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Abstract. We present an algorithm for marker-less performance cap-
ture of interacting humans using only three hand-held Kinect cameras.
Our method reconstructs human skeletal poses, deforming surface geom-
etry and camera poses for every time step of the depth video. Skeletal
configurations and camera poses are found by solving a joint energy min-
imization problem which optimizes the alignment of RGBZ data from
all cameras, as well as the alignment of human shape templates to the
Kinect data. The energy function is based on a combination of geometric
correspondence finding, implicit scene segmentation, and correspondence
finding using image features. Only the combination of geometric and pho-
tometric correspondences and the integration of human pose and cam-
era pose estimation enables reliable performance capture with only three
sensors. As opposed to previous performance capture methods, our al-
gorithm succeeds on general uncontrolled indoor scenes with potentially
dynamic background, and it succeeds even if the cameras are moving.

1 Introduction

In recent years, the field of marker-less motion estimation has seen great progress.
Two important lines of research have emerged in this domain. On the one
side, there are multi-view motion capture approaches that reconstruct skeleton
motion, and possibly simple body shape of people in skintight clothing from
multi-view video, e.g., [1,2,3,4,5,6]. Even though measurement accuracy has
greatly increased in the recent past, these approaches are still limited to largely
controlled studio settings, and rely on static frame-synchronized multi-video
systems comprising 10 or more cameras. Marker-less performance capture ap-
proaches take one step further and not only reconstruct a skeletal motion
model but also detailed dynamic surface geometry as well as detailed texture,
e.g. [7,8,9,10,11,12]. Unlike most skeletal motion capture methods, these ap-
proaches can also deal with people in general wide apparel. Recently, perfor-
mance capture of multiple closely interacting people was also demonstrated [13].
However, performance capture approaches typically require even more strongly
controlled studio setups, and often expect an even higher number of video cam-
eras than marker-less motion capture approaches.
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At the other end of the spectrum are methods for marker-less motion cap-
ture from a single camera view. Estimation of complex poses from a single video
stream is still a very challenging task, in particular if interactive or real-time
frame rates are the goal [6]. If additional depth data is available, e.g., obtained
by stereo reconstruction, more complex poses and simple human shape repre-
sentations can be fitted [14,15]. The recent advent of so-called depth cameras,
such as time-of-flight sensors [16] and the Microsoft Kinect, has opened up new
possibilities. These cameras measure 2.5D depth information at real-time frame
rates and, as for the Kinect, video as well. This makes them ideal sensors for
pose estimation, but they suffer from significant noise and have at best mod-
erate resolution. Using some form of articulated ICP or body part detection,
skeletal poses can be reconstructed from data captured with a single depth sen-
sor [17,18,19]. With such a depth-based local pose optimization scheme, track-
ing errors more frequently occur due to erroneous local convergence. Monocular
depth-based body tracking with improved accuracy at near-real-time is feasible
by combination of pose optimization with body part detection [20]. An alterna-
tive to model-based pose estimation is real-time joint detection from depth data
using a learned decision forest [21]. Recently, this approach has been augmented
with a regression method to enable the algorithm to localize joints also under
occlusions [22]. As opposed to the model-based pose fitting approaches, these
detection methods do not deliver joint angles. To obtain the latter an additional
inverse kinematics step is required. Recently it was shown that through a combi-
nation of model-based pose optimization with pose detection full joint angles of
even complex poses can be captured [23], also at high real-time frame rates [24].

So far it has been difficult to capture 3D models of a complexity and detail
comparable to multi-view performance capture results using just a single depth
camera. Weiss et al. [25] show an approach to fit a parametric human body
model to depth data from a Kinect. However, their method can only capture
static models of people in skintight clothing, and the motion of the person is
not captured. To capture more detailed performance models one would need
more complete, ideally 360 degree, depth data showing the scene from all sides.
Earlier work on multi-view image-based 3D reconstruction already hinted at this.
These approaches reconstructed dynamic geometry models and skeletal motion
models of good quality by fitting a body template to a sequence of shape-from-
silhouette reconstructions [26,27,28]. Building up on these ideas from the video
domain, Berger et al. [29] use several Kinects to capture simple skeletal body
poses based on a shape template.

In this paper, we show a method to do full performance capture of moving
humans using just three hand-held, and thus potentially moving, Kinect cameras.
Without resorting to any markers in the scene, it reconstructs detailed time-
varying surface geometry of humans in general apparel, as well as the motion of
the underlying skeleton. It can handle fast and complex motion with many self-
occlusions and also captures non-rigid surface deformation, e.g., due to cloth
motion. By resorting to depth sensors, our algorithm can be applied to more
general uncontrolled indoor scenes and is not limited to studios with controlled
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lighting and many stationary cameras. Also, our method requires only three
hand-held sensors to produce results that rival reconstructions obtained with
video-based performance capture methods that require a lot more cameras [13].
To enable this, we developed a method that a) tracks the motion of the hand-
held cameras and aligns the RGBZ data, and b) that simultaneously aligns the
surface and skeleton of each tracked performer to the captured RGBZ data. Our
algorithm succeeds despite notable sensor noise, and is designed to be insensitive
to multi-Kinect interference and occlusions in the scene. Our goal is thus related
to the approach by Hasler et al. [30] which enables skeletal motion capture from
hand-held video cameras. However, it goes beyond their method by being able to
capture motion and non-rigid dynamic shape of more than one closely interacting
performer from only three camera views.

Similar to the approach by Gall et al. [12] our algorithm deforms a template
made of a skeleton and a deforming surface mesh for each performer into the
captured RGBZ data. Our algorithm succeeds because of the interplay of several
algorithmic contributions: We propose an efficient geometric 3D point-to-vertex
assignment strategy to match the Kinect RGBZ data points to the geometric
model of each performer. The assignment criterion is stable under missing data
due to interference and occlusions between persons. Based on this criterion, a
segmentation of the scene into performers, ground plane, and background is im-
plicitly achieved. As a second correspondence criterion, we detect and track SIFT
features in the background part of each video frame. Based on these model-to-
data assignment criteria, we jointly estimate the pose parameters of the perform-
ers and the poses and orientations of the Kinects in a combined optimization
framework. Our non-linear objective function can be linearized and effectively
minimized through a quasi-Newton method. As we will show, the integration
of geometry-based and video-based correspondence estimation is crucial in our
setting, as only in this way combined reconstruction of human animation mod-
els and camera poses is feasible even in scenes with occlusions, notable sensor
noise and moving background. We show results on several challenging single and
multi- person motions including dance and martial arts. We also quantitatively
prove the accuracy of our reconstruction method by comparing it to video-based
performance capture.

2 Data Capture with Handheld Kinects

Our algorithm enables the reconstruction of detailed skeleton models of humans,
as well as their deforming surface geometry, in general indoor environments. The
method does not expect controlled, i.e., it can handle non-static background and
general non-studio lighting. In a typical recording situation, one or more moving
humans are recorded by C = 3 individuals (camera operators) that stand around
the scene. Each of the operators holds a Kinect camera and points it towards
the center of the recording volume, Fig. 1(a). Thee operators are free to move
the cameras during recording, for instance to get a better view of the action
with less occlusions. Our performance capture method can also handle a certain
amount of moving scene elements in the background.
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(a) (b)

(c) (f)(d) (e)

Fig. 1. Overview of the processing pipeline. (a) overhead view of typical recording
setup: three camera operators (circled in red) film the moving people in the center
(blue); (b) input to the algorithm - RGB images and the depth images from three
views; (c) 2D illustration of geometric matching of Kinect points to model vertices
(Sect. 4.2); (d) segmented RGBZ point cloud - color labels correspond to background,
ground plane (green) and interacting humans (red,blue); (e) Registered RGBZ point
cloud from all cameras; (f) reconstructed surface models and skeletons.

Exact hardware synchronization of multiple Kinects is impossible, and we thus
resort to software synchronization. We connect each Kinect to a notebook com-
puter, and all recording notebooks are connected through WiFi. One computer
serves as a master that sends a start recording signal to all other computers. The
cameras are set to a frame rate of 30fps and with our software solution the cap-
tured data of all cameras are frame-synchronized with at most 10ms temporal
difference.

The Kinect features two sensors in the same housing, a RGB video camera
and an active stereo system to capture depth. The intrinsics of both the depth
and the video cameras are calibrated off-line using a checkerboard [31]. Depth
and color data are aligned with each other using the OpenNI API1

At every time step of video t, each Kinect captures a 640×480 video frame and
an aligned depth frame, Fig. 1(b), which yields a combined RGBZ point cloud.
For each such RGBZ point p we store a triplet of values p = {xp, np, lp}. Here
xp is the 3D position of the point, np is the local 3D normal, and lp is a RGB
color triplet. The normal orientations are found by PCA-based plane fitting to
local 3D point neighborhoods. Note that the 3D point locations are given with

1 http://www.openni.org/.
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respect to each camera’s local coordinate system. For performance capture, we
need to align the points from all cameras into a global system. Since the Kinects
are allowed to move in our setting, we also need to solve for the extrinsic camera
parameters Λtc (position and orientation) of each Kinect c at every time step of
video t, i.e., solve for the combined extrinsic set Λt = {Λtc}Cc=1. Fig.1(e) shows
the merged point set at time t after solving for the extrinsics using the method
later described in this paper. Also, due to occlusions in the scene and interference
between several Kinects, 3D points corresponding to some Kinect camera pixels
cannot reliably be reconstructed. The joint camera tracking and performance
capture method thus needs to be robust against such missing measurements.

3 Scene Models

For each of the k = 1, . . . ,K performers in the scene, a template model is
defined. Similar to [12,13] a template model comprises a surface mesh Mk with
an embedded kinematic bone skeleton (see Fig. 1(f)). Similar to other model-
based performance capture work, we use a laser scanner to get a static surface
mesh of the person. Alternatively, image-based reconstruction methods could
be used or the mesh could be reconstructed from the aligned Kinect data. We
remesh the surface models, such that they have around Nk = 5000 vertices. Each
vertex is also assigned a color that can change over time as described in Sec. 4.5.
Henceforth, the 3D positions of vertices of mesh k with attached colors at time
t are denoted by the set V tk = {vtk,i}Nk

i=1. To stabilize simultaneous 3D human
shape and Kinect position tracking, we also explicitly model the ground plane as
a planar mesh V t0 with circular boundary. The ground plane model has a fixed
radius of 3m and during initialization is centered below the combined center of
gravity of the human models (see Fig.1(d)). In total, this yields a combined set
of vertex positions V t = {{V tk}Kk=0} that need to be reconstructed at each time
step. This excludes the ground plane vertices as their position is fixed in world
space. Its apparent motion is modeled by moving the cameras.

A kinematic skeleton with n = 31 degrees of freedom is manually placed into
each human mesh and surface skinning weighs are computed using a similar pro-

cess as [12,13]. Skeleton poses χt=(ξt, Θt) =
(
θ0ξ̂, θ1, ..., θn

)
are parameterized

using the twist and exponential maps parameterization [2,12]. θ0ξ̂ is the twist
for the global rigid body transform of the skeleton and Θt is the vector of the
remaining joint angles. Using linear blend skinning, the configuration of a vertex
of human mesh Mk in skeleton pose χtk is then determined by

vi
(
χtk

)
=

n∑
m=1

⎛
⎝wmi

jm∏
j=0

exp
(
θψm(j)ξ̂ψm(j)

)
⎞
⎠ vi. (1)

Here, wmi is the skinning weight of vertex i with respect to bone m. Further
on, jm is the number of joints in the kinematic chain that influence bone bm,
and ψm (j) determines the index of the jth of these joints in the overall skeleton



Performance Capture of Interacting Characters with Handheld Kinects 833

configuration. In addition to Λt = {Λtc}Cc=1, our performance capture approach
thus needs to solve for the joint parameters of all persons at each time step,
Xt = {χtk}Kk=1.

4 Simultaneous Performance Capture and Kinect
Tracking

Performance capture from 3D point data is only feasible if the RGBZ data
from all Kinects are correctly registered. In the beginning, for each time step
the correct extrinsics Λt are unknown. A traditional approach to track camera
extrinsics is structure-from-motion (SfM) performed on the background of the
sequence [30]. However, in our recording setting, the moving subjects fill most of
the visible area in each video frame. Thus a different approach has to be used.
In our setting human pose capture and camera pose estimation are performed
simultaneously, leading to more robust results. In other words, the optimization
tries to mutually align all point clouds and fit the poses of the actors to the RGBZ
data. At the same time, we exploit feature correspondences in the background
similarly to SfM since they provide addtional evidence for correct reconstruction.
We therefore simultaneously solve for camera and body poses, and regularize the
solution to additional feature correspondences found in the video frame.

4.1 Overview

In the first frame of multi-view RGBZ video, camera extrinsics are initialized
interactively and the template models are fitted to each person’s depth map. The
initialization pose in the data sequence is guaranteed to be close to the scanned
pose. Thereafter, the algorithm runs in a frame-by-frame manner applying the
processing pipeline from Fig. 1(c-f) to each time step. For a time step t the steps
are as follows: we first align the Kinect RGBZ point clouds according to the
the extrinsics Λt−1 from the previous frame. Starting with the pose parameters
Xt−1 and resulting mesh configurations and vertex colors from the previous
frame, a matching algorithm is introduced to match the Kinect point data to
the model vertices. During this matching, the RGBZ data are also implicitly
segmented into classes for ground plane, background and one class for each person,
Sect. 4.2 (Fig. 1(d)). Thereafter, a second set of 3D correspondences is found by
matching points from the ground plane and the background via SIFT features,
Sect. 4.3. Based on these correspondences, we simultaneously solve for Kinect
and skeleton poses for the current frame, Sect. 4.4. Correspondence finding and
reconstruction is iterated several times and the model poses and point cloud
alignments are continuously updated (Fig. 1(e)). Non-rigid deformations of the
human surface, e.g., due to cloth deformation are not explained by skeleton-
driven deformation alone. In a final step we thus non-rigidly deform the meshes
Mk into the aligned point clouds via Laplacian deformation and update the
vertex colors of the mesh model(s) (Fig. 1(f)). In the following, we explain each
step for a specific time t and omit the index t for legibility.
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4.2 3D Point Correspondences and Implicit RGBZ Point Cloud
Segmentation

As stated above, for finding correct camera and body configurations, we will min-
imize an error function that measures the alignment of the RGBZ point clouds
with the 3D human models, Sect. 4.4. To evaluate this error, for all scene model
vertices V , plausible correspondences to the RGBZ points P need to be defined.
With these correspondences, we would be able to evaluate an alignment error,
as it was also used in video-based performance capture to measure alignment in
the image domain [12].

Our matching term ensures that as much as possible of each 3D human tem-
plate is explained by the point data. Unfortunately, due to mutual occlusions,
the Kinect point cloud P will not always sample every part of the body sur-
faces. Additionally, interference between several Kinects renders some 3D points
unreliable. That is, in this scenario, matching model vertices V to Kinect point
clouds P tends to be unstable. In contrast, reverse matching is much more ro-
bust since all the foreground points physically exist and in theory can all be
explained by the model surface, although there is noise and outliers in the cap-
tured data. Thus, the closest mesh vertices for all RGBZ points are proposed as
matches. Our results show that using this approach tracking is robust even with
two performers in the scene.

To this end, we define a distance measure F between Kinect points p and
model vertices v that simultaneously measures a color distance and a geometric
distance as follows:

F (v, p) = Δ (‖lv − lp‖ , θl)Δ (‖xv − xp‖ , θx)max (nvnp, 0) (2)

where
Δ (x, θ) = max

(
1− x

θ
, 0
)

(3)

Here, xp, lp, np and xv, lv, nv denote the position, color, and normal of a Kinect
point and a mesh vertex, respectively. The color term enforces color similarity
between the mesh vertex and the corresponding Kinect point, the geometry term
only matches RGBZ points and vertices that are spatially close and have similar
normal orientation. We experimentally choose the maximum color difference θl =
100 and the maximum distance a mesh vertex is allowed to move θx = 100mm.

For each point p, we first select the vertex v from V to maximize F . If the
maximum F > 0, according to the label of v, we classify the correspondence
(p, v) into a person correspondence set Zkpv of person k, or into the ground plane

correspondence set Zpg. After the correspondences Zpv = {Zkpv}Kk=1 and Zpg are
established, the RGBZ point cloud is thus implicitly segmented into one class
for each person, ground plane, and background for all RGBZ points that were
not assigned a corresponding point in V .

4.3 Feature-Based Background Correspondences

As stated in the beginning, our reconstruction error is also based on feature cor-
respondences in the scene background, similar to classical structure-from-motion
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approaches. The method from Sect. 4.2 provides a classification of background
RGBZ points, and thus corresponding RGB pixels in each Kinect video image.
We detect SIFT features on the background regions of the RGB images from
t − 1 and t, and convert them into 3D correspondences Zs = {(p′, p)} | p′ ∈
P t−1, p ∈ P t, (p′, p) matched via SIFT} through the available depth. As stated
earlier, background correspondences are not always fully-reliable. Measurement
accuracy decreases with increasing distance from the camera, and moving objects
in the background lead to erroneous correspondences. Thus our error function ad-
ditionally measures point-to-model correspondences in the foreground. Fig.2(b)
shows that alignment based on SIFT features in the background alone will not
suffice.

4.4 Optimization of Skeleton and Camera Poses

Given correspondence sets Zpv, Zpg, and Zs we can define a geometric error func-
tion that we minimize in the space of skeleton pose X and camera extrinsics Λ:

E (X, Λ) = arg min
X,Λ

⎧
⎪⎨

⎪⎩

∑

(p,v)∈Zpv

‖p (Λ) − v (X)‖2
∥
∥Zpv

∥
∥

+
∑

(p,v)∈Zpg

‖p (Λ) − v‖2
∥
∥Zpg

∥
∥

+
∑

(p,p′)∈Zs

∥
∥
∥p (Λ) − p′

∥
∥
∥
2

‖Zs‖

⎫
⎪⎬

⎪⎭
(4)

Here ||Z|| is the number of elements in set Z. We solve this function through
linearization within an iterative quasi-Newton minimization. Using Taylor ex-
pansion of the exponential map, the transformation of Λ on point p leads to

p(Λ) = Rp+ T = eθξ̂p ≈
(
I + θξ̂

)
p (5)

For the body pose a similar expansion can be performed.
We iterate robust correspondence finding and skeleton-camera optimization

20 times. After each iteration, the position and normal of each point p is up-
dated according to the new Λ, while the skeletons and model vertices are up-
dated according to X. Fig.2 shows the comparison of the fused data before pose
optimization (a) and after pose optimization (c). Please note that even using
state-of-the-art techniques, direct fusion of the point data without the aid of
a 3D model is extremely difficult and error prone because of the small overlap
region between the different Kinects [32].

4.5 Non-rigid Mesh Deformation and Vertex Color Update

After tracking and skinned deformation of the skeleton-driven model of each
character, mesh deformation is performed to refine the surface geometry of the
performers and capture non-rigid deformation effects, such as cloth motion. Sim-
ilar to [8], for each person k, surface deformation is formulated as:

argmin
v

{‖Lv− δ‖22 + ‖Cv− p‖22} (6)

Here, v denotes the vector of vertices on human body mesh Mk. L is the cotan-
gent Laplacian matrix and δ is the differential coordinates of the current mesh
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(a) (b) (c)

Fig. 2. Comparison of RGBZ point data fusion at frame t before and after joint skeleton
and Kinect optimization. (a) Fusion using extrinsics from the former time; (b) Fusion
based on SIFT features alone fails; (c) Fusion using extrinsics solved by the combined
human and camera pose optimization produces much better results.

vertices. C is a diagonal matrix with non-zero entries cjj = α (α=0.1) for ver-
tices in correspondence set Zkpv. p is the vector with non-zero position entries

for those p in Zkpv. After non-rigid mesh deformation, the color of each vertex is
updated according to a linear interpolation between the previous color and the
current color using

lv =
t

t+ 1

�

l v +
1

t+ 1
lnn (7)

where l̂v is the color of v before the update and lnn is the color of the nearest
RGBZ neighbor point of v.

5 Results

We recorded 8 test sequences consisting of over 2500 frames. The data was
recorded with 3 moving Kinects at a resolution of 640 × 480 pixels and at a
framerate of 30fps. The sequences consist of a wide range of different motions,
including dancing, fighting and jumping, see Fig. 5 and the accompanying video.
The motions were performed by 5 different persons wearing casual clothing. We
also recorded two evaluation sequences where the performer was simultaneously
tracked by a multi-view video system. A quantitative evaluation using these
data sets is performed in Sect. 5.1. Table 1 shows the capture properties of each
sequence.

5.1 Comparison with Multi-view Video Based Tracking

We recorded two sequences captured in a multi-view video studio with 10 cal-
ibrated cameras (15fps, 1024 × 768) and background green screen. The Kinect
data were temporally aligned to the multi-view video data at frame-level ac-
curacy using event synchronization. Although the synchronization of the video
camera system and the Kinect system is not guaranteed at sub-frame accuracy,
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Table 1. Description of the capture sequences

Sequence
Frame
rate

Number of
performers (K)

Number of
Kinects (C)

Kinect
status

Comparison with
multi-view video

Dancing-walk 30 1 3 Moving No
Kungfu 30 1 3 Moving No

Couple-dance 30 2 3 Moving No
Fight 30 2 3 Moving No
Hug 30 2 3 Moving No

Arm-crossing 30 1 3 Static No
Rolling 15 1 3 Static Yes
Jump 15 1 3 Static Yes

the evaluation of the difference between the two results will still give us a con-
servative performance evaluation of the proposed algorithm.

Since our multi-view video system runs at 15fps, we captured a sequence
“Rolling” with slow motion and a sequence “Jump” with fast motion. The Kinect
system runs at 30fps, so we subsample the frames for the Kinect based tracking
by factor two and compare the performance with multi-view video based track-
ing (MVT) [12]. We visually compared the results of the two systems by evenly
select 4 frames from the “Rolling” sequence (see Fig. 3). Since the MVT tracking
requires green screen for clean background subtraction and it thus does not work
with extra camera operators in the scene background, we fix the three Kinects
in the MVT studio during data capture. With these fixed Kinects, we can vali-
date the proposed algorithm by comparing the optimized Kinect extrinsics in the
later frames with that of the first frame. The average distance from the Kinect
center in the first frame to the Kinect center of other frames (both “Rolling”
and “Jump”) for each of the Kinects are 10.66mm, 7.28mm and 6.67mm, re-
spectively. For the slow motion sequence “Rolling”, our result closely matches
the input images and the result of the MVT system, see Fig. 3. In addition,
we quantitatively compare the two results by measuring the differences on the
joint centers. The average distance between the corresponding joint positions
across all 200 frames of the sequence is 21.42mm with a standard deviation of
27.49mm. This distance also includes the synchronization differences between
the two systems. For the fast motion sequences, the MVT even fails despite a
much higher number of cameras, while the Kinect based tracking is able to track
the whole sequence, see Fig.4.

5.2 Qualitative Evaluation

Our approach enables us to fully-automatically reconstruct skeletal pose and
shape of two persons, even if they are as closely interacting as in martial arts
fight, hug or while dancing, see Fig. 5 and the accompanying video. Despite
notable noise in the captured depth maps, our method successfully captures
pose and deforming surface geometry of persons in loose apparel. With a cap-
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Fig. 3. Comparison with multi-view video tracking (MVT) approach on the “Rolling”
sequence. The top left are four input images of the multi-view video sequence. The
top right shows the close overlap of the two skeletons tracked with MVT (blue) and
our Kinect-based approach (red). The bottom left is the reconstructed surface with the
skeleton using MVT and the bottom right is the results from our approach. Quantitative
and visual comparisons show that MVT-based and Kinect-based reconstructions are
very similar.

Fig. 4. Comparison with multi-view video tracking (MVT) approach on the “Jump”
sequence. The left three and the right three are: input image, result of MVT, result of
our Kinect-based approach. On this fast motion Kinect-based tracking succeeds while
MVT fails to capture the arm motion.

turing frame rate of only 30fps, the proposed approach can also handle very
fast motions, see the jump and kicking motions in Fig. 5. Our system uses local
optimization and the complexity of the system mainly depends on the number
of captured points. Computational complexity does not starkly depend on the
number of subjects in the scene. It takes about 10 seconds for single person
tracking of a frame and 12 seconds for the two person tracking on a standard
PC using unoptimized code.

5.3 Discussion

We presented a method to capture shape and skeletal motion of one or two char-
acters in fast motion using three handheld depth cameras. Reconstruction accu-
racy and quality is comparable to multi-view video-based approaches, but our
method comes with the additional benefit that it applies also to less controlled
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Fig. 5. Performance capture results on a variety of sequences: input image, deformed
mesh overlay, and 3D model with estimated skeleton respectively

indoor environments. A key element to the method’s success is the integrated
estimation of camera and model poses based on geometric and photometric cor-
respondences (see also Fig. 2).

Currently, our approach is designed for setup with multiple synchronized
Kinects. An extension to un-synchronized handheld Kinects is feasible and will
be investigated in the future. Currently, we do not explicity filter sensor noise and
we do not explicitly model multi-Kinect interferences. We will further investigate
this in the future. Since the Kinect data is noisy, the mesh deformation is not as
effective as the one used in multi-view video systems for the reconstruction of
surface details. Noise in the data may thus transfer into the capture meshes. The
correspondence finding is implemented as a dense matching between measured
points and vertices. More robust deformation in the presence of noise may be
achieved by a noise-aware sparse matching algorithm. Similar to multi-view video
systems, the tracking of joints on the shoulder may sometimes go error for fast
and complex hand motions (e.g., “couple-dancing” sequence in the accompany
video). This problem can be solved by adding physical constraints on the shoul-
ders. Since skeleton and Kinect pose optimization can be linearized efficiently,
it is also promising to investigate realtime applications in the future. We believe
that with the advancement of depth camera techniques, improvement of sensor
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resolution, sensor quality, portability, and compatibility (between Kinects) will
be achieved to allow the efficient production of 3D content in everyday life.

6 Conclusion

In this paper, we proposed a method for simultaneously marker-less performance
capture and camera pose estimation with several hand-held Kinects. The track-
ing approach is based on iterating robust matching of the tracked 3D models
and the input Kinect data and a quasi-Newton optimization on Kinect poses and
skeleton poses. This joint optimization enables us to reliably and accurately cap-
ture shape and pose of multiple performers. The proposed technique removes the
common constraint in traditional multi-view motion capture systems that cam-
eras have to be static and scenes need to be filmed in controlled studio settings.
Instead, we allow users to hold the Kinects for motion capture and 3D recon-
struction of performers. This improves the consumer experience especially with
respect to the anticipated introduction of depth cameras in consumer devices
like tablets. To our knowledge, this is the first method to fully-automatically
perform multi-person performance capture using moving Kinects.
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