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Abstract. Computed tomography (CT) is used widely to image pa-
tients for medical diagnosis and to scan baggage for threatening materi-
als. Automated reading of these images can be used to reduce the costs
of a human operator, extract quantitative information from the images
or support the judgements of a human operator. Object quantification
requires an image segmentation to make measurements about object size,
material composition and morphology. Medical applications mostly re-
quire the segmentation of prespecified objects, such as specific organs
or lesions, which allows the use of customized algorithms that take ad-
vantage of training data to provide orientation and anatomical context
of the segmentation targets. In contrast, baggage screening requires the
segmentation algorithm to provide segmentation of an unspecified num-
ber of objects with enormous variability in size, shape, appearance and
spatial context. Furthermore, security systems demand 3D segmentation
algorithms that can quickly and reliably detect threats. To address this
problem, we present a segmentation algorithm for 3D CT images that
makes no assumptions on the number of objects in the image or on the
composition of these objects. The algorithm features a new Automatic
QUality Measure (AQUA) model that measures the segmentation confi-
dence for any single object (from any segmentation method) and uses this
confidence measure to both control splitting and to optimize the segmen-
tation parameters at runtime for each dataset. The algorithm is tested
on 27 bags that were packed with a large variety of different objects.

1 Introduction

Image segmentation is a core problem in computer vision that can be used to
assess material and morphological properties of the objects being imaged. Clas-
sically, the unsupervised image segmentation problem has been posed as the
localization of contiguous regions in an image that satisfy some measure of ap-
pearance homogeneity and/or some shape regularity. Classical methods to per-
form unsupervised image segmentation include watershed [1], mean shift [2] and
normalized cuts [3]. More recent work has focused on addressing the homogeneity
of complex appearances (e.g., textures) and operation across scales (e.g., [4]).
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Fig. 1. A sample of 2D cross-sectional images in our 3D baggage screening dataset.
Each bag contained objects with a large variety in size, shape, homogeneity and luggage
exterior.

The established methods have proven effective for the creation of “superpix-
els” that can be used to drive further analysis by calculating and comparing
localized region properties in the image (e.g., [5]). However, when considered
from the standpoint of object segmentation (e.g., one segment label per object)
these established methods tend to create oversegmentations that split each ob-
ject into many pieces, requiring a further local merging step to reassemble the
objects. This merging step is challenging to perform since the merging criterion
is usually described at a global scale (e.g., to look like an “object”) but the
merging choices are made at a local level of assembling two adjacent superpix-
els. Furthermore, the results of the merging process is highly dependent on the
order in which potential merges are evaluated.

To overcome these problems of the classical approach to unsupervised object
segmentation, we propose a new algorithm consisting of three main steps:

1. Identification of all “object” voxels (as opposed to“background” voxels).
2. Creation of candidate splits into individual objects based on a partitioning

method with global criteria.
3. Evaluation of these candidate splits using a novel Automatic QUality As-

sessment (AQUA) module that is trained on a wide variety of objects to
recognize “good” objects in the candidate splits. Note that the AQUA mod-
ule proposed here is different from the work in [6,7] which apply strictly to
2D images only and depend on having color/texture information available.

To validate the proposed approach we chose the application of security screening,
more specifically the segmentation of objects in 3D CT scans of luggage. The
role of security screening systems is to inspect checked and hand baggage, cargo
and containers for dangerous content, such as, explosives, improvised explosive
devices (IEDs), firearms, contraband, drugs, etc. These screening systems play
a key role in the US Homeland Defense/Security strategy for increased safety of
airports, air and sea traffic.
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Security screening and explosive detection systems have been studied for sev-
eral decades by a variety of groups in academia and industry (see [8] for review).
A new decade for security screening started after the events of Sept. 11th, cre-
ating an elevation of security levels at airports and other hubs of mobility. Gov-
ernment investment and commercial interest increased the importance of highly
sensitive security screening systems. Since that time, significant improvements
to practical screening systems were made in terms of sensor and imaging devices
[9]. However, the majority of research in the security screening area was per-
formed in national labs and scanner vendors, and this work was kept classified
in order to prevent better concealed threats.

Recently, the US government (i.e., DHS and the ALERT center of excel-
lence1) began an initiative to promote academic and 3rd party research in se-
curity screening with the aim of developing next generation security screening
systems. These efforts were accompanied by a series of workshops, where the lat-
est (unclassified) state-of-the-art in security screening has been published [10].
The work described in this paper is a response to the ALERT initiative, which
established the infrastructure and released appropriate security screening data
to the unclassified domain.

Today’s systems for CT based explosive detection [11] involve the following
steps: First, during automatic screening, CT scan data is obtained and volumet-
ric data is reconstructed, providing pseudocolor volumes that encode the main
material properties such as density or, in case of dual energy scans, the effec-
tive atomic number Zeff. Then, contiguous objects are segmented and physical
properties such as density, Zeff and volume are computed. If the combination
of density, mass, and Zeff are considered critical, suspicious regions are flagged
and scheduled for operator inspection. The wide range of objects, sizes and ap-
pearances that can appear in baggage screening is illustrated in Figure 1. Our
method for volumetric CT object segmentation is motivated by this application
due to the difficulty of the problem but our algorithm could be applied to any
unsupervised CT object segmentation problem.

2 Method

3D segmentation of CT images is challenging due to the unknown number of
objects, variety of object sizes/shapes, objects consisting of multiple distinct
parts, inhomogeneous internal density distribution (appearance) of some objects
and the presence of artifacts. Segmentation in the context of baggage screening
is particularly challenging due to the fact that metal is common (causing strong
streaking artifacts) and the objects are packed tightly.

Each of the challenges listed above is addressed in our algorithm. To correct
artifacts and identify “object” voxels, we utilize a Mumford-Shah algorithm to
reduce noise. Separation of touching objects is performed using a global split-
ting algorithm (the isoperimetric algorithm [12,13]). Finally, we develop our

1 http://www.northeastern.edu/alert/

http://www.northeastern.edu/alert/
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Automatic QUality Assessment (AQUA) system to learn “good” object seg-
ments based on a large training database.

Our algorithm consists of three steps: 1) Identification of “object” voxels, 2)
Generating candidate splits using a global partitioning criterion, 3) Evaluation
of the candidate splits for good “objectness” using our novel AQUA method.
These steps will now be described in detail.

2.1 Identification of Object Voxels

In the context of security screening with CT, objects of interest are ideally identi-
fied as consisting of voxels above a certain threshold. However, the identification
of “object” voxels in this application is not quite so simple since artifacts and
noise can disrupt CT imagery by creating false separations within objects or by
merging nearby objects. These disruptions can be ameliorated by reducing arti-
facts and image denoising. In our application we do both by first applying the
metal artifact reduction of Tuy [14] and then applying a version of the Mumford-
Shah algorithm to perform denoising. The Mumford-Shah functional [15,16,17]
is a core model in computer vision, for which variants can be used for image
denoising, image segmentation and many other problems. We take advantage of
the speed and robustness of recent advances in combinatorial optimization by
applying the Mumford-Shah algorithm described in [18] to the artifact-reduced
image in order to quickly identify all “object” voxels. Since this optimization
is nonconvex it requires an initialization, which we provided in our application
using the idealized target threshold for an object of interest (-500HU).

Following the artifact reduction and application of the Mumford-Shah tech-
nique in [18], each voxel in the image is labeled as either “object” or “back-
ground”. We now describe how the “object” voxels can be split into candidate
objects for evaluation with the AQUA.

2.2 Object Splitting with the Isoperimetric Algorithm

The output of the previous stage is to label each voxel as object or background.
If each object in the image were spatially isolated, then it would be possible to
simply return each connected component as a different object and conclude the
segmentation. Unfortunately, real images often contain objects which are signifi-
cantly touching each other. The problem of touching objects is particularly acute
in the baggage screening application in which objects are deliberately packed
tightly to conserve space. Consequently, it is necessary to adopt an algorithm
that can be used to split touching objects by using a global criterion.

One global algorithm, the isoperimetric algorithm [12,13], was adapted to
operate in linear time by operating on a subgraph (the distance tree) of the
lattice graph representing a connected component [19]. The isoperimetric method
searches for a split within a component, M ⊆ V for the set of voxels V that
minimizes

E(S, S̄) =
cut(S, S̄)

min(Volume(S),Volume(S̄))
, (1)
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where S ⊂ M and S̄ = M − S. Due to the low overhead in speed and memory,
we applied this isoperimetric distance tree algorithm [19] to find object separa-
tions in each connected component of the objects. This algorithm was applied
recursively on each connected component until it was unable to find a high qual-
ity separation (or the component was too small) at which point the algorithm
terminated. Taking advantage of the speed of the isoperimetric distance tree
method, we ran it several times to produce candidate splits by using randomly
chosen reference nodes in the connected component (see [19]). These splits were
evaluated and the best split was chosen to continue the recursion if the split
produced objects that were considered to have sufficiently high quality. The ac-
curate assessment of a “high quality” object is key to the successful termination
of this method and the avoidance of over- or under-segmentations. Our novel
approach to this problem is detailed in the next section.

2.3 Automated QUality Assessment

We developed a novel confidence measure to automatically compute the qual-
ity of an image segmentation without a priori knowledge of the object being
segmented. Such an Automated QUality Assessment (AQUA) is of great
significance to the image segmentation problem, since it can be used to compare
different segmentations and autonomously select the best one. Furthermore, such
a measure can be used within a segmentation algorithm to iteratively improve
the overall segmentation. An AQUA can also be used to flag the user of an au-
tomatic segmentation algorithm that the solution needs to be visually examined
and fixed before the segmentation results should be used.

To obtain the confidence measure, we identified 92 good object segments (both
ground truth and algorithm-generated) and employed a data-driven approach for
model learning. A key challenge is to design or select appropriate features to allow
us to learn which segments are “high quality”. We determined these features by
considering a set of features inspired by the literature on global methods for
object segmentation. Effectively, we took each objective function as a feature
and applied machine learning to create a model of “high quality”.

Features. The main motivation behind the choice of our 42 features was to use
a variety of segmentation metrics as indicators about whether a segmentation is
correct. The purpose of this variety was to remain agnostic about which feature
choices worked well for the final classifier in any given situation. The features
we used can be broken down into major categories: (weighted or unweighted)
geometric features, intensity features, gradient features, and ratio features.

Before beginning our exposition of the features, note that all weights in these
descriptions refer to the Cauchy distribution function applied to the appropriate
image intensities differences, i.e.,

w(i, j) =
1

1 + β
(

Ii−Ij
ρ

)2 , (2)
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where Ii and Ij are image intensities of neighboring voxels, where Ii and Ij are
image intensities of neighboring voxels, vi and vj , β, which was set to 104 for
all feature computations, is intended to control the sensitivity of the weight to
intensity difference, and ρ = max(x,y)∈M ‖∇I(x, y)‖1 was the maximum L1 norm
of all intensity gradients within the segmentation mask, M ⊆ V. The purpose of
ρ is to normalize the weights. Similarly, we define w−(Ii, Ij) = 1 when Ii > Ij
and w−(Ii, Ij) = w(Ii, Ij) otherwise.

We used geometric features to capture some measure of size and regularity of
the segmentation mask M ⊂ V, a concept dating back to some of the earliest
works on image segmentation [20,15,21]. Of these, we chose:

Volume(M) = |M| , Surface Area(M) =
∑

i,j:vi∈M,vj∈M̄

1,

Total Curvature(M) =
∑

i,j:vi∈M,vj∈M̄

H(i, j),

where H(i, j) is the discretely computed mean curvature on the surface of M,
which was locally computed as in [22].

Weighted geometric features are similar to the geometric features, but the
geometric measures are locally emphasized when intensity values were similar to
each other and suppressed when dissimilar. This concept that has been pervasive
in image segmentation since the work of Caselles et al. [23] and has been seen
in many other recent works [3,24,25]. The weighted geometric features we used
were

Weighted Volume(M) =
∑

i,j:vi∈M,vj∈M

w(i, j), (3)

Weighted Cut(M) =
∑

i,j:vi∈M,vj∈M̄

w(i, j), (4)

Total Weighted Curvature(M) =
∑

i,j:vi∈M,vj∈M̄

w(i, j)H(i, j), (5)

Low-High Weighted Cut(M) =
∑

i,j:i∈M,j∈M̄

w+(Ii, Ij), (6)

High-Low Weighted Cut(M) =
∑

i,j:i∈M,j∈M̄

w−(Ii, Ij). (7)

Our intensity features employed various measures of the direct image intensi-
ties. These features were either intended to measure absolute intensity or inten-
sity spread. Without exception, only intensities inside the segmentation mask
M were included. Of these, we chose Mean Intensity(M)= 1

|M|
∑

vi∈M Ii; Me-

dian Intensity(M)= median({Ii : vi ∈ M}); Total Intensity(M)=
∑

vi∈M Ii;
Minimum Intensity(M)= minvi∈M Ii; Maximum Intensity(M)= maxvi∈M Ii; and

Standard Deviation (M)= 1
|M|−1

∑
vi∈M (Ii −Mean Intensity(M))

2
; Interquar-

tile Distance, defined as half of the difference between the 75th percentile and
the 25th percentile values of intensities;
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Gradient features used various measures of the intensity gradients (local in-
tensity changes). All intensity derivatives comprising these gradients were com-
puted via central differences. Of these, we chose: Total L1 Gradient Norm(M)=∑

vi∈M ‖∇I(vi)‖1; Total L2 Gradient Norm(M)=
∑

vi∈M ‖∇I(vi)‖2; Mean L1

Gradient Norm(M)= 1
|M|

∑
vi∈M ‖∇I(vi)‖1; Mean L2 Gradient Norm(M) =

1
|M|

∑
vi∈M ‖∇I(vi)‖2; Median L2 Gradient Norm(M) = median({‖∇I(vi)‖1 :

vi ∈ M}); Min L1 Gradient Norm(M)= minvi∈M ‖∇I(vi)‖1; Max L1 Gradient
Norm(M)= maxvi∈M ‖∇I(vi)‖1; L1 Norm Interquartile Distance(M); L1 Norm
Standard Deviation(M); and L2 Norm Standard Deviation(M).

We opted to explicitly include a selection of features that were ratios of our
other features. The intent was not to be completely comprehensive, but rather
to use domain knowledge of segmentation problems to explicitly choose combi-
nations that the literature and our experience told us would be good indicators
of segmentation performance. The ratio features were simply the ratio of two
features above. Several fall into the category of cut divided by volume, a con-
cept that has appeared in various forms [3,13,12]. Of these, we chose: all four
weighted and unweighted combinations of cut divided by volume; all four combi-
nations of low-high weighted cut or high-low weighted cut divided by unweighted
or weighted volume; weighted cut divided by unweighted cut ; all four combina-
tions of low-high weighted cut or high-low weighted cut divided by unweighted or
weighted cut ; blur index defined as sum the L2 norms of the gradients divided by
sum of the L1 norms of the gradients ; normalized cut as defined in [3]; curvature
over unweighted cut ; and weighted curvature over unweighted cut.

We note that some of the features, such as the geometric features and most of
the intensity-based features, were not meant to be discriminative alone. Rather,
they were intended to lend context about the expected values for some of the
other more discriminative features for a given candidate segmentation. All fea-
tures mentioned above are both translation and rotation invariant.

Model Learning. We used a data-driven approach to model learning by anno-
tating a number of “high quality” object segments and fitting a generative model
over these segments in the feature space. A generative model for “high quality”
segments was chosen over a discriminative model due to our expectation that the
variability in feature space of “low quality” segmentations is much higher than
the variability for “high quality” segmentations. Specifically we used a Gaussian
mixture model (GMM) to approximate the distribution of the good segments
in the feature space which we fit via Expectation Maximization. Prior to fitting
the GMM model, we normalized each feature by subtracting the mean (over all
segments) and dividing by the standard deviation.

We used Principal Component Analysis (PCA) to reduce the dimensionality
of the data. This step is essential since the number of features is large com-
pared to the size of the training set. Consequently, the distribution of the “high
quality” object segments in the training set may be too sparse in the original
feature space. Furthermore, the features are likely to be highly correlated and
therefore redundant. The number of PCA dimensions was chosen based on the
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performance on a validation set. We fit the GMM model (using eight Gaussians)
over the PCA coefficients of all the segments in the training set using the EM
algorithm.

We define the AQUA of an object segment S ⊆ V as

AQUAseg(S) =
8∑

i=1

wiN (f(S);μi,Σi) (8)

where f(S) is the PCA projected feature vector for segment S and w, μ, σ are
GMM parameters of the ith Gaussian in the mixture.

We also define the AQUA of the cut of a connected component mask M and
a component object R ⊂ M as

AQUAcut(R,M) = max
(
AQUAseg (R) ,AQUAseg (M− R)

)
. (9)

One challenge in using the AQUA derived from a GMM is that it is often the
case that initial connected components may contain many objects which are
fused together. Splitting a connected component with many fused objects into
two pieces may create two components which are each individually composed of
several fused objects. Since the AQUA is trained to recognize individual objects,
a split of several fused objects into two smaller sets of fused objects may be
rejected as “poor quality”. Since we want intermediate stages of the recursion to
split an aggregate of fused objects into two smaller aggregates of fused objects,
we use a combination of the AQUA and the isoperimetric ratio of the cut [13].
More formally:

SP(R,M) > SP(S,M) ≡
{
AQUA(R,M) > AQUA(S,M) if AQUA(x,M) > γ,

ISO(R,M) < ISO(S,M) otherwise,

(10)
where x ∈ R,M, ISO(R,M) is the isoperimetric ratio of split SP(R,M) (see
[13]) and γ is a free parameter set to determine if the AQUA score of the split
indicates that one piece of the split represents an object.

AQUA Usage. The AQUA is used in two stages of the algorithm: First, to
assess the quality of the candidate splits from the isoperimetric distance tree
method using randomized reference points (to determine whether to continue
recursion) and second, to select the best segmentation result obtained by running
the complete segmentation algorithm at three different parameter settings.

To guide our segmentation, we use the AQUA in the splitting phase of our
segmentation algorithm. Recall from Section 2.2 that the splitting method itera-
tively splits under-segmented objects into two segments by considering multiple
splits (derived from different reference voxels) and selects the best split using
(10). Moreover, the recursive splitting also stops if one of three conditions are
met: 1) The original mask has a very large probability of being a single object
(as determined by the AQUA), 2) None of the multiple splits has a sufficiently
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high AQUA (greater than a threshold γ), 3) The original mask is too small. The
first condition is derived from the fact that the GMM was trained to recognize
that an object is high quality, so when the GMM registers an object as being
very high quality we assume that no further splitting is required. In the context
of the baggage screening application we selected a 50mL size as “too small” to
continue recursion.

The AQUA can also be used to evaluate an overall segmentation of the entire
image by averaging the AQUA of each individual segmented object. This overall
AQUA can be used generally to compare different segmentation results obtained
using different parameter settings of a segmentation algorithm, or quite possibly
a different segmentation algorithm altogether. In this work, we use the overall
image AQUA to evaluate the segmentations obtained using our segmentation
algorithm at different parameter settings and then selected the segmentation
with the greatest overall AQUA to be the final segmentation. Specifically, we
experimented with α (a free parameter in the edge weight function in isoperi-
metric segmentation [12]) and γ in (10); a lower value of α and/or higher value of
γ encourages further splitting and avoids undersegmentation. Based on several
experiments on 4 baggage datasets, we selected the following parameter sets to
yield the best performance: (α, γ) ∈ {(100,−250), (100,−350), (10,−350)}. For
validation, we compared the selected best segmentation with other segmentation
results by visual inspection.

2.4 Summary

Our segmentation algorithm of a CT volume is comprised of the following steps:

1. Metal artifact reduction using [14].
2. Applying the Mumford-Shah method in [18] to identify all object voxels.
3. For each connected component, recursively apply the isoperimetric distance

tree algorithm with several randomly chosen reference voxels and use (10)
to determine the best split. End the recursion as determined by comparing
the AQUA of the best split, (8) to parameter γ.

To improve the execution speed, we applied the algorithm with a coarse-to-fine
segmentation, using the segmentation from the previous level as the initial masks
for further splitting. This entire pipeline running single-threaded code requires
about 4 minutes per parameter set on an Intel Core 2 Duo 2.8GHz machine.
Therefore, we can change the two parameters and re-run the entire pipeline, or
run them in parallel processes, several times and select the segmentation with the
best average AQUA for all objects. Note that this algorithm would be applied
to checked baggage, so 4 minutes is acceptable.

3 Results

We evaluate our algorithm on the challenging problem of baggage screening. The
data was generated to mimic a real baggage screening application by creating 27
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Fig. 2. Left: Histogram showing the number of segments placed into each bin of the
AQUA. Red bars represent “bad” segmentations and blue bars represent “good” seg-
mentations. Note that the good and bad segmentations are completely separable by
thresholding the AQUA. Top: Examples of object segments labeled “good” (blue) and
object segments labeled “bad” (red). Right: A variety of object segments and the cor-
responding AQUA score.

baggage scans using a medical CT scanner. Each scan contained a single piece
of luggage, such as backpacks, duffel bags and soft-shell suitcases. Within each
piece of luggage, nine to twenty different objects were packed that had a large
variability in size, shape, orientation and material (appearance) composition.
Some objects consisted of several parts (e.g., a large model car with clearly
defined wheels and battery). The produced images had resolution 0.98mm ×
0.98mm × 1.2mm. Depending on the size of the suitcase, the number of slices
ranged from 665 to 953 and each slice consisted of 512×512 voxels. For each scan,
almost all objects inside a luggage piece were manually segmented by baggage
screening experts to provide a ground truth. Figure 1 shows several examples of
the data that we used for evaluation, which illustrates the difficulty in segmenting
these datasets in meaningful objects.

Our experiments are aimed at answering the following questions: 1) Does
the AQUA qualitatively match our intuitive conception of a “good” object seg-
ment? 2) Does the AQUA quantitatively allow us to discriminate high quality
segmented objects from poor quality segmented objects? 3) Does the overall seg-
mentation algorithm produce segmentations that qualitatively agree with our
conception of high quality segmentations? 4) How does the overall segmenta-
tion algorithm quantitatively match the manual (ground truth) segmentations?
5) How much improvement is gained by using our AQUA to end recursion as
opposed to using the conventional isoperimetric ratio from [12]?

3.1 AQUA Evaluation

In this section, we perform an experiment to evaluate the quantitative and qualita-
tive accuracy of the AQUA. We collected 60 object segments from the
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Fig. 3. Segmentation of a luggage CT Scan. Segments with different labels are rendered
in different colors. (left) Ground truth segmentation, (middle) segmentation obtained
using iso-ratio, and (right) segmentation obtained using AQUA.

intermediate andfinal results of the segmentation algorithmand labeled each “high
quality” or “poor quality”. Some of the poor quality object segmentations were
undersegmented and others were oversegmented. Our AQUA was applied to each
object. Figure 2 shows a histogram for the AQUA and the number of “high qual-
ity” and “low quality” objects that were placed into each AQUA bin. The figure
also gives several examples of object segments that were labeled “high quality” or
“low quality” and the values of the AQUA for a range of object segments (good and
bad) that we tested on. Since perfect discrimination was achieved by the AQUA
for segments of “high quality” and “low quality”, we can conclude that the AQUA
is accurately evaluating the quality of each object segment.

It is somewhat surprising that the AQUA performs so well for such a large va-
riety of objects. However, the features describing each object were derived from
the objective functions that have been optimized in the literature for different
segmentation algorithms. The assumption behind each of these algorithms is that
the best segmented object in an image is the segmented object that optimizes
the criterion established by the objective function. Although these segmentation
algorithms were all intended for general-purpose image segmentation, we are not
aware of any previous examination of whether the values of the objective func-
tion for an object can be used to discriminate “good” object segmentations from
“bad” object segmentations across images and application domains. Our exper-
iment demonstrates that using these objective function evaluations as features
for a generative GMM model does allow us to identify “good” segmentations.

3.2 Segmentation of the Baggage Datasets

A qualitative result from our segmentation system is given by Figure 3. In order
to quantify the segmentation quality we developed error metrics that are based
on mutual overlaps between ground truth (manual segmentations) and the seg-
ments produced by our algorithm. In our evaluation, we assumed that each
computed label/segment is assigned to exactly one ground truth label/segment
and vice-versa. Therefore, even if a computed segment overlaps with more than
one ground truth segment the overlap is compared with only one of the ground
truth segments, and not compared with any of the other ones. Conversely, if
one ground truth segment overlaps with several computed segments, the overlap
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Fig. 4. Oversegmentations relative to ground truth. The ground truth annotations of
the battery pack (left) and the soaps (right) assigned a single label to the whole package.
However, the segmentation algorithm assigned several labels to sub-components, i.e.,
the two separate groups of batteries and the three soaps, respectively. Consequently,
our overlap measure was poor for these objects, even though our segmentations could
be considered to simply represent different notions of the target object.

with only one of them is compared and all of the others were ignored. Therefore,
differences in object definition between the ground truth and the segmentation
can sometimes appear as a segmentation having a very poor score using this
evaluation method. Figure 4 illustrates this situation.

The one-to-one assignments of ground truth segments to computed segments
was determined automatically and such that the total sum of all overlaps (in
voxels) was maximal. Since this problem is equivalent to the matching of two
independent graphs with equal or differing number of nodes, here we were able to
employ the Hungarian algorithm to find the optimal matching. Technically, this
matching is realized by first computing the mutual overlaps (in voxels) between
all ground truth and all computed segments, which results in an overlap matrix
whose row index the list of ground truth labels and whose column index the list
of computed labels. The Hungarian algorithm then finds the optimal assignment
that maximizes the total overlap.

Based on this optimal matching of ground truth segments/labels to computed
segments/labels, we computed the relative overlap per ground truth segment by
dividing its overlap with the assigned computed segment (in voxels) by the size
of the individual ground truth label (in voxels). The resulting overlap percent-
ages are then plotted for each ground truth label. The overlap measures for each
object in one dataset is shown in Figure 5. Both quantitatively and qualita-
tively, the use of our AQUA system to perform quality assessment significantly
improved the quality of the segmentation (per-object and overall) as compared
to the conventional use of the isoperimetric ratio from [12] to end recursion.

Besides these per-ground truth segment measures, as overall overlap metric we
computed the average overlap percentage per dataset. The mean of the average
overlap percentage over all 27 datasets with ground truth was 54% (σ = 10)
when using AQUA in the splitting algorithm, and only 44% (σ = 12) when
using just the isoperimetric ratio. As noted previously, this score appears worse
than it is as a result of differences in “object philosophy” between the algorithm
and the ground truth (see Figure 4).
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Fig. 5. Relative overlaps for one dataset. Average overlap percentage: 53% (with
AQUA) and 31% (with isoperimetric ratio). Red: Overlap using isoperimetric ratio.
Blue: Overlap using AQUA. Using AQUA to end recursion is a major improvement
over using the isoperimetric ratio of [12] to end recursion. Note that most of the low
object scores were due to partial matches that resulted from a different “object philos-
ophy” between the algorithm and ground truth (see Figure 4).

4 Conclusion

We presented a new algorithm for unsupervised image segmentation that intro-
duces a novel Automatic QUality Assessment (AQUA) module which is trained
as a generative model (for “good” object segments) using a combination of dif-
ferent objective functions dispersed in the literature. The AQUA is then used
both iteratively to end the splitting recursion (and choose between candidate
splits) and at the end to assess the overall quality of the segmentation.

Our segmentation algorithm was applied to the challenging and important ap-
plication of the unsupervised segmentation of baggage screening images acquired
from 3D computed tomography scans. The challenge of image segmentation in
these images is a product of the unknown number of objects, significant imag-
ing artifacts, the wide variety of shapes and sizes, inhomogeneity and the tight
packing of the objects against each other. General segmentation algorithms into
superpixels of region homogeneity are unsuited for these images in which the
goal is to make measurements about total object composition. A further chal-
lenge of segmenting these images is their large size and the speed requirements
necessary for an algorithm to be useful.

We tested our algorithm on a novel dataset designed to mimic a real baggage
screening data application. The evaluation demonstrated that our new AQUA
can accurately determine the quality of an object segment even for objects that
were not in the training set. Furthermore, our overall algorithm could be used to
match a manually-derived ground truth for these 27 images. These experiments
demonstrate the suitability and future prospects for applying this algorithm to
improve the baggage security screening capabilities of today’s airports.
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