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Abstract. Cascading processes, such as disease contagion, viral marketing, and
information diffusion, are a pervasive phenomenon in many types of networks.
The problem of devising intervention strategies to facilitate or inhibit such pro-
cesses has recently received considerable attention. However, a major challenge
is that the underlying network is often unknown. In this paper, we revisit the
problem of inferring latent network structure given observations from a diffusion
process, such as the spread of trending topics in social media. We define a family
of novel probabilistic models that can explain recurrent cascading behavior, and
take into account not only the time differences between events but also a richer set
of additional features. We show that MAP inference is tractable and can therefore
scale to very large real-world networks. Further, we demonstrate the effectiveness
of our approach by inferring the underlying network structure of a subset of the
popular Twitter following network by analyzing the topics of a large number of
messages posted by users over a 10-month period. Experimental results show that
our models accurately recover the links of the Twitter network, and significantly
improve the performance over previous models based entirely on time.

1 Introduction

Cascading processes, such as the spread of a computer virus or an infectious disease, are
a pervasive phenomenon in many networks. Diffusion and propagation processes have
been studied in a broad range of disciplines, such as information diffusion [1–4], social
networks [5, 6], viral marketing [7, 8], epidemiology [9], and ecology [10]. In previous
work, researchers have mostly focused on a number of optimization problems derived
from cascading processes, where the goal is to devise intervention strategies to either
maximize (e.g., viral marketing) or minimize (e.g., network interdiction, vaccination
programs) the propagation. However, these studies often assume that the underlying
network is known to the observer, which in practice is not true in many situations.

In this paper, we revisit the problem of inferring latent network structure given obser-
vations of a diffusion process. For example, by observing a disease epidemic, we want
to infer the underlying social contact network, or by observing the spread of trending
topics, we want to estimate the connectivity of the social media. Fig. 1 illustrates a case
of information diffusion in the popular Twitter network. The nodes represent a subset
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Fig. 1. Information diffusion in the Twitter network (see PDF for colored version)

of the Twitter users that have posted about a common trending topic, and the directed
edges represent the “following” relation between the users. There is a clear pattern in
the figure. The bigger and darker nodes, followed by the smaller and lighter nodes,
form the hubs of the diffusion process. By looking at the time-stamps of the messages
and at the underlying network structure, we observe that most information flows initiate
at a hub node and spread across the network to reach other hub nodes and their follow-
ers. However, it is non-trivial to come up with such a picture simply by looking at the
time-stamps of the messages, since without knowing the underlying network structure,
we cannot decide from whom a node copied the information from. Intuitively, mes-
sages carry implicit information about the social relations among users. For instance,
users who repeatedly post messages about the same topic within a short period of time,
are more likely to be connected. Thus, a motivating application of this paper is to what
extent we can estimate the relations in social networks by analyzing the messages pub-
lished by users over time.

This type of latent network inference problem based on the time-stamps of infection
(or, information-reproduction) events has received increasing interest over the past few
years [1–3]. Previous work was largely based on two major assumptions: 1) the diffu-
sion process is causal (i.e., not affected by events in the future), and 2) infection events
closer in time are more likely to be causally related (e.g., according to an exponential,
Rayleigh, or power-law distribution). While the causality assumption is indeed crucial
and always satisfied in practice, we realize that there are many other factors that can
be highly informative as far as the causality relations are concerned. For example, the
time-stamps at which two users publish their tweets are important to decide whether
they are related, but other factors such as the language or the content of the messages
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can be as important. Even if the two messages are close in time, they are unlikely to be
related if the messages are written in different languages. Further, previous models in
the literature are mostly focused on monotonic processes, while real-world processes
are often recurrent. For instance, it is very common for one user to post about the same
topic multiple times on Twitter, or purchase the same item regularly on Amazon.

Contributions. Motivated by these challenges, we define a family of novel probabilistic
models that generalize previous models based solely on time. We propose a primary
approach MONET that can handle recurrent diffusion processes. Further, we consider
a richer set of additional features for infection events, defining novel feature-enhanced
models that can better explain the observed data. With distributed optimization and
convex objective functions, we can efficiently solve the problem of inferring the most
probable latent network structure. Using additional features such as the languages of
the messages and Jaccard indexes between the messages, we can accurately recover
the links of the Twitter network by analyzing the topics of a large number of messages
posted by a subset of the Twitter users over a 10-month period. Experimental results
show that our models significantly improve the accuracy of the estimates over previous
models by as much as 78.7%.

2 Problem Definition

We consider a diffusion process across a network represented by a directed, weighted
graph G = (V, E). Let A = {αjk|j, k ∈ V, j �= k} be the adjacency matrix of weights.
A directed edge (j, k) has weight αjk � 0 that denotes the pairwise transmission rate
from node j to node k. For example, in the case of an infectious disease spreading
through a population, V represents a group of individuals and E represents the strength
of the social contacts among them. In the case of an invasive species colonizing a new
territory, V represents patches of land and E represents the connectivity between them.
We assume that the diffusion process is stochastic but causal, that is, it depends on the
past history but not on the future. Specifically, we consider a diffusion process that starts
with one or more nodes, and spreads across the network subject to an independent local
probabilistic model of “infection”, where a node infects its neighbors independently of
the status of other nodes in the network [5].

When studying such diffusion processes, the underlying network is often unknown
(latent). However, we assume that one can observe a set of cascades of “infection” (or,
information-reproduction) events. A cascade is a sequence of infection events

π = {(v0, t0), · · · , (vN , tN)}

during a given time interval T , where vi ∈ V is a node that becomes infected at time ti.
T is the horizon of cascade π. Note that different cascades may have different horizons.
For example, in the Twitter network, each cascade corresponds to a trending topic, and
we have an entry (vi, ti) for each tweet posted by user vi at time ti. Given a proba-
bilistic model P (π|G) that gives the probability of observing a certain cascade π when
the underlying network is G, the problem of inferring the latent network structure from
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Fig. 2. Feature-enhanced probabilistic model

observed cascades has received considerable attention [1–3]. It is usually assumed that
V is known but E is unknown, and the goal is to find a (weighted) graph

G∗ = arg max
G

M∏

c=1

P (πc|G)

that maximizes the probability of observing cascades π1, · · · , πM , which are assumed
to be i.i.d. (independent, identically distributed) realizations of the underlying diffusion
process.

The building block to define P (·) is the likelihood function f(tk|tj ; αjk) that gives
the probability density that node vj infected at time tj infects node vk at time tk (see
below for more details). Such models are centered on the time differences between the
infection events of a cascade, and exploit the causal nature of the diffusion process by
setting the likelihood to zero whenever tk − tj < 0. Further, they assume that events
closer in time are more likely to be causally related. For instance, if node vk became
infected shortly after node vj was infected, this is considered as an indication that the
two events are causally related (i.e., vk was infected by vj). These time-based models
are the foundation of our work.

While time is indeed a crucial element of the network inference problem, in practical
applications, observations of a diffusion process often carry additional key information.
For example, the diagnosis of an infection often comes with additional information
about the specific strain. When a topic or a rumor spreads through a social network,
one can also observe the context in which it appears. This motivates our definition of a
generalized cascade

πg = {(v0, t0, f0), · · · , (vN , tN , fN)} (1)

where vi ∈ V is a node infected at time ti, and fi ∈ F is a feature vector describing
the additional information available for the i-th infection event. Using the additional
information contained in a generalized cascade, we can define a generalized feature-
enhanced probabilistic model where the probability of a transmission event depends
not only on the time differences, but also on the additional features. Specifically, we use
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a probability density function f(tk, fk|tj , fj ; αjk) as a building block, which depends
causally on the relative time difference tk−tj as well as on the additional features fk and
fj . Fig. 2 gives an example of the difference between previous models that are based
solely on time and a case of our feature-enhanced models where f(tk, fk|tj , fj ; αjk)
depends on ||tk − tj || + ||fk − fj ||. Node 3 is considered to be more related to node 1
than node 2 by our feature-enhanced models, while it is determined to be more related
to node 2 by models based only on time.

Furthermore, previous models are focused on monotonic diffusion processes, while
most real-world processes are recurrent. For example, it is common for one user to post
about the same topic multiple times on Twitter, or purchase the same item multiple
times on Amazon. Repeated posts of the same topic show a higher level of interest in
that topic, and exchanged posts of the same topic between a group of nodes also show
a higher level of connectivity in that group. We take these factors into account in our
feature-enhanced models and assign respective reward/penalty to each scenario.

There are two different ways of modeling a diffusion process where nodes can be
infected multiple times in one cascade. The first model considers an infection event as
the result of all previous events, and thus we call it non-splitting. By contrast, the second
model considers an infection event of a node as the result of all previous events up to its
last infection. This model is memoryless and thus we call it splitting. We mainly focus
on the non-splitting model in this section, but the results can be extended to the splitting
case. We will later present experimental results in Section 4 for both non-splitting and
splitting models.

2.1 Generalized Cascade Model

We first recall some standard notation from previous literature, and then define our
feature-enhanced models based on generalized cascades.

Recap. Recall the standard notation from [1] and [11]. Given that node j was infected
at time tj , the survival function of edge (j, k) is the probability that, by time tk, node k
was not infected by node j. That is,

S (tk|tj ; αjk) = 1 − F (tk|tj ; αjk) , (2)

where αjk denotes the transmission rate from node j to node k, and F (tk|tj ; αjk)
is the cumulative distribution function. Further, the hazard function (or, instantaneous
infection rate) of edge (j, k) is given by

H (tk|tj ; αjk) =
f (tk|tj ; αjk)

S (tk|tj ; αjk)
, (3)

where

f (tk|tj ; αjk) =
d

dt
F (t|tj ; αjk)

∣∣∣∣
tk

is the likelihood function. Table 1 shows the survival and hazard functions based on the
exponential, Rayleigh, and power-law distribution.
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Table 1. Parametric Models [1]

Model Likelihood Function Survival Function Hazard Function
f (tk|tj ; αjk) S (tk|tj ; αjk) H (tk|tj ; αjk)

Exponential
{

αjke−αjk(tk−tj) if tj < tk

0 otherwise
e−αjk(tk−tj) αjk

Rayleigh

⎧
⎨

⎩
αjk (tk − tj) e−αjk

(tk−tj)2

2 if tj < tk

0 otherwise
e−αjk

(tk−tj)2

2 αjk (tk − tj)

Power Law

⎧
⎨

⎩

αjk

δ

(
tk − tj

δ

)−1−αjk
if tj < tk − δ

0 otherwise

(
tk − tj

δ

)−αjk αjk

tk − tj

Multiple Occurrences. Real-world diffusion processes are often recurrent, that is, we
often observe multiple occurrences of the same node in one cascade. With multiple
occurrences of node k and node j, the survival function for the non-splitting case is

S (tk|tj ; αjk) =
∏

k:t
(1)
k

�Tc

∏

1�i�Nc
k

∏

j �=k:t
(1)
j <t

(i)
k

S
(
t
(i)
k |tj ; αjk

)

=
∏

k:t
(1)
k

�Tc

∏

1�i�Nc
k

∏

j �=k:t
(1)
j <t

(i)
k

∏

1���Nc
j (t

(i)
k

)

S
(
t
(i)
k |t(�)j ; αjk

)
,

where T c is the horizon of cascade πc, and t
(i)
k , i ∈ {0, · · · , N c

k , N c
k + 1} denote the

time-stamps of node k infections in cascade πc. We assign two special time-stamps for
every node: t

(0)
k = 0 and t

(Nc
k+1)

k = T c. N c
k denotes the number of node k infections in

cascade πc. N c
j (t(i)k ) denotes the number of node j infections before the i-th infection

of node k. Similarly, the hazard function is given by

H
(
t
(i)
k |t(�)j ; αj,k

)
=

f
(
t
(i)
k |t(�)j ; αj,k

)

S
(
t
(i)
k |t(�)j ; αj,k

) .

Additional Features. Consider two feature vectors fk, fj ∈ F associated with node
k, j ∈ V in a cascade. Let d (fk, fj) denote the distance between the two feature vectors.
We include an extra term e−d(fk,fj) in the likelihood function to reflect this distance
factor. For example, given an exponential distribution, we have

f (tk, fk|tj , fj ; αjk) =

{
γαjke−d(fk,fj)e−αjk(tk−tj), if tj < tk

0, otherwise

where γ is a normalization constant. Thus, the survival function is given by

S (tk|tj , fj ; αjk) = 1 − F (tk|tj , fj ; αjk) = 1 −
∫

F

∫ tk

tj

f (t, f |tj , fj ; αjk) dtdf

= e−αjk(tk−tj)
∫

F
γe−d(f,fj)df = e−αjk(tk−tj). (4)
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Then, the hazard function is

H (tk, fk|tj , fj ; αjk) =
f (tk, fk|tj , fj ; αjk)

S (tk|tj , fj ; αjk)
=

{
γαjke−d(fk,fj), if tj < tk

0, otherwise
(5)

2.2 MAP Inference

Given independent cascades, the likelihood of a set of cascades {π1
g , · · · , πM

g } is the
product of the likelihood of each cascade:

∏

1�c�M

f
(
πc

g;A
)
, (6)

where A = {αjk|j, k ∈ V, j �= k} is a weighted adjacency matrix of transmission
rates. Given a cascade πc

g , the probability that node k was not infected by time T c is the
product of the survival functions of the infected nodes. The formulation can be extended
according to the generalized cascade model discussed in Section 2.1. For example, if a
node was infected multiple times during the observation window, this repeated lack of
ability to infect node k should also be considered. Specifically, the probability that node
k was not infected by time T c is

∏

j:t
(1)
j

�Tc

∏

1�i�Nc
j

S
(
T c|t(i)j , f

(i)
j ; αjk

)
.

Given the parents of the infected nodes, infections are assumed to be conditionally
independent. Thus, the likelihood of the observed cascade πc

g is

f
(
πc

g;A
)

=
∏

j:t
(1)
j �Tc

∏

1�i�Nc
j

f
(
t
(i)
j , f

(i)
j |πc

g\
(
j, t

(i)
j , f

(i)
j

)
;A

)
.

Given the i-th infection of node k, the likelihood of node j being its first parent is

f
(
t
(i)
k , f

(i)
k |tj , fj ;A

)
=

∏

s�=j:t
(1)
s <t

(i)
k

∏

1�p�Nc
s (t

(i)
k

)

S
(
t
(i)
k |t(p)

s , f (p)
s ; αs,k

)

×
∑

1���Nc
j (t

(i)
k

)

f
(
t
(i)
k , f

(i)
k |t(�)j , f

(�)
j ; αj,k

) ∏

q �=�

S
(
t
(i)
k |t(q)j , f

(q)
j ; αj,k

)
.

Thus, the likelihood of the observed cascade πc
g is

f
(
πc

g;A
)

=
∏

k:t
(1)
k

�Tc

∏

1�i�Nc
k

⎛

⎜⎝
∑

j:t
(1)
j <t

(i)
k

f
(
t
(i)
k , f

(i)
k |tj , fj ;A

)
⎞

⎟⎠ .

Combine the two equations above and include the condition s = j, we have

f
(
πc

g;A
)

=
∏

k:t
(1)
k

�Tc

∏

1�i�Nc
k

⎛

⎜⎝
∏

s:t
(1)
s <t

(i)
k

S
(
t
(i)
k |ts, fs; αs,k

)
×

∑

j:t
(1)
j <t

(i)
k

∑

1���Nc
j (t

(i)
k

)

f
(
t
(i)
k , f

(i)
k |t(�)j , f

(�)
j ; αj,k

)

S
(
t
(i)
k |t(�)j , f

(�)
j ; αj,k

)

⎞

⎟⎠ .
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Add the information that some nodes were never infected during the horizon T c, and
then,

f
(
πc

g;A
)

=
∏

k:t
(1)
k

�Tc

∏

1�i�Nc
k

∏

tm>Tc

S
(
T c|t(i)k , f

(i)
k ; αi,m

)
×

∏

s:t
(1)
s <t

(i)
k

S
(
t
(i)
k |ts, fs; αs,k

)
×

∑

j:t
(1)
j <t

(i)
k

∑

1���Nc
j (t

(i)
k

)

H
(
t
(i)
k , f

(i)
k |t(�)j , f

(�)
j ; αj,k

)
. (7)

Eq. (7) gives the likelihood of cascade πc
g for the non-splitting model. However, for the

splitting case, this likelihood is given by

f
(
πc

g;A
)

=
∏

k:t
(1)
k

�Tc

∏

1�i�Nc
k

∏

tm>Tc

S
(
T c|t(i)k , f

(i)
k ; αi,m

)
×

∏

s:t
(1)
s <t

(i)
k

∏

Nc
s (t

(i−1)
k

)<p�Nc
s (t

(i)
k

)

S
(
t
(i)
k |t(p)

s , f (p)
s ; αs,k

)
×

∑

j:t
(1)
j <t

(i)
k

∑

Nc
j (t

(i−1)
k

)���Nc
j (t

(i)
k

)

H
(
t
(i)
k , f

(i)
k |t(�)j , f

(�)
j ; αj,k

)
. (8)

Eq. (8) is similar to Eq. (7) except that we only consider the segment between the
(i − 1)-th and i-th occurrence of node k for the survival and hazard function.

Problem Definition. Our goal is to infer the connectivity and estimate the infection
rate αjk for each pair of nodes (j, k) such that the likelihood of observed cascades
{π1

g , · · · , πM
g } is maximized. Specifically,

minimizeA −
∑

1�c�M

log f
(
πc

g;A
)

subject to αjk � 0, j, k ∈ V, j �= k.

(9)

where A = {αjk|j, k ∈ V, j �= k} are the variables. The inferred edges of the network
are those pairs of nodes with infection rate αjk > 0.

3 Proposed Approach: MONET

In this section, we discuss the properties of the optimization problem arising from the
MAP inference task in our feature-enhanced probabilistic models defined in Section 2.
By Eq. (6) and Eq. (7), the log-likelihood of cascades {π1

g , · · · , πM
g } is

L
(
{π1

g , · · · , πM
g };A

)
=

∑

1�c�M

Φ1(π
c
g;A) + Φ2(π

c
g;A) + Φ3(π

c
g;A), (10)

where for each cascade πc
g ∈ {π1

g , · · · , πM
g },
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Φ1(π
c
g; A) =

∑

k:t
(1)
k

�Tc

∑

1�i�Nc
k

∑

s:t
(1)
s <t

(i)
k

log S
(
t
(i)
k |ts, fs; αs,k

)
,

Φ2(π
c
g; A) =

∑

k:t
(1)
k

�Tc

∑

1�i�Nc
k

log
∑

j:t
(1)
j <t

(i)
k

∑

1���Nc
j (t

(i)
k

)

H
(
t
(i)
k , f

(i)
k |t(�)j , f

(�)
j ; αj,k

)
,

Φ3(π
c
g; A) =

∑

k:t
(1)
k

�Tc

∑

1�i�Nc
k

∑

t
(1)
m >Tc

log S
(
T c|t(i)k , f

(i)
k ; αk,m

)
.

The above equations are a strict generalization of the ones presented in [1], that is, we
recover the same formulation where there are no multiple occurrences and we do not
consider any additional features other than time. Further, we also generalize several
results of the model in [1] to our feature-enriched setting, for both splitting and non-
splitting cases. Formally,

Theorem 1. The following results hold:

– Given any distance functions, log-concave survival functions, and concave hazard
functions, the problem defined by Eq. (9) is convex in A.

– The optimization problem defined by Eq. (9) is convex for the feature-enhanced
models with exponential, Rayleigh, or power law distribution.

– The solution to Eq. (9) gives a consistent maximum likelihood estimator.

The proof of Theorem 1 is similar to that of [1], and is omitted for space reasons.
We call our primary approach MONET, which provides non-splitting and splitting

solutions for the network inference problem defined by Eq. (9) where nodes can be
repeatedly infected.

Analyzing MONET. We discuss some properties of the solution to the optimization
problem defined in Eq. (9) for the generalized feature-enhanced models with the ex-
ponential, Rayleigh, and power-law distribution. This is equivalent to maximizing the
log-likelihood defined in Eq. (10). Clearly, the expression in Eq. (10) depends on the
transmission rate αjk and the relative time difference tk − tj between each occurrence
of node j and node k. Note that it does not depend on the absolute values of the time-
stamps. In general, however, Eq. (10) depends on the absolute values of the feature
vectors (i.e., it depends not only on the distance between observed feature vectors), due
to the normalization constant γ.

As discussed in [1], Φ1 and Φ3 encourage sparse solutions by imposing negative
weights on A. Specifically, Φ1 penalizes αjk based on the relative time difference tk−tj
and Φ3 penalizes αki for uninfected node i based on T c − tk (i.e., until the horizon cut-
off). Note that MONET only infers impossible edges based on 0 transmission rates. Due
to finite observation window, the lack of ability to infect some node i within time T c

does not mean it is impossible to infect node i (i.e., there is no edge).
The term Φ2 emphasizes the intuition that infected nodes must have at least one par-

ent (appearing before them in a cascade) by which they were infected. If this is not
ensured, Φ2 = −∞ will be negatively unbounded. The additional features used in our
models only affect the term Φ2. Specifically, infected nodes tend to select those that
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are more similar to them as their parents. Further, in the non-splitting case, only the
first occurrence of each node in the cascade is affected by this hard constraint (further
occurrences can still be explained by the parent of the first occurrence). However, sim-
ply using the first explanation can be too penalizing, and adding more parents might
improve the likelihood.

Computational Aspects. As in previous work, we can parallelize the solution to the
optimization problem defined in Eq. (9). Given a network with n nodes, this optimiza-
tion problem has O(n2) variables, but the objective function can be separated into n
independent sub-problems with O(n) variables each. For each node k = 1, · · · , n, we
optimize the k-th column of the matrix A of transmission rates, solving for (n − 1)
unknown transmission rates {αjk} where j �= k. To compute the k-th column, we
only require the infection times of the nodes in those cascades where node k appears.
Optimal columns are joined to form a globally optimal transmission rate matrix.

If node j never appears before node k in any cascade, we have no evidence to suggest
the existence of a directed edge (j, k). That is, αjk only contributes to the non-positive
term Φ2 in Eq. (10). Thus, in every iteration, we set αjk to the optimal value 0 to
simplify the objective function L

({π1
g , · · · , πM

g };A)
.

Any convex optimization package can be used to solve the optimization problem.
However, regular packages such as CVXOPT [12] could not handle the scale of our
Twitter dataset and ran out of memory. Thus, we use the limited-memory BFGS algo-
rithm with box constraints (L-BFGS-B) [13] to solve Eq. (9) and Eq. (10) by implicitly
approximating the inverse Hessian matrix. We use the box constraints to enforce the
non-negativity of the transmission rates.

4 Experimental Results

We evaluate the performance of our models by analyzing the diffusion of information in
the popular Twitter network. Using a dataset crawled from January to October 2010 that
contains 9,409,063 tweets published by 66,679 Twitter users, we analyze the cascading
behavior of some trending topics and try to infer the underlying network structure.

4.1 Experimental Setup

Dataset Description. We conduct experiments on a subset of the Twitter network,
which contains 66,679 nodes and 240,637 directed links. Each node represents a Twit-
ter user and each edge represents a following relation. Contrary to previous work [1, 2],
the adjacency matrix (ground truth) of this subgraph has also been crawled and thus is
entirely known. In order to identify trending topics, we group the messages posted by
these users according to their Hashtags1. We assume that messages containing the same
Hashtag form a (generalized) cascade of a particular topic. Note that certain cascades
corresponding to popular Hashtags might not be explained by our generative models.
For example, #iphone is a widespread Hashtag that users often proactively include in
their tweets rather than passively copy from another user. Therefore, we select a subset

1 Hashtags are words or phrases prefixed with the symbol # to label groups and topics.
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of not-so-popular Hashtags (e.g., #Mokpo and #GagaSouthAmerica2011), which are
more specific and “local”. That is, we consider those “local” cascades such that if node
k writes about a Hashtag at time tk, then it must have followed (or, have copied from)
some node that wrote about the same Hashtag before time tk.

This assumption is particularly important to our experiments. Since we only have a
subset of the whole Twitter network, infected nodes observed in a cascade might have
copied the information from some node that does not belong to this subset of users.
Since we observe that MONET performs better on the cascades where the “locality” in-
tuition holds, we trace the propagation of 500 Hashtags (that consist of 103,148 tweets)
across the Twitter network from January to October 20102. The average length of the
cascades is 166, and there are a total of 2,521 unique users. On average, over 75% of
the users post multiple times of the same Hashtag in each cascade. The inference is
focused on the top 200 users that belong to the largest number of cascades. The size of
the dataset is such that this inference problem can be solved by NETRATE and NETINF.

Feature Model. When collecting the Hashtags, we also record the entire message (or,
tweet) containing the Hashtag. This represents the additional feature fj for each node
j ∈ V in the generalized cascade model. In this paper, we use two primary distance
metrics associated with texts: language and Jaccard index.
� Language. We observe that messages belonging to the same cascade (i.e., with the

same Hashtag) are often written in several languages. For example, a cascade start-
ing with an English tweet can spread to multilingual users who post tweets in Italian
or Chinese but keep the original Hashtag. Intuitively, tweets in different languages,
even if published closely in time, should not be considered as an implication of
connectivity. Let �(·) be a function mapping a tweet to its language. We define a
distance function with respect to language

dL(fi, fj) =
{

0, �(fi) = �(fj);
1, �(fi) �= �(fj).

The language information is computed using the n-gram model proposed in [14].
Note that this language identification algorithm provides noisy estimates.

� Pairwise similarity. We include pairwise similarity (a.k.a. Jaccard index) as an-
other distance metric in our models. Given two tweets fj and fk posted by node j
and node k, the distance function with respect to Jaccard index is defined as

dJ (fi, fj) = 1 − Jjk = 1 − |fj ∩ fk|
|fj ∪ fk| ,

where we consider the tweets as sets of words. Intuitively, besides the time factor,
node k is more likely to have copied the information from node j if their tweets
have higher similarity.

� Combination. We also consider both language and Jaccard similarity as a com-
bined feature, defining another distance function

dL+J(fi, fj) = wJdJ (fi, fj) + wLdL(fi, fj).

2 We will release an anonymized dataset due to Twitter’s data privacy policy.
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where wJ and wL are the weights associated with the language and the Jaccard
similarity feature. Since Jaccard similarity is typically small, we use a weight wJ

to ensure that its contribution is comparable to that of the language distance.

Note that the normalization constant γ in Eq. (5) is hard to compute, since it involves
a summation over all possible messages of up to 140 characters (the maximum length
allowed by Twitter). In our experiments, we consider γ as fixed and independent of fj .
In the case of language, this is equivalent to assuming that there are roughly the same
number of possible messages for any given language.

Our optimization framework contains a hierarchical set of models for the MAP in-
ference problem: splitting/non-splitting with multiple occurrences (MONET), language
(MONET+L), Jaccard index (MONET+J), and their combination (MONET+LJ).

Evaluation Measures. To evaluate the performance of our feature-enhanced models,
we consider the following aspects:
� Baseline. We use NETRATE [1] and NETINF [2] as two baselines to compare with

our models. Since repeated occurrences are not allowed in NETRATE, we keep
exactly one copy of each node and remove all other duplicates from each cascade.
We use the true number of edges as an input parameter for NETINF. Due to license
issues with the optimization software, we do not compare with CONNIE [3] in
this paper, but its performance is comparable with that of NETRATE and NETINF

according to previous literature.
� Quantitative performance. We use precision, recall, and F1-score to evaluate the

performance of our models against the baselines. These measures focus on the num-
ber of correct pairs of nodes inferred. For example, given a pair of nodes (k, j) such
that k is following j, if our method suggests that αjk > 0 (i.e., information flows
from j to k), then consider it as a true positive (TP). False positives (FP) and false
negatives (FN) are defined in a similar way.

� Efficiency. We evaluate the efficiency (i.e., elapsed time required for obtaining the
optimum) of our feature-enhanced models.

All algorithms are implemented using Python with the Fortran implementation of L-
BFGS-B available in Scipy [15], and all experiments are performed on a machine run-
ning CentOS Linux with a 6-core Intel x5690 3.46GHZ CPU and 48GB memory.

4.2 Quantitative Performance

We trace the propagation of a set of 500 Hashtags that consist of 103,148 tweets across
a subset of the Twitter network that contains 66,679 nodes and 240,637 directed links.
We want to infer the connectivity of the top 200 users that appear in the largest number
of these 500 cascades. We evaluate our models against NETRATE and NETINF by com-
paring the inferred network and the ground truth via three metrics: precision, recall, and
F1-score. F1-score, the harmonic mean of precision and recall, measures the accuracy
of the estimates. The primary model MONET handles the basic scenario where nodes
can have multiple occurrences in one cascade. As discussed in Section 2.1, MONET

can be extended to consider a set of additional features, such as language (MONET+L),
Jaccard similarity (MONET+J), and both (MONET+LJ).
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Table 2. Performance comparison on Twitter (non-splitting/exponential)

METRIC METHOD
NETINF NETRATE MONET MONET+L MONET+J MONET+LJ

PRECISION 0.362 0.592 0.434 0.464 0.524 0.533

RECALL 0.362 0.069 0.307 0.374 0.450 0.483

F1-SCORE 0.362 0.124 0.359 0.414 0.484 0.507

TP 518 99 439 535 644 692

FP 914 62 573 618 586 606

FN 914 1333 993 897 788 740

Table 3. Performance comparison on Twitter (splitting/exponential)

METRIC METHOD
NETINF NETRATE MONET MONET+L MONET+J MONET+LJ

PRECISION 0.362 0.592 0.514 0.516 0.531 0.534

RECALL 0.362 0.069 0.599 0.605 0.618 0.635

F1-SCORE 0.362 0.124 0.554 0.557 0.571 0.581

TP 518 99 858 867 885 910

FP 914 62 810 812 781 793

FN 914 1333 574 565 547 522

Upper Bound of Recall. Similar to previous models, MONET requires node j to appear
at least once before node k for αjk > 0 to be possibly inferred (i.e., information flows
from j to k). For our dataset, no more than 86.4% of the edges in the ground truth
can be recovered given the cascades. This represents an upper bound on recall for any
probabilistic model based on the causality of the diffusion process.

Exponential Model. Table 2 and Table 3 compare the precision, recall, and F1-score
of our non-splitting and splitting models introduced in Section 2.2 with NETRATE and
NETINF according to the exponential distribution (see Table 1). NETRATE tends to be
highly conservative when estimating the connectivity of the Twitter network, and thus
has good precision but very low recall. NETINF knows how many edges there are in
the true network, and slightly improves over NETRATE. Without knowing the ground
truth, MONET balances the precision-recall trade-off and improves the accuracy over
NETRATE by 65.5% for the non-splitting case and 77.6% for the splitting case. As
expected, MONET+L, MONET+J, and MONET+LJ further improve the F1-score on
top of MONET with the help of additional features. In particular, MONET+LJ improves
the accuracy by as much as 78.7% over NETRATE and 37.7% over NETINF for the
splitting case.

Rayleigh Model. Table 4 and Table 5 compare the precision, recall, and F1-score of our
non-splitting and splitting models with NETRATE and NETINF according to the Rayleigh
distribution (see Table 1). Similarly, without knowing the ground truth, MONET bal-
ances the precision-recall trade-off and improves the accuracy over NETRATE by 55.7%
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Table 4. Performance comparison on Twitter (non-splitting/Rayleigh)

METRIC METHOD
NETINF NETRATE MONET MONET+L MONET+J MONET+LJ

PRECISION 0.354 0.560 0.420 0.454 0.479 0.484

RECALL 0.354 0.072 0.218 0.262 0.286 0.294

F1-SCORE 0.354 0.127 0.287 0.332 0.358 0.366

TP 507 103 312 375 409 421

FP 925 81 430 451 445 449

FN 925 1329 1120 1057 1023 1011

Table 5. Performance comparison on Twitter (splitting/Rayleigh)

METRIC METHOD
NETINF NETRATE MONET MONET+L MONET+J MONET+LJ

PRECISION 0.354 0.560 0.480 0.493 0.495 0.499

RECALL 0.354 0.072 0.562 0.566 0.570 0.572

F1-SCORE 0.354 0.127 0.518 0.527 0.530 0.533

TP 507 103 805 811 816 819

FP 925 81 872 835 834 821

FN 925 1329 627 621 616 613

for the non-splitting case and 75.5% for the splitting case. MONET+L, MONET+J, and
MONET+LJ further improve the F1-score on top of MONET with the help of additional
features. In particular, MONET+LJ improves the accuracy by as much as 76.2% over
NETRATE and 33.4% over NETINF for the splitting case.

Remarks. We have similar observations for the performance comparison according
to the power-law distribution, but the tables are omitted here due to the space limita-
tion. Our results suggest that the splitting model performs better than the non-splitting
one, with much more true positives and far fewer false negatives. This suggests that
the information diffusion in the Twitter network is better approximated by a memory-
less process. Specifically, how a message posted by a Twitter user will be retweeted
is not relevant to that user’s previous history. Further, the exponential model provides
slightly more accurate estimates over the Rayleigh one. The performance improvement
achieved using the language information is smaller compared to that achieved using Jac-
card similarity, but MONET+L improves over MONET and MONET+LJ improves over
MONET+J. This suggests that the language feature does provide some useful informa-
tion, although its effectiveness is likely to be limited by the noisy estimates provided by
the language detection algorithm we use in our experiments.

4.3 Efficiency

Solving each of the sub-problems defined in the basic model MONET (i.e., optimizing
one column of the transmission rate matrix A) takes about 2 minutes on average using
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L-BFGS-B with the history parameter m = 10. The running time, however, depends on
the specific column being optimized, and ranges from a few seconds to several minutes.
Introducing additional features requires an additional preprocessing time (in the order of
minutes) to precompute the languages of the messages and the Jaccard indexes between
the messages, but it does not significantly affect the running time of the optimization
procedure.

5 Related Work

A substantial amount of work has been devoted to the task of studying cascading pro-
cesses in large-scale networks. Largely motivated by marketing applications, the pre-
dominant focus over the past decade has been on optimization problems, where the
goal is to maximize the spread of a certain cascade through a given network, either by
selecting a good subset of nodes to initiate the cascade [5] or by applying a broader
set of intervention strategies such as node and edge additions [7, 10]. As networks and
networked systems are playing an increasingly important role in a number of disci-
plines, ranging from the interconnections between financial systems to epidemiology
and ecology, researchers have recently begun to consider the problem of inferring the
unknown (latent) underlying network given some observed cascading behavior [1–3].
Specifically, several generative probabilistic models have been developed to explain
cascading behaviors, where the task of inferring the underlying network is tractable, in-
volving the optimization of submodular [2] or convex objective functions [1, 3]. These
models have been shown to perform well on a number of synthetic datasets, but there
has been very limited experimentation on real-world scenarios. Moreover, the Meme-
Tracker dataset [2] commonly used in previous work has no ground truth.

There are several obstacles when trying to apply these models to real-world prob-
lems, such as inferring the latent structure of a social network based on the diffusion of
trending topics. Specifically, cascades are often formed by a mixed set of sub-cascades
and it is difficult to obtain i.i.d. samples. However, real-world cascades also present a
range of new opportunities to define richer probabilistic models. Previous work com-
bined latent features with explicit ones to solve structural link prediction problems [16].
In this paper, we propose a feature-enhanced framework to address the scenario where
nodes can be repeatedly infected. We develop a family of novel probabilistic models
based not only on the time intervals between infection events, but also on a set of ad-
ditional features, such as the content and the language of the messages exchanged in
social media.

6 Conclusions

In this paper, we propose a family of feature-enhanced probabilistic models to infer
the latent network structure from observations of a diffusion process. We develop a
primary model called MONET with non-splitting and splitting solutions that can explain
recurrent processes where nodes can be repeatedly infected (i.e., multiple occurrences
in one cascade). Further, our models take into account not only the time differences
between infection events, but also a richer set of features. The MAP inference problem,
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which still involves the optimization of a convex objective function, can be decomposed
into smaller sub-problems that we can efficiently solve in parallel. Our experiments on
the Twitter network show that our models successfully recover the underlying network
structure, and significantly improve the performance over previous models based solely
on time.

Acknowledgement. This research was partially supported by the U.S. AFOSR Grant
FA9550-09-1-0675 and NSF Grant 0832782.
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