] and study the behavior of our purging
and expanding schemes with different priors. Seeking visual synonyms towards
arbitrarily-shaped clusters without expensive sets of parameters is another direc-
tion, either with or without training data as in [23]. More challenging would be
to investigate similar ideas in a supervised setting, e.g. for classification. More
details, including software, can be found at our project home page3.
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23. Mikuĺık, A., Perdoch, M., Chum, O., Matas, J.: Learning a Fine Vocabulary.

In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part III. LNCS,
vol. 6313, pp. 1–14. Springer, Heidelberg (2010)

24. Jegou, H., Douze, M., Schmid, C.: Hamming Embedding and Weak Geometric Con-
sistency for Large Scale Image Search. In: Forsyth, D., Torr, P., Zisserman, A. (eds.)
ECCV 2008, Part I. LNCS, vol. 5302, pp. 304–317. Springer, Heidelberg (2008)

25. Ueda, N., Nakano, R., Ghahramani, Z., Hinton, G.: SMEM algorithm for mixture
models. Neural Computation 12(9), 2109–2128 (2000)

26. Figueiredo, M., Jain, A.: Unsupervised learning of finite mixture models. IEEE
Transactions on Pattern Analysis and Machine Intelligence 24(3), 381–396 (2002)

27. Verbeek, J., Nunnink, J., Vlassis, N.: Accelerated EM-based clustering of large
data sets. Data Mining and Knowledge Discovery 13(3), 291–307 (2006)

28. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer (2009)

29. Tolias, G., Avrithis, Y.: Speeded-up, relaxed spatial matching. In: ICCV (2011)
30. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded Up Robust Features. In:

Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417.
Springer, Heidelberg (2006)


	Approximate Gaussian Mixtures for Large 
Scale Vocabularies
	Introduction
	Related Work
	Expanding Gaussian Mixtures
	Parameter Learning
	Purging
	Expanding
	Initializing and Terminating

	Approximate Gaussian Mixtures
	Experiments
	Setup
	Tuning
	Comparisons

	Discussion
	References





