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Abstract. Accurate dense 3D reconstruction of dynamic scenes from
natural images is still very challenging. Most previous methods rely on a
large number of fixed cameras to obtain good results. Some of these meth-
ods further require separation of static and dynamic points, which are
usually restricted to scenes with known background. We propose a novel
dense depth estimation method which can automatically recover accu-
rate and consistent depth maps from the synchronized video sequences
taken by a few handheld cameras. Unlike fixed camera arrays, our data
capturing setup is much more flexible and easier to use. Our algorithm
simultaneously solves bilayer segmentation and depth estimation in a
unified energy minimization framework, which combines different spatio-
temporal constraints for effective depth optimization and segmentation
of static and dynamic points. A variety of examples demonstrate the
effectiveness of the proposed framework.

Keywords: multi-view stereo, depth recovery, dynamic scene, spatio-
temporal optimization.

1 Introduction

Many 3D reconstruction algorithms such as [11,20] have been proposed for a
static scene. However, the real world is full of dynamic objects. The reconstruc-
tion of a dynamic scene is often required in many applications, but is also much
more challenging. Most works on dynamic scene reconstruction such as [23,8,9]
require an array of fixed cameras with relatively narrow baselines to minimize oc-
clusion problems. Further, some of these, such as [23,8,9] require a large number
of cameras (usually more than eight) to ensure good results. These requirements
on data capturing limit their applications and are typically applied to data care-
fully captured in laboratories. There are recent non-rigid structure-from-motion
algorithms such as [14], which reconstruct dynamic scenes with a single moving
camera. Though data capturing is simplified, their accuracy and robustness are
rather limited at this moment.

We study dense 3D reconstruction of dynamic scenes from multiple hand-
held cameras. We allow cameras to move freely and independently so that data
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Fig. 1. Dynamic 3D reconstruction results of ‘Three-Pedestrian’ example. (a-b) Two
synchronous frames from the two source videos. (c) The recovered depth map of (a).
(d) The magnified regions of (a) and (c). (e) The texture-mapped 3D scene visualized
from a novel viewpoint.

capturing is much more flexible. Further, we require as few as 2 ∼ 3 cameras to
facilitate many applications. An example is shown in Fig. 1, which contains three
pedestrians. Our method faithfully recovers the depths in both static and dy-
namic regions. Compared with previous methods with a fixed camera array, our
approach achieves both flexible data capturing and accurate 3D reconstruction.

Most previous works on dynamic scene reconstruction [12,8,15] treated moving
objects in the same way as static ones. Some methods such as [5,6,19] segmented
pixels into static and dynamic ones while estimating their depths. These meth-
ods require exact bilayer segmentation, which itself is a difficult problem. In
comparison, we propose a unified global optimization framework to solve dense
depth recovery and static/dynamic segmentation simultaneously. Unlike previ-
ous methods such as [5,6,19], our segmentation is optimized for better depth
estimation. A pixel is classified to “static” or “dynamic” depending on which
kind of spatio-temporal constraint models it better. Hence, our method does not
require an exact static/dynamic segmentation and is more robust to segmenta-
tion errors in challenging scenes like Fig. 6.

2 Related Work

There are many methods such as [22,12,23] to reconstruct a dynamic scene from
multiple fixed cameras. They typically applied stereo algorithms to synchronized
video frames of different cameras and smoothed the estimated disparities of cor-
responding pixels in the temporal domain. Here, we only briefly review some
of the recent works. In [8], temporal consistency between consecutive frames in
multiple cameras was enforced by an enhanced belief propagation algorithm.
Aguiar et al. [1] captured temporal coherent human performances with a circu-
lar camera array. Lei et al. [9] recovered spacetime-consistent depth maps by a
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region-tree based stereo approach. Recently, Yang et al. [15] extended the pow-
erful bundle optimization framework [20] to handle dynamic scenes with a novel
temporal coherence constraint. This constraint is similar to our spatio-temporal
constraint for dynamic points. However, [15] only used one preceding time in-
stance for depth optimization, and is rather sensitive to optical flow errors and
occlusions. Hence, their method required more cameras with relative small base-
lines to ensure robust results. In comparison, our spatio-temporal optimization
can effectively utilize more temporal neighboring frames and robustly handle oc-
clusions. As a result, we require only a few cameras and allow cameras to move
freely with larger baselines to significantly simplify data capturing.

Bilayer segmentation is an important cue for dynamic scene reconstruction.
Zhang et al. [19] proposed a robust bilayer segmentation by dense depth and
motion estimation. Although the segmentation and depth/motion estimation are
incorporated into an energy function, they are separately solved which may re-
sult in a solution that is only locally optimal. In addition, their method requires
a manual preprocessing for foreground color distribution learning. Goldlücke
and Magnor [5] performed bilayer segmentation and 3D reconstruction for static
scenes with fixed cameras, where background images have been recorded from
each camera beforehand. Guillemaut et al. [6] used multi-layer segmentation to
achieve 3D reconstruction and free-viewpoint video of sports videos captured
by multiple broadcast cameras, where the planar background color and depth
are also known. Both methods used joint labeling to simultaneously estimate
depths and segmentation, which is similar to our work. Nevertheless, both of
these approaches require strong prior knowledge on the background scene to fa-
cilitate segmentation. Further, their depth estimation and segmentation terms
were weakly coupled in the optimization formulation, making these methods easy
to get stuck in a local minimum. In comparison, our depth recovery and bilayer
segmentation are tightly integrated, and do not require prior background knowl-
edge. Recently, Zhang et al. [18] used a similar expanded labeling formulation
for simultaneous stereo and segmentation, but was limited to rigid objects.

There are other works with similar data capturing setup, but targeting dif-
ferent applications. Ballan et al.[2] addressed the video based rendering problem
with multiple freely moving cameras, where dynamic objects are only segmented
but not reconstructed. Hasler et al.[7] used multiple freely moving cameras for
markerless motion capture. Most recently, Yang et al. [16] proposed a dense
depth recovery method for a trinocular sequence. In their capture setup, the rel-
ative camera poses are constant and the baselines between neighboring cameras
should be not large (8∼20cm). To the best of our knowledge, our work is the first
to recover dense depth maps for dynamic scenes by multiple handheld cameras.

3 Notation and System Summary

Given a set of synchronized video sequences Î = {Îm|m = 1, ...,M} taken by
M moving cameras, in which each Îm has N frames denoted as Îm = {Itm|t =
1, ..., N}, our goal is to recover a set of corresponding depth map sequences
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Fig. 2. This figure shows the overview of our system

Ẑ = {Zt
m|m = 1, ...,M ; t = 1, ..., N}. We use Itm(x), Zt

m(x), Dt
m(x) = 1/Zt

m(x)
to represent the color, depth and disparity at pixel x in frame t of sequence m,
respectively. For clarity, we sometimes use xt

m to denote pixel x in frame (m, t).
The camera parameters for frame t of video sequence m is denoted by Ct

m =
{Kt

m,Rt
m,Tt

m}, where Kt
m is the intrinsic matrix, Rt

m is the rotation matrix,
and Tt

m is the translation vector. The camera parameters for all frames in all
sequences are estimated beforehand. Specifically, we use the method in [17] to
track feature points in the videos and then use the SFM method proposed in
[21] to recover the camera poses. To ensure system robustness, camera intrinsics
are pre-calibrated and fixed during data capturing.

The system overview is shown in Fig. 2. We initialize the disparity maps
{Dt

m|m = 1, ...,M} for each time t using the synchronized images {Itm|m =
1, ...,M} across M cameras (see Section 4). Then we jointly perform spatio-
temporal disparity optimization and bilayer segmentation (see Section 5) so that
a set of high-quality depth maps are finally obtained.

4 Depth Initialization

We first estimate the depth maps at time t using the images from different
cameras at that time. Denoting the disparity range as [dmin, dmax], we equally
quantize the disparity into k levels, such that the ith level di = (k − i)/(k− 1) ·
dmin + (i − 1)/(k − 1) · dmax, where i = 1, . . . , k. Specifically, we minimize the
following objective energy:

ED(Dt
m; Î(t)) = Ed(D

t
m; Î(t)) + Es(D

t
m), (1)

where Î(t) = {Itm|m = 1, ...,M} represents all frames captured at time t. Ed is
the data term, and Es is the smoothness term.

The smoothness term Es measures the smoothness of neighboring disparities,
and is simply defined as:

Es(D
t
m) = λ

∑

x

∑

y∈N(x)

min{|Dt
m(x)−Dt

m(y)|, η}, (2)

where N(x) denotes the set of neighbors of pixel x, λ is the smoothness weight,
and η is a truncation value for robust estimation. In our experiments, λ =
0.8/(dmax − dmin) and η = 0.03(dmax − dmin).
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Fig. 3. Illustration of disparity initialization. (a-b) Two synchronous source frames
from the ‘Boy’ data. (c) The estimated disparity map of (a) using the data term
defined in Eq. (4), incorporating DAISY descriptors. (d) The visibility map estimated
from the disparity maps of (a) and (b). (e) The refined disparity map after occlusion
handling. The disparities in the occluded regions are improved. (f) The further refined
disparity map after plane fitting.

For conventional stereo algorithms, the data term Ed mainly uses pixel-wise
or window-based color similarity. In our examples, baselines between cameras are
often large, as shown in Fig. 3(a-b). Due to the foreshortening and occlusions,
a simple color similarity measure is insufficient to generate good disparities. To
better solve this problem, we use DAISY [13] in the data term. DAISY is an
efficient local descriptor for robust wide baseline stereo matching. We define a
disparity cost function based on the similarity of DAISY descriptor as:

LD(xt
m, di; I

t
m, Itm′) = ||D(xt

m)−D(xt
m′)||2, (3)

where D(x) is the DAISY descriptor at x. The term xt
m′ = ltm→m′(xt

m, di) is the
corresponding pixel of xt

m by projecting xt
m to Itm′ according to the candidate

disparity value di and camera parameters.
We then define the data term Ed as:

Ed(D
t
m; Î(t)) =

∑

xt
m

∑
m′ �=m

LD(xt
m, Dt

m(xt
m); Itm, Itm′)

M − 1
. (4)

Basically, we use all the synchronous views in other cameras to initialize the
disparity Dt

m. Loopy belief propagation algorithm [4] is used to solve Eq. (1).
Fig. 3(c) shows an estimated depth map. There are still visible problems in the
occluded regions. In the next subsection, we estimate a visibility map for each
pair of synchronous images in cameras m and m′ to further handle occlusions.
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4.1 Disparity Inference of Occluded Pixels

If a point is visible in both cameras m and m′, its depth in both images should
be consistent (i.e. corresponding to the same 3D point). Hence, we define the
visibility map of camera m with respect to m′ as:

V t
m→m′(xt

m) =

{
1 |1/Zt

m→m′ (xt
m)−Dt

m′ (xt
m′)| ≤ δd

0 |1/Zt
m→m′ (xt

m)−Dt
m′ (xt

m′)| > δd
, (5)

where V t
m→m′(xt

m) denotes whether the pixel xt
m in Itm is visible in Itm′ (1 for

visible and 0 for invisible). Here, δd is a threshold determined empirically as
0.02(dmax − dmin). The term Zt

m→m′(xt
m) denotes the depth of xt

m in m′. It is
determined by casting xt

m to 3D space according to its disparity Dt
m(xt

m) from
the camera m, and then projecting it to the camera m′. We define V̂ t

m(xt
m) as

the total visibility of pixel xt
m. It is equal to 0, if xt

m is invisible in all the other
cameras. Otherwise, it is equal to 1. Fig. 3(d) shows the estimated visibility map.

The disparities can be well initialized only at pixels which are visible in at
least one reference camera. For a pixels with total visibility V̂ t

m(x) = 0, Eq. (4)
does not capture its data cost well. Hence, we estimate their disparities using
the traditional photo-consistency constraint from neighboring temporal frames.

Given a candidate disparity di and a reference frame t′ in camera m′, We
define a disparity likelihood based on the color similarity measure between Itm
and It

′
m′ as follows:

Lc(x
t
m, di; I

t
m, It

′
m′) = pc(x

t
m,xt′

m′), (6)

where pc measures the color similarity of xt
m and xt′

m′ , and is similarly defined
as in [20]:

pc(x
t
m,xt′

m′) =
σc

σc +
∥∥Itm(xt

m)− It
′

m′(xt′
m′)

∥∥
1

. (7)

The parameter σc controls the sensitivity of color difference. The term xt′
m′ is the

projection pixel of xt
m to It

′
m′ according to disparity di and camera parameters.

We accumulate the disparity likelihood with all the cameras at nearby time
instances (20 nearest frames in our experiments), and compute the data term of
the totally invisible pixels as:

Ed(D
t
m; Î) =

∑

xt
m

1−

M∑
m′=1

∑
t′∈N(t)

Lc(x
t
m, Dt

m(xt
m); Itm, It

′
m′)

M |N(t)| , (8)

where N(t) denotes the set of nearby frames.
By incorporating the above data cost, we can obtain a refined disparity map,

as in Fig. 3(e). To better handle textureless regions and disparity noise, we
incorporate segmentation information into the disparity initialization. We use
Mean-shift [3] to segment the image and consider each segment as a 3D plane
with parameters [a, b, c], which are fit to the computed data costs in the segment
as in [20]. Disparities of pixels in the segment can be recomputed as dx = ax+
by + c. Fig. 3(f) shows the further refined disparity map after plane fitting.
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5 Spatio-temporal Optimization

In principle, static and dynamic pixels require different coherence constraints for
disparity optimization. A straightforward solution is to perform explicit bilayer
segmentation by estimating the background information using methods such
as [19] and reconstruct static and dynamic pixels with different strategies. How-
ever, accurate background estimation is difficult for many cases, especially when
a dynamic object moves slightly such that the background is almost occluded in
all frames.

We propose to solve depth optimization and bilayer segmentation in a unified
framework. For each pixel, we not only estimate its depth but also infer whether
it is static or dynamic. Therefore, each pixel xt

m has two variables to be inferred
– one is its disparity value Dt

m(xt
m) and the other is its static/dynamic label

St
m(xt

m) ∈ {0, 1} (0 for static and 1 for dynamic). Iteratively inferring these two
variables might easily get stuck in local minimum. Instead, we formulate these
two variables in an expanded labeling set, which is defined as:

L = {l01, l02, . . . , l0k, l11, l12, . . . , l1k}.
Each label lsi naturally encodes a static/dynamic label s ∈ {0, 1} and a candidate
disparity value di, where i = 1, 2, . . . , k. With this compact representation, we
can now estimate a joint labeling map Lt

m (Lt
m(xt

m) ∈ L) for each frame Itm by
minimizing a new energy:

EL(L
t
m; Î, D̂) = Ed(L

t
m; Î, D̂) +Es(L

t
m). (9)

Since the spatio-temporal coherence constraints for static and dynamic pixels
are different, we use different data cost functions for l0i and l1i , which we denote
as e0d and e1d respectively.

5.1 Different Spatio-temporal Data Costs on Bilayer Hypotheses

The two different data cost functions are combined for temporal coherence mea-
sure on the bilayer hypotheses. Both of them measure the consistency of color
and geometry among multiple cameras and multiple temporal frames.

If a pixel xt
m is static, we follow the bundle optimization algorithm proposed

in [20] to compute its data cost with candidate disparity di. Given a reference

frame t′ in camera m′, we can project the pixel xt
m to It

′
m′ by di. The projection

point is denoted as xt′
m′ . Similar to [20], we can measure the color and geometry

coherence between xt
m and xt′

m′ , and compute a disparity likelihood as

Ld(x
t
m, di; I

t
m, It

′
m′ , Dt′

m′ ) = pc(x
t
m,xt′

m′)pv(x
t
m,xt′

m′), (10)

where pc is the color similarity defined as Eq. (7). pv is the geometric coherence
by computing the backward projection error, which is defined as:

pv(x
t
m,xt′

m′) =
σw

σw +
∥∥xt

m − lt
′→t

m′→m(xt′
m′ , Dt′

m′ (xt′
m′))

∥∥
1

. (11)
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Fig. 4. (a) Illustration of the spatio-temporal coherence constraint on a dynamic-
pixel hypothesis. (b) The magnified source frame of Fig. 3(a), its spatio-temporally
optimized depth map and the bilayer segmentation map. (c) The data cost values of
the three representative pixels A, B and C in (c), computed by e0d and e1d, which have
a clear minimum to infer the true disparity robustly.

The term lt
′→t
m′→m(xt′

m′ , Dt′
m′(xt′

m′)) is the point by projecting xt′
m′ to Itm as in [20].

We accumulate Ld with all the cameras at nearby time instances (20 nearest
frames), and compute the data cost of xt

m on the static-pixel hypothesis as:

e0d(x
t
m, di; Î , D̂) = 1−

M∑
m′=1

∑
t′∈N(t)

Ld(x
t
m, di; I

t
m, It

′
m′ , Dt′

m′ )

M |N(t)| . (12)

If the pixel xt
m is dynamic, the data cost computation is more sophisticated. A

straightforward way is to compute its depth among multiple synchronous cam-
eras at time instance t also using bundle optimization as in [20]. However, most
of our experimental examples have only 2 ∼ 3 cameras. The small number of
synchronous views will significantly degrade the effectiveness of bundle opti-
mization. To address this problem, we incorporate a spatio-temporal coherence
measure similar to [15] for dynamic depth optimization. Unlike [15] which only
used a preceding time instance for optimization, our data cost combines multiple
nearby time instances to enhance the robustness of coherence measures.

Fig. 4(a) illustrates our spatio-temporal constraint for dynamic points. Specifi-
cally, given a candidate disparity di and a reference cameram′, we can project the
pixel xt

m from cameram tom′. The projection point is denoted as xt
m′ . To add its

color and geometric coherence constraints from temporal frames at t′, we track
xt
m and xt

m′ to t′ by optical flows Ot→t′
m and Ot→t′

m′ to get the corresponding pixels

x̂t′
m and x̂t′

m′ . We compute the optical flow maps using the algorithm proposed

in [10]. If the optical flows are accurate (i.e., ||Ot→t′
m (xt

m) + Ot′→t
m (x̂t′

m)|| < τ ,
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and ||Ot→t′
m′ (xt

m′ ) + Ot′→t
m′ (x̂t′

m′)|| < τ , where τ = 3 pixels in our experiments),

we compute a disparity likelihood Lg(x̂
t′
m, x̂t′

m′), by measuring the color and ge-

ometry coherence between x̂t′
m and x̂t′

m′ as

Lg(x̂
t′
m, x̂t′

m′ ; It
′

m, It
′

m′ , Dt′
m, Dt′

m′) = pc(x̂
t′
m, x̂t′

m′)pg(x̂
t′
m, x̂t′

m′), (13)

where pg is the geometric coherence defined as:

pg(x̂
t′
m, x̂t′

m′) =
σw

σw + dg(x̂t′
m, x̂t′

m′ ;Dt′
m, Dt′

m′)
. (14)

The term dg is the symmetrical projection error. x̂t′
m is projected to frame It

′
m′ ,

and calculate its distance to x̂t′
m′ . Symmetrically, x̂t′

m′ is projected to frame It
′

m,

and calculate its distance to xt′
m. dg is the RMS of these two distances.

Lg is accumulated with all the reference cameras at nearby time instances
(10 nearest frames in our experiments), and the data cost on dynamic-pixel
hypothesis is defined as:

e1d(x
t
m, di; Î , D̂) = 1−

∑
t′∈N(t)

∑
m′ �=m

Lg(x̂
t′
m, x̂t′

m′ ; It
′

m, It
′

m′ , Dt′
m, Dt′

m′ )

(M − 1)|N(t)| . (15)

Now we can redefine the data term in Eq. (9) by combining the two kinds of
data cost functions e0d and e1d as:

Ed(L
t
m; Î, D̂) =

∑

xt
m

ed(x
t
m,Lt

m(xt
m); Î, D̂),

with ed(x
t
m, lsi ; Î, D̂) =

{
e0d(x

t
m, di; Î , D̂) s = 0

e1d(x
t
m, di; Î , D̂) s = 1

. (16)

Since Ld and Lg are both multiplication of color and geometry coherence mea-
sures in the same form, e0d and e1d can compete fairly to infer the true disparity
of each pixel.

5.2 Iterative Optimization

With the redefined data term (16), we iteratively minimize Eq. (9) to jointly
refine the disparity maps and infer the static/dynamic labeling (the smoothness
term remains the same as Eq. (2), except that the optimized variables are newly
defined labels instead of disparities). Since the number of new labels doubles, we
typically use 70 disparity levels in our experiments due to memory limitations
of BP. The scalability problem can be well addressed by using hierarchical BP
as in [18]. While refining Lt

m, we fix the disparity values in all other frames.
Each pass of optimization starts from frame 1. One pass completes when the
disparity and segmentation maps of all the frames in each camera are optimized.
A result is shown at Fig. 5. As shown in Fig. 5(e), after one pass of optimization,
the disparity maps are greatly improved in both the static and dynamic regions.
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(a) (b) (c)

(e) (f)
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Fig. 5. The results of our spatio-temporal disparity optimization. (a) One source
frame. (b) The initialized disparity map. (c) The optimized depth result only using e0d
as in [20]. (d) The depth map optimized only using e1d as in [15]. (e) The optimized
depth map and bilayer segmentation map by our method after the first iteration, using
both e0d and e1d. (f) Results after the second iteration of spatio-temporal optimization.
(g) Zoomed view of the green rectangles in (a), (b), (e) and (f). (h-i) Another source
frame and its spatio-temporal depth optimization result. (j) The 3D surface model
reconstructed from the depth map in (i), with texture mapping.

Furthermore, the estimated disparity maps becomes more temporally consistent,
as evidenced in our supplementary video 1.

As shown in Fig. 5(c-d), only using e0d or e1d for depth optimization will cause
visible problems. In comparison, our combination of both e0d and e1d can robustly
infer the true disparity for both static and dynamic pixels (Fig. 5(e)). There are
three marked points A,B and C in Fig. 4(b) and their associated data cost values
in (c). Pixel A has a clear minimum cost in e0d, and has relatively larger cost
in e1d. Therefore, A has strong preference to be labeled as static. In comparison,
pixel B can reach a strong minimum in e1d, and has larger cost in e0d. Hence, it
is labeled as dynamic. Pixel C has low costs in both e0d and e1d. In other words,

1 The supplementary material and video can be downloaded from the corresponding
project website under http://www.cad.zju.edu.cn/home/gfzhang/
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no matter if it is considered as static or dynamic, its disparity can be inferred
reliably. This explains why a large number of background static points are labeled
as ‘dynamic’ by our method. Again, our ‘bilayer segmentation’ only means to
select the right data cost function for a pixel. Another interesting phenomena
is that the occluded pixels are generally labeled as static and the segmentation
are quite accurate around discontinuous foreground boundaries. The reason is
that the optical flow estimation is generally difficult for the occluded regions
so that the motion-based dynamic data cost e1d will output large values in this
case. In contrast, the static data cost e0d is computed by projecting the pixel to
temporally neighboring frames with depth, which is robust to occlusions and can
output relative small values.

Fig. 5(e) also shows the bilayer segmentation map St
m obtained from the opti-

mized Lt
m. As can be seen in Fig. 5(g), most dynamic pixels are correctly labeled

and reconstructed except for some outliers. These outliers are generally caused
by similar foreground and background colors. Fortunately, we can further im-
prove our depths and segmentation in a second spatio-temporal optimization.
Specifically, we check the static/dynamic labels of corresponding pixels in tem-
poral neighboring frames to improve static/dynamic segmentation and depth
estimation. We track a pixel by optical flow to its 10 nearest neighboring frames
and compute the following dynamic-pixel probability:

Pd(x
t
m) =

∑
t′∈N(t)

St′
m(xt

m +Ot→t′
m (xt

m))

|N(t)| . (17)

If the dynamic-pixel probability is large, we tend to believe that xt
m is dynamic.

Otherwise, it is more likely to be static. We incorporate Pd into the second pass
of data cost computation and redefine ed as:

ed(x
t
m, lsi ; Î , D̂) =

{
(1 + Pd(x

t
m))e0d(x

t
m, di; Î , D̂) s = 0

(2− Pd(x
t
m))e1d(x

t
m, di; Î , D̂) s = 1

. (18)

When Pd < 0.5, e0d has smaller weight than e1d, so that xt
m tends to be labeled

as static. Otherwise, we tend to label xt
m as dynamic. After the second pass,

(a) (b) (c) (d) (e)

Fig. 6. Dynamic 3D reconstruction of the ‘Standing’ sequences with two input videos.
(a) A source frame from the first video. (b-c) The estimated background image and
segmentation result by [19]. (d) The refined disparity map based on (c), which contain
serious artifacts highlighted in the red rectangles. (e) The refined disparity map by our
method, which are accurate in both static and dynamic regions.



612 H. Jiang et al.

the incorrectly estimated disparities and static/dynamic labels are successfully
corrected as shown in Fig. 5(f).

6 Experimental Results

We have performed experiments on several examples with source videos taken
by 2 ∼ 3 handheld cameras. We used Sony HDR-XR550 cameras to capture the
videos. Instead of using genlock, we blinked a flashlight when capturing began
and then synchronized the videos according to the blinking timestamp. All our
experiments are conducted on a desktop PC with Intel 4-Core 2.83GHz CPU. For
a sequence with resolution 960× 540, depth initialization takes 172 seconds per
frame, and disparity optimization requires 81 seconds per frame, which is more
efficient than the methods of [9,15]. Fig. 6 shows our results on the ‘Standing’
sequences, which capture a boy standing and moving slightly. Only part of the
body is moving in this example, which makes accurate background estimation
and static/dynamic segmentation difficult with the traditional methods such as
[19]. As shown in Fig. 6(b), the background is almost occluded in all the frames
by the dynamic foreground, and can not be well estimated. Hence, the bilayer
segmentation result by [19] is not very accurate as shown in Fig. 6(c). If we
use different data cost functions to optimize static and dynamic pixels with this

Fig. 7. Dynamic 3D reconstruction results of the ‘Bear’ sequences (two videos). Two
selected frames from the first video and their depth results.

(a) (b) (c) (d) (e)

Fig. 8. Comparison of our method to [23], [9] and [15]. (a) Two selected source frames
from the third source video of the Microsoft Breakdancing dataset [23]. (b) Microsoft
results [23]. (c) The results of [9]. (d) The results of [15]. (e) Our results.
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inaccurate segmentation result (e0d for static pixels, and e1d for dynamic ones), the
refined depth map will contain serious artifacts as shown in Fig. 6(d). In contrast,
our method does not rely on precise bilayer segmentation. By spatio-temporal
optimization using two kinds of data cost functions, our method not only achieve
high-quality dynamic depth maps for both static and dynamic pixels, but also
preserves accurate depth boundaries without explicit bilayer segmentation as
shown in Fig. 6(e).

Another challenging example is provided in Fig. 7, capturing a crawling bear.
Our method can also handle multiple dynamic objects, as shown in Fig. 1. We
also experimented on the Microsoft Research Breakdancing dataset [23]. Fig. 8
shows the comparison of our results with Microsoft results [23], [9] and [15]. The
floor reconstructed in [23] and [15] and the body of the dancer reconstructed in
[9] both had visible artifacts, as highlighted in the red rectangles. In comparison,
our method generated better results. Please refer to our supplementary material
and video for the complete frames and more results.

7 Conclusion and Discussion

In this paper, we propose a novel dense depth recovery method for dynamic
scenes captured by multiple handheld cameras. We first use the synchronous
images in the same time instance from different cameras to compute the ini-
tial depth maps. Then, by combining two different kinds of spatio-temporal
constraints, depth optimization and bilayer segmentation are performed simul-
taneously to achieve a high-quality dense depth estimation.

The accuracy of the optical flow will influence the quality of depth recovery,
especially when the motions of moving objects are very large. Severely erroneous
optical flow estimation will involve incorrect color and geometry coherence con-
straints in temporal frames, which harms the depth refinement. Fortunately,
this problem can be alleviated by backward verification of optical flow error to
discard inaccurate optical flow estimation. How to more effectively solve this
problem remains to be our future work.
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