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Abstract. In this paper we consider the problem of inverse rendering
faces under unknown environment illumination using a morphable model.
In contrast to previous approaches, we account for global illumination
effects by incorporating statistical models for ambient occlusion and bent
normals into our image formation model. We show that solving for ambi-
ent occlusion and bent normal parameters as part of the fitting process
improves the accuracy of the estimated texture map and illumination
environment. We present results on challenging data, rendered under
complex natural illumination with both specular reflectance and occlu-
sion of the illumination environment.

1 Introduction

The appearance of a face in an image is determined by a combination of intrinsic
and extrinsic factors. The intrinsic properties of a face include its shape and
reflectance properties (which vary spatially, giving rise to parameter maps or,
in the case of diffuse albedo, texture maps). The extrinsic properties of the
image include illumination conditions, camera properties and viewing conditions.
Inverse rendering seeks to recover intrinsic properties from an image of an object.
These can subsequently be used for recognition or re-rendering under novel pose
or illumination.

The forward rendering process is very well understood and physically-based
rendering tools allow for photorealistic rendering of human faces. The inverse
process on the other hand is much more challenging. Perhaps the best known
results apply to convex Lambertian objects. In this case, reflectance is a function
solely of the local surface normal direction and irradiance (even under complex
environment illumination) can be accurately described using a low-dimensional
spherical harmonic approximation [I]. This observation underpins the successful
appearance-based approaches to face recognition.

However, faces are not globally convex and it has been shown that occlusions
of the illumination environment play an important role in human perception of
3D shape [203]. Prados et al. [4] have shown how shading caused by occlusion
under perfectly ambient illumination can be used to estimate 3D shape. In this
paper we take a step towards incorporating global illumination effects into the
inverse rendering process. This is done in the context of fitting a 3D morphable
face model, so the texture is subject to a global statistical constraint.
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We use a model which incorporates ambient occlusion [5] and bent normals
[6] into the image formation process. This is an approximation to the rendering
equation that is popular in graphics, because it can be precomputed and subse-
quently used in realtime rendering applications. Both properties are a function
of the 3D shape of an object. Figure [ illustrates this concept graphically. For
non-convex objects, using surface normals to model illumination with spherical
harmonics leads to an approximation error; a problem well understood and often
referred to within the vision and graphics communities. We focus on a certain
object class, human faces, which possess non-convex regions. If the object shown
in Figure [Iis illuminated by a uniform distant light source, a further approxi-
mation error occurs: the entire object will appear un-shaded. In reality however,
points on the surface where the upper hemisphere relative to the surface normal
intersects other parts of the scene (including the object itself), shading occurs
that is proportional to the degree of occlusion; a phenomenon known as ambient
shading.

) Point of interest

) Upper hemisphere

) Un-occluded directions
)

)
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d) Surface normal

e) Bent normal

Fig. 1. Spherical lighting modelled via surface normals results in a systematic error for
non-convex parts of a shape. Bent normals (the direction of least occlusion) provide a
more accurate approximation to the true underlying process.

Accurately calculating ambient occlusion and bent normals for a given shape is
computationally expensive. In this paper, we build a statistical model of ambient
occlusion and bent normals and learn the relationship between shape parameters
and ambient occlusion/bent normal parameters. This means an initial estimate of
the parameters can be made by statistical inference from the shape parameters.
During the inverse rendering process, the parameters are refined to best describe
the observed image. The result is that the texture map is not corrupted by dark
pixels in occluded regions and the accuracy of the estimated texture map and
illumination environment is increased. We present results on synthetic images
with corresponding ground truth.

2 Image Formation Process

We allow unconstrained illumination of arbitrary colour. Our image formation
process models additive Lambertian and specular terms. The Lambertian term
further distinguishes between an ambient term, which is pre-multiplied with an
occlusion model and an unconstrained part.
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2.1 The Physical Image Formation Process

Consider a surface with additive diffuse (Lambertian) and specular reflectance
illuminated by a distant spherical environment. The image irradiance at a point
p with local surface normal n,, is given by an integral over the upper hemisphere
2(ny):

= [ L@V [yl @) + sy v)] do (1)
‘Q(np)

where L(w) is the illumination function (i.e. the incident radiance from direction
w). Vpw is the visibility function, defined to be zero if p is occluded in the
direction w and one otherwise. p, is the spatially varying diffuse albedo and we
assume specular reflectance properties are constant over the surface.

A common assumption in computer vision is that the object under study is
convex, i.e.: Vp,w € 2(n,) = V,, = 1. The advantage of this assumption is
that the image irradiance reduces to a function of local normal direction which
can be efficiently characterised by a low order spherical harmonic.

However, under point source illumination this corresponds to an assumption
of no cast shadows and under environment illumination it neglects occlusion of
regions of the illumination environment. In both cases, this can lead to a large
discrepancy between the modelled and observed intensity and, in the context of
inverse rendering, distortion of the estimated texture. Heavily occluded regions
are interpreted as regions with dark texture.

Many approximations to Equation [I] have been proposed in the graphics lit-
erature and several could potentially be incorporated into an inverse rendering
formulation. However, in this paper our aim is to demonstrate that even the
simplest approximation yields an improvement in inverse rendering accuracy.
Specifically, we use the ambient occlusion and bent normal model proposed by
Zhukov et al. [5] and Landis [6]. Ambient occlusion is based on the simplification
that the visibility term can be moved outside the integral:

=y [ L) () + slg, 0, v) do (@)
‘Q(np)

where the ambient occlusion a, € [0, 1] at a point p is given by:

1
ap = o /Q(np) Vpw(ny - w)dw. (3)

Under this model, light from all directions is equally attenuated, i.e. the di-
rectional dependence of illumination and visibility are treated separately. For a
perfectly ambient environment (i.e. Vw € S%, L(w) = k), the approximation is
exact. Otherwise, the quality of the approximation depends on the nature of the
illumination environment and reflectance properties of the surface. An extension
to ambient occlusion is the so-called bent normal. This is the average unoccluded
direction. It attempts to capture the dominant direction from which light arrives
at a point and is used in place of the surface normal for rendering.
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2.2 Model Approximation of the Image Formation Process

The image formation model stated in Equation [ is approximated using the
following multilinear system:

Liod = (Tb 4+ t). * [(Hala) . * (Oc + 6) + Hplp] + Sl (4)
The factors and terms are defined as follows:

Tb + t — Diffuse Albedo Hypl, — Diffuse lighting
Hal, — DC lighting component S1, — Specular contribution.
Oc + 6 — Ambient occlusion

Given a 3D shape and the camera projection matrix, the unknown photometric
coefficients are: b,1,,c,1; and 1,.

2.3 Inverse Rendering

We estimate unknown coefficients given a single 2D image. To get correspondence
between a subset of the model vertices and the image, we a fit a statistical
shape model using the method described in [7]. Assuming an affine mapping,
the method alternates between estimating rigid and non-rigid transformations.
Given a 3D shape, we have access to surface normals, which can be used to
construct spherical basis functions.

In this paper, we propose to construct a spherical harmonic basis from bent
normals rather than surface normals. Surface normals are still of interest to us
for two reasons. Firstly, they serve as reference for the proposed modification,
and secondly, they are incorporated as part of a joint model which efficiently
infers bent normals from 3D shape. The image formation model (Equation M),
and its algebraic solution with respect to the unknowns is not affected by this
substitution.

The basis set H, € RV*3 contains ambient constants per colour channel and
is independent of the normals. H; € RY*24 contains linear and quadratic terms
with respect to the normals. Similarly, the set S € RV** contains higher order
approximations (up to polynomial degree s), which are used to model specular
contributions. However, in the specular case, the normals are rotated about
the viewing direction, v. The three sets are sparse and can directly be inferred
given a shape estimate. The parameters 1,,1; and 1, depend on a single lighting
function 1, and are coupled via Lambertian and specular BRDF parameters.
We use the method described in [§] to obtain the lighting function from the
reflectance parameters. In order to prevent overfitting, we add prior terms for
texture and ambient occlusion to the objective function: E(b,1,,1;,1,, c). Both
priors penalise complexity and the overall objective takes the following form:

E = |Lnoa — Tobs|I* + [[bII* + flel|?, ()

where I,,s are RGB measurements mapped onto the visible vertices of the pro-
jected shape model. Under the assumption that each aspect contributes indepen-
dently to the objective, the system can be solved with a global optimum for each
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parameter-set. As opposed to conventional multilinear systems, which can only
be solved up to global scale, our system factors the mean for texture and occlu-
sion; this property makes the solution unique. We equate the partial derivatives
of Equation [l to zero and obtain closed-form solutions for each parameter-set.
In order to preserve source integrity, we estimate 1, and 1 jointly in one step.

3 Statistical Modelling

Our proposed framework requires five statistical models. A PCA model for 3D
shape, diffuse albedo and ambient occlusion, respectively and PGA models for
surface normals and bent normals. Coefficients for global shape, texture and
ambient occlusion are obtained directly in the fitting pipeline. Coefficients for
bent normals on the other hand cannot be obtained in the same way, due to
higher order dependencies. We therefore propose a generative method to infer
bent normals from 3D shape. A supplemental surface normal model is used to
reduce generalisation error. Comparative results to using vertex data only are
presented in the experimental section.

3.1 Shape Model

We use a 3D morphable model (3DMM) [9] to describe global shape. The model
transforms 3D shape to a low-dimensional parameter space and provides a prior
to ensure reconstructions correspond to plausible face shapes. A 3DMM is con-
structed from m face meshes which are in dense correspondence. Each mesh con-
sists of p vertices and is written as a vector v = [z1 y1 21 ... Tp yp 2p]T € R",
where n = 3p. Applying principal components analysis (PCA) to the data matrix
formed results in m — 1 eigenvectors V;, their corresponding variances cr?m» and
the mean shape v. Any face shape can be approximated as a linear combination
of the modes of variation:

m—1
vV=vV-+ E a;V;, (6)
i=1
wherea = [a; ... am,l]T corresponds to a vectors of parameters. We also define
the variance-normalised vector as: e, = [a1/04,1 +.. Gm—1/0am-1]"

3.2 Surface Normal Model

In addition to 3D vertices, we make of use surface normals to capture local shape
variation. In contrast to data lying on a Euclidian manifold (R™), surface normals
are part of a Riemannian manifold and can not be simply modelled by applying
PCA to the samples. Fletcher et al. [I0] introduced the concept of Principal
Geodesic Analysis (PGA), which can be seen as a generalisation of PCA to
the manifold setting. Smith and Hancock [11] showed how this framework can
be successfully applied to model directional data. In this work, we use PGA
to construct statistical models of surface normals and bent normals. For data
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n laying on a spherical manifold S?, first a mean vector Ay intrinsic to the
manifold is calculated. The mean vector serves as reference point p at which a
tangent plane is constructed. In the next step, all samples n; = (ng,ny,n;);
are projected to points v; = (v, vy); on the tangent plane in geodesic distance
preserving manner using the Log map. The principal directions IN; are found
by applying PCA to the projected samples. A sample can be back projected
onto the manifold by applying the Exponential map. Using this notation, we
construct a model for normals as follows:

m—1
n = Log,, (Z biNi> , (7)
i=1

where b = [by ... b,,_1]T are parameter vectors. Variance-normalised they are
defined as: e, = [b1/0p1 -+ bn—1/bm-1]"

3.3 Ambient Occlusion Model

For each of the m shape samples, we compute ground truth ambient occlusion
using Meshlab [12]. Each vertex is assigned a single integer o; € [0, 1], which cor-
responds to the occlusion value. A value of 1 indicates a completely unoccluded
vertex. As for shape, we construct a PCA model for ambient occlusion:

m—1
o0=0+ E ¢; 0, (8)
i=1
where ¢ = [c1 ... ¢m_1]T is a parameter vector. The computed mean value is

defined as: 6, and the O;’s are modes of variation capturing decreasing energy
2
o

c,”

3.4 Bent Normal Model

From a modelling perspective, bent normals are equivalent to surface normals
(samples on a spherical manifold). And the model is constructed in the same
way as the one described in section

i=1

Note that here Ay refers to the intrinsic mean of the bent normals. As in pre-
vious defined models, d = [d; ... dm_l]T is a vector of parameters. Variance-
normalised they are defined as: e. = [d1/041 ... dm—1/0am-1]"

3.5 Bent Normal Inference

We infer bent normals from shape data using a generative non-parametric model,
namely a probabilistic linear Gaussian model with class specific prior functions.
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In a discrete setting, a joint instance comprising the knowns and unknowns is
represented as a feature vector f = [/ £7]7, where ff = [elel]" or ff = el
(depending on whether only vertices or vertices and surface normals are used)
and f7 = el'. The training set consists of m instances re-projected into the
corresponding models. To ensure the scales of both models are commensurate, we
use variance normalised parameter vectors. We construct the design matrix D €
R(mstme)xm Ly stacking the parameter vectors. From a conceptual perspective
our model is equivalent to a probabilistic PCA model [I3]. The non-probabilistic
term is described with a noise term, e. Noise is assumed normally distributed,
and its distribution is assumed stationary for all features. A joint occurrence is
described as follows:

f=Wa+p+e (10)

The parameter a and the noise term are assumed to be Gaussian distributed:
p(a) ~N(0.1) p(e) ~ N(0,0°T). (11)

In probabilistic terms, a joint instance is written as:

p(fla) ~ N(Wa + p,0I). The characteristic model parameters are: W, i and

o2 (L is the identity matrix of appropriate dimension). The most likely values can
. . . PR S | m

be obtained by applying PCA to the mean-free design matrix: D = © > " (f; —

w (& — )T =UE2VT, and setting:

1 m 1 m—1
_ Z 9 Z 2 _ 2 2 1V5
Hml = m 4 lfi’ Tmi = m—1—u . +12i,ia W = Uy (8], -0, 1)z,
= 1=u

(12)
The small letter u corresponds to the number of used modes. Our aim is to
estimate f. given fj,. For data which is jointly Gaussian distributed, the following
margninalisation property holds true:

T T
W, W/ WkWCD . (13)

Therefore we can write the probability p(fx|a) ~ N (Wra + g, 0I). According
to the specifications, we also have knowledge of how « is distributed (see relations
[[1). Applying Bayes’ rule, we can infer the posterior for alpha as follows:

plalfi) ~ N(M™"WY (fr — p), 0 M™1), (14)

where M = W W{ + oI (see for example [I4] for an in-depth explanation of
linear Gaussian models). Given an estimate for «, we can obtain the posterior
distribution for the missing part p(f.|a), with the mode centre (W.ar + pc)
corresponding to the MAP estimate.

4 Experiments

We use a 3D morphable model [I5] to represent shape and diffuse albedo. Since
we do not have access to the initial training data, we sample from the model
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to construct a representative set. This is only required for the shape model, as
neither ambient occlusion nor bent normals exhibit a dependency on texture.
In order to capture the span of the model, we sample £+3 standard deviations
for each of the k = 199 principal components plus the mean shape. Because of
the non linear relationship between shape and ambient occlusion/bent normals,
we additionally sample 200 random faces from the model. This accounts for a
total of m = 599 training examples. For each sample, we calculate ground truth
ambient occlusion and bent normals using Meshlab [12]. We retain mg p c.q = 199
most significant modes for each model.

Using a physically based rendering toolkit (PBRT v2 [16]), we render 3D faces
of eight subjects in three pose angles and three illumination conditions. The
subjects are not part of the training set. To cover a wide range, we chose pose
angles: —60°, 0° and 45°. The faces are rendered in the following illumination
environments: ‘White’, ‘Glacier’ and ‘Pisa’, where the latter two are obtained
from [I7]. Skin reflectance is composed of additive Lambertian and specular
terms with a ratio of 10/1. The test set consists of 8 x 3 x 3 = 72 images in total.

For each of the samples, we first recover 3D shape and pose from a sparse set of
feature points using algorithm [7]. We project shape into the images and obtain
RGB values for a subset of the model vertices, n = 3p. Using the proposed image
formation process and objective function, we decompose the observations into
its contributions: texture, ambient shadin, diffuse shading and specular reflec-
tion. We compare three settings: In a reference method, we calculate spherical
harmonic basis functions using surface normals and do not account for ambient
occlusion (Fit A). In a second setting, we use the same basis functions and fit
ambient occlusion (Fit B). And finally, we derive the basis functions from bent
normals and fit ambient occlusion (Fit C). Each of the settings is evaluated
according to three quantitative measures:

1. Texture reconstruction error
2. Fully synthesised model error
3. Nlumination estimation accuracy

We also investigate how accurately bent normals are predicted from the joint
model by comparing against ground truth. The last part of this section shows
qualitative reconstructions for texture and full model synthesis and an appli-
cation of illumination transfer. Out-of-sample faces are labeled with three digit
numbers (001 — 323).

4.1 Bent Normal Generalisation Error

In this section, we investigate generalisation error of the bent normal model.
In a first trial, we examine how well the model generalises to unseen data by
projecting out-of-sample data into the model (Model). In a second and third
trial, we measure the error induced by predicting bent normals from shape. The
first method uses only vertex data (Joint A). The second method additionally

! Ambient occlusion is only estimated in the second and third setting.
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Table 1. Bent normal approximation error for eight subjects. Errors are measured in
mean angular difference.

Ep,V: 001 002 014 017 052 053 293 323 mean
Model: 3.32 2.68 2.79 2.67 2.56 3.10 2.19 2.41 2.72
Joint A: 4.53 4.04 4.82 4.04 4.13 5.49 3.83 3.73 4.33
Joint B: 3.94 3.57 4.42 3.66 3.88 4.75 3.15 3.34 3.84

Table 2. Texture reconstruction errors averaged over subjects and pose angles. Indi-
vidual entries are x1073.

E;,V: 001 002 014 017 052 053 293 323 0° 45°  —60° mean
Fit A 3.394 3.866 3.417 13.13 5.108 3.454 3.710 3.856 5.277 5.165 4.534 4.991
Fit B 3.213 3.603 2.843 12.63 4.387 3.511 3.254 3.109 4.596 4.704 4.410 4.569
Fit C 2.803 3.716 3.111 10.09 3.509 2.978 2.992 3.352 4.224 3.973 4.028 4.069

incorporates surface normals (Joint B). Reconstruction error is measured in mean
angular distance:

1¢ b - by
Ep = arccos g, (15)
p; (IIbz,IIb%«II
where b; corresponds to the i'th ground truth bent normal and b’ to the recon-
struction. Table [I] shows reconstruction errors for eight out-of-sample faces.

4.2 Texture Reconstruction Error

We use the 60 most significant principal components to model texture. Our
evaluation is based on squared Euclidian distance:

1 )
E. = |ty —t, > 16
t n” g H ( )

between ground truth texture t, and reconstruction t,.. Individual values within
each texture vector are within R € [0, 1]. Table [l shows reconstruction errors for
all subjects averaged over illumination and over pose angles.

4.3 Full Model Composition Error

The difference between the fully synthesised model and the images is examined
in this part. As for texture, we measure the difference in squared Euclidian
distance:

1
Er = _||f, — £.]|? 17
e = Ity — £ (7)

where entries in f; and f. are within range [0, 1]. Error is normalised over the
number of observations 7, and differs for subjects and pose. But is constant for
the three methods. Results for this measurements are shown in Table 3
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Table 3. Full model approximation errors averaged over subjects and pose angles.
Individual entries are x1073

E;,V: 001 002 014 017 052 053 293 323 0° 45°  —60° mean
Fit A 2.130 2.662 2.651 3.574 2.402 2.449 2.346 2.569 2.272 3.106 2.538 2.598
Fit B 1.822 2.362 2.323 3.296 2.058 2.110 1.974 2.267 1.949 2.783 2.199 2.277
Fit C 1.819 2.387 2.268 3.269 2.080 2.083 2.009 2.204 1.908 2.729 2.257 2.264

Table 4. Light source approximation error for for the three methods. Entries represent
angular error averaged over all subjects and pose angles.

E1,V : White Glacier Pisa mean
Fit A 10.14 16.61 19.05 15.25
Fit B 9.12 1531 16.94 13.79
Fit C 6.44 12.70 14.03 11.06

4.4 Environment Map Approximation Error

In this section, we compare lighting approximation error for the three methods.
We obtain ground truth lighting coefficients by rendering a sphere in the same
illumination conditions than the faces. The material properties are also set to be
equal. As the normals and the texture of the sphere are known, we deconvolve
the image formation and extract lighting coefficients. This also makes sense for
white illumination, as with this procedure we obtain the overall magnitude of
light source intensity. We divide reflectance vectors by the corresponding BRDF
parameters and use them as ground truth: 1,. For each of the images, we compute
angular distance between the recovered lighting coefficients 1, and the ground

truth: L
E; = arccos ( g9 ) (18)
g l[[]1

Results for the experiments are shown in Table @ where we have averaged over
all subjects and pose angles.

4.5 Qualitative Results

For visual comparison, we show qualitative results for the three methods under
investigation. Figure 2] displays fitting results for various subjects, pose angles
and illumination conditions. The Figure shows full model synthesis and texture
reconstructions for methods Fit A and Fit C.

As can be seen in Table 2l and [Bl quantitative differences between method Fit
B and Fit C are less pronounced. This also applies for perceptual differences.
Methods Fit C notably obtains more accurate reconstructions for regions which
are severely occluded. Figure Bl shows magnifications of full model synthesis of
the nose region for two subjects.
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293,45°,'G’ 017,0°,'P’

Fig. 2. Comparison of method Fit A and Fit C for five subjects in different pose angles
and illumination condition. Top row shows input images. Second row shows full model
synthesis for method Fit A. The third row shows full model synthesis for method Fit
C. And the fourth and fifth row show ground truth texture (and shape) and texture
reconstruction using method Fit A. The last row shows texture reconstructions using
method Fit C. Labels on top of images are: Face ID, Pose, Illumination, where ‘W’ ‘G’
and ‘P’ corresponds to ‘White’, ‘Glacier’ and ‘Pisa’.

A most important feature to be extracted is diffuse albedo. As an identity
specific parameter it should be consistently estimated across pose and illumi-
nation. Figure @ shows model synthesis and texture reconstructions for method
Fit C for one subject in all pose and illumination combinations, including shape
and pose estimates.
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Fig. 3. Comparison of the three methods: Fit A, Fit B and Fit C for two subjects.
Close up nose region face ID: 001 (top) and ID: 014 (bottom).

¢e999
2EVCEOINY
00000009

Fig. 4. Fitting results for one subject (ID: 002) in all pose angles and illumination
condition. Top row shows input images. Second row shows full model synthesis using
method Fit C. Bottom row shows texture reconstructions. Note, that the face shown,
does not posses lower texture reconstruction error than method Fit B.

4.6 Illumination Transfer

To demonstrate stability of estimated parameters, we combined lighting coeffi-
cients (ambient, diffuse and specular) estimated from a set of subjects with iden-
tity parameters (shape, texture and ambient occlusion) and pose from the same
set. The results are shown in Figure[fl Diagonal entries show fitting results to the
actual images, and off-diagonal entries show cross illumination/identity results.
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Identity (Shape, Albedo, Ambient Occlusion), Pose

AA443 4
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Fig. 5. [llumination transfer example. Top row and first column show input images
of six subjects. Estimated parameters for shape, pose, diffuse albedo and ambient
occlusion from the columns are combined with lighting estimates obtained by the rows.

lllumination (Ambient, Diffuse, Specular)

5 Conclusions

We have presented a generative method to estimate global illumination in an in-
verse rendering pipeline. To do so, we learn and incorporate a statistical model
of ambient occlusion and bent normals into the image formation process. The
resulting objective function is convex in each parameter set and can be solved ac-
curately and efficiently using alternating least squares. In addition to qualitative
improvements, empirical results show that reconstruction accuracy for texture,
lighting and full model synthesis increases by around 10 — 18%. In future work,
we would like to explore the performance of the proposed fitting algorithm in a
recognition experiment and consider more complex approximations to full global
illumination.
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