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Abstract. The behavior of many complex physical systems is affected
by a variety of phenomena occurring at different temporal scales. Time
series data produced by measuring properties of such systems often mir-
rors this fact by appearing as a composition of signals across different
time scales. When the final goal of the analysis is to model the individual
phenomena affecting a system, it is crucial to be able to recognize the
right temporal scales and to separate the individual components of the
data. In this paper, we approach this challenge through a combination
of the Minimum Description Length (MDL) principle, feature selection
strategies, and convolution techniques from the signal processing field.
As a result, our algorithm produces a good decomposition of a given time
series and, as a side effect, builds a compact representation of its identi-
fied components. Experiments demonstrate that our method manages to
identify correctly both the number and the temporal scale of the com-
ponents for real-world as well as artificial data and show the usefulness
of our method as an exploratory tool for analyzing time series data.
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1 Introduction

This paper is concerned with the analysis of sensor data. When monitoring
complex physical systems over time, one often finds multiple phenomena in the
data that work on different time scales. If one is interested in analyzing and
modeling these individual phenomena, it is crucial to recognize these different
scales and separate the data into its underlying components. Here, we present
a method for extracting the time scales of various phenomena present in large
time series. The method combines concepts from the signal processing domain
with feature selection and the Minimum Description Length principle [2].

The need for analyzing time series data at multiple time scales is nicely demon-
strated by a large monitoring project in the Netherlands, called InfraWatch
[6IT]. In this project, we employ a range of sensors to measure the dynamic
response of a large Dutch highway bridge to varying traffic and weather condi-
tions. When viewing this data (see Fig. [Ia]), one can easily distinguish various
transient events in the signal that occur on different time scales. Most notable
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Fig. 1. (a) One day of strain measurements from a large highway bridge in the Nether-
lands. The multiple external factors affecting the bridge are visible at different time
scales. (b) A detail of plot (a) showing one of the peaks caused by passing vehicles.

are the gradual change in strain over the course of the day (as a function of
the outside temperature, which influences stiffness parameters of the concrete),
a prolonged increase in strain caused by rush hour traffic congestion, and indi-
vidual bumps in the signal due to cars and trucks traveling over the bridge. In
order to understand the various changes in the sensor signal, one would benefit
substantially from separating out the events at various scales. The main goal
of the work described here is to do just that: we consider the temporal data
as a series of superimposed effects at different time scales, establish at which
scales events most often occur, and from this we extract the underlying signal
components.

In this work, we approach the scale selection problem from a Minimum De-
scription Length (MDL) perspective (see Section [3). The motivation for this is
that we need a framework in which we can deal with a wide variety of represen-
tations for scale components. The MDL framework was shown to be sufficiently
general to provide this flexibility by Hu et al. [3] for the problem of choosing the
best model for a given signal. Our main assumption here is that separating the
original signal into components at different time scales will simplify the shape
of the individual components, making it easier to model them separately. Our
results show that, indeed, these multiple models outperform (in terms of MDL
score) a single model derived from the original signal. While introducing multiple
models incurs the penalty of having to describe these multiple models, there are
much fewer ‘exceptions’ to be described compared to the single model, yielding
a lower overall description length. For instance, in the sensor data of Fig. [al
cars are often passing in one direction while there is rush hour congestion in the
opposite direction. Using multiple models, this is modeled accurately, while a
single model will easily ignore these events.

The analysis of time scales in time series data is often approached from a scale-
space perspective, which involves convolution of the original signal with Gaussian
kernels of increasing size [12] to remove information at smaller scales. By subtract-
ing carefully selected components of the scale-space, we can effectively cut up the
scale space into k£ ranges. In other words, signal processing offers methods for pro-
ducing a large collection of derived features, and the challenge we face in this paper
is how to select a subset of k features, such that the original signal is decomposed
into a set of meaningful components at different scales.
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Our approach applies the MDL philosophy to various aspects of modeling:
choosing the appropriate scales at which to model the components, determining
the optimal number of components (while avoiding overfitting on overly spe-
cific details of the data), and deciding which class of models to apply to each
individual component. For this last decision, we propose two classes of models
representing the components respectively on the basis of a discretization and a
segmentation scheme. For this last scheme, we allow three levels of complexity
to approximate the segments: piecewise constant approximations, piecewise lin-
ear approximations, as well as quadratic ones. These options result in different
trade-offs between model cost and accuracy, depending on the type of signal we
are dealing with.

A useful side product of our approach is that it identifies a concise represen-
tation of the original signal. This representation is useful in itself: queries run
on the decomposed signal may be answered more quickly than when run on the
original data. Furthermore, the parameters of the encoding may indicate useful
properties of the data as well.

The paper is organized as follows. Section 2 reviews the signal processing con-
cepts used in this work and introduces the concept of scale-space decomposition.
Section 3 shows how we encode the signal decompositions and use MDL to se-
lect the best subset of scales. Section 4 presents an empirical evaluation of our
method on both real-world and artificial data. Section 5 links our method to
related work. Finally, Section 6 states our main conclusions and ideas for future
work.

2 Preliminaries

In this section we introduce the notation and the basic definitions used through-
out the paper. In particular, we review the concept of the scale-space image
of a signal and we show how to exploit it to define a set of candidate scale-
space decompositions. We deal with finite sequences of numerical measurements
(samples), collected by observing some property of a system with a sensor, and
represented in the form of time series as defined below.

Definition 1. A time series of length n is a finite sequence of values x =
z[1],...,z[n] of finite precision A subsequence xla : b] of x is defined as follows:

xla : b = (zfal, 2la+1],...,2[b]), a <b

We also assume that all the considered time series have no missing values and
that their sampling rate is constant.

2.1 The Scale-Space Image

The scale-space image [12] is a scale parametrization technique for one-dimensional
signals@ based on the operation of convolution.

1 32-bit floating point values in our experiments.
2 From now on, we will use the term signal and time series interchangeably.
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Definition 2. Given a signal x of length n and a response function (kernel)
h of length m, the result of the convolution x x h is the signal y of length n,
defined as:
m/2
yitl= > aft — j]hj]

j=—m/2+1

In this paper, h is a Gaussian kernel with mean p = 0, standard deviation o,
area under the curve equal to 1, discretized into m valuesf Also, since x is finite,
x[t — j] may be undefined. To account for these boundary effects, x is padded
with m/2 zeros before and after its defined range. A complete overview on how
to compute the Gaussian convolutions for discrete signals can be found in [7].

The convolution acts as a smoothing filter which smooths each value x[t] based
on its surrounding values. The amount of removed detail is directly proportional
to the standard deviation o (and thus m), from now on referred to as the scale
parameter. In the limit, when ¢ — oo, the result of the Gaussian convolution
converges to the mean of the signal x.

Given a signal x, the family of o-smoothed signals @, over scale parameter o
is defined as follows:

Py(0) =xx*g,, 0>0

where g, is a Gaussian kernel having standard deviation o, and @x(0) = x.

The signals in @ define a surface in the time-scale plane (¢, o) known in the
literature as the scale-space image [7[12]. This visualization gives a complete
description of the scale properties of a signal in terms of Gaussian smoothing.
Moreover, it has other properties useful for segmentation, as we will see later in
the paper.

For practical purposes, the scale-space image is quantized across the scale
dimension by computing the convolutions only for a finite number of scale pa-
rameters. More formally, for a given signal x, we fix a set of scale parameters

S={2"10<i<0mar Ni€N}

and we compute Px (o) only for o € S where oyq, is such that @« (o) is approx-
imately equal to the mean signal of x.

As an example, Figure 2] shows the scale-space image of an artificially gen-
erated signal. The topmost plot represents the original signal, constructed by
three components at different temporal scales: a slowly changing and slightly
curved baseline, medium term events (bumps) and short term events (peaks). It
is easy to visually verify that, by increasing the scale parameter, a larger amount
of detail is removed. In particular, the peaks are smoothed out at scales greater
than ¢ = 2%, and the bumps are smoothed out at scales greater than o = 28,
after which only the baseline remains.

In the next section, we show how to manipulate the scale-space image to filter
out the effects of transient events in a specific range of scales. This will lead to
the definition of a signal decomposition scheme.

3 To capture almost all non-zero values, we define m = |60].



MDL-Based Analysis of Time Series at Multiple Time-Scales 375

®,(2%) _—
®,(2°) _
(1)7(2](7)

e

Fig. 2. Scale-space image of an artificially generated signal totalling 259200 points

2.2 Scale-Space Decomposition

Along the scale dimension of the scale-space image, short-time transient events
in the signal will be smoothed away sooner than longer ones. In other words, we
can associate to each event a maximum scale o.,; such that, for ¢ > 0.y, the
transient event is no longer present in @y (0¢y:). This fact leads to the following
two observations:

— Given a signal scale-space image @y, the signal @y (o) is only affected by the
transient events at scales greater than o. This is conceptually equivalent to
a low-pass filter in signal processing.

— Given a signal scale-space image ®x and two scales 01 < 092, the signal
Dy (01) — Px(02) is mostly affected by those transient events present in
the range of scales (01,09). This is similar to a band-pass filter in signal
processing.

As an example, reconsider the signal x and its scale-space image @ of Figure[2
Figure [ shows (from top to bottom):

— the signal @5(0) — @(2%), which is the result of a high-pass filtering; this
feature represents the short-term events (peaks),

— the signal @5 (2%) — @4 (210), which is the result of a band-pass filtering; this
feature represents the medium-term events (bumps),

— the signal @,(2!°), which is the result of a low-pass filtering; this feature
represents the long-term trend.

Generalizing the example in FigureBl we can define a decomposition scheme of a
signal x by considering adjacent ranges of scales of the signal scale-space image.
We formalize this idea below.
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Fig. 3. Examples of signal decomposition obtained from the scale-space image in
Figure 2]

(0

Definition 3. Given a signal x and a set of k—1 scale parameters C = {o1, ...,
ok—1} (called the cut-points set) such that o1 < ... < o_1, the scale decom-
position of x is given by the set of component signals Dy(C) = {@1, ...,z },
defined as follows:

@w(O) - ds:c(o'l) ifi=1
T =1 Pploi—1) —Puloy) ifl<i<k
Dp(0k-1) ifi=k

Note that for k& components we require k — 1 cut-points. This decomposition has
several elegant properties:

— Xj, can be seen as the baseline of the signal, as obtained by a low-pass filter;

— x; for 1 < i < k are signals as obtained by a band-pass filter, and can be
used to identify transient events;

— Zle X; = X, l.e., the original signal can be recovered from the
decomposition.

3 MDL Scale Decomposition Selection

Given an input signal x, the main computational challenge we face is twofold:

— find a good subset of cut-points C' such that the resulting k& components of
the decomposition Dy (C') optimally capture the effect of transient events at
different scales,

— select a representation for each component, according to its inherent com-
plexity.

As stated before, the rationale behind the scale decomposition is that it is easier
to model the effect of a single class of transient events at a given scale than
to model the superimposition of many, interacting transient events at multiple
scales. We thus need to trade off the added complexity of having to represent
multiple components for the complexity of the representations themselves. In this
paper, we propose to use the Minimum Description Length (MDL) principle to
approach this problem.



MDL-Based Analysis of Time Series at Multiple Time-Scales 377

The Minimum Description Length [2] is an information-theoretic model se-
lection framework that selects the best model according to its ability to com-
press the given data. In our context, the two-part MDL principle states that
the best model M to describe the signal x is the one that minimizes the sum
L(M)+ L(x | M), where

— L(M) is the length, in bits, of the description of the model,
— L(x | M) is the length, in bits, of the description of the signal when encoded
with the help of the model M.

The possible models depend on the scale decomposition Dy (C) consideredd and
on the representations used for its individual components. An ideal set of repre-
sentations would adapt to the specific features of every single component, result-
ing in a concise summarization of the decomposition and, thus, of the signal. In
order to apply the MDL principle, we need to define a model Mp_(¢) for a given
scale decomposition Dy (C) and, consequently, how to compute both L(Mp_ ()
and L(x | Mp,(c)). The latter term is the length in bits of the information lost
by the model, i.e., the residual signal x — Mp_c).

As the MDL framework is only applicable to discrete data, we first clarify
below how we discretize the input signal x and all the subsequent operations.
Subsequently, we will introduce the proposed representation schemes for the
components and define the bit complexity of the residual and the model selection
procedure.

3.1 Time Series Values Discretization

In order to use the MDL principle we need to work with a quantized input signal
and scale-space image. Because of this, we assume that the values v of both the
input signal x and @« (o), for each considered o, have been quantized to a finite
number of symbols by employing the function defined below:

v — min(x) J 1

Q) = | )

where [, assumed to be even, is the number of bins to use in the discretization
while min(x) and max(x) are respectively the minimum an maximum value in
x. Throughout the rest of the paper, we assume [ = 256. A similar approach
is described in [3]. All the subsequent operations, from the computations of
the scale decompositions to the encoding of the components, are kept in this
quantized space.

max(x) — min(x)

3.2 Component Representation Schemes

Within our general framework, many different approaches could be used for
representing the components of a decomposition. In the next paragraphs we
introduce two such methods.

* Including the decomposition formed by zero cut-points (C' = @), i.e., the signal itself.
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Discretization-Based Representation. In some components of our data
transient events always occur with similar amplitudes, mixed with long stretches
of baseline values (see Figure 3). Hence, a desirable encoding could be one that
captures this repetitiveness in the data by giving short codes to long stretches of
the baseline and the commonly occurring amplitudes. Unfortunately, our orig-
inal discretization is too fine-grained to capture regular occurrences of similar
amplitudes. As a first representation, we hence propose to also consider more
coarse-grained discretizations of the original range of values. We do this by dis-
cretizing each value v in a component to a value |Q(v)/2¢], where several values
for i are considered for each component, typically ¢ € {2,4,6}. By doing so,
similar values will be grouped together in the same bin. The resulting sequence
of integers is compacted further by performing run-length encoding, resulting in
a string of (v, 1) pairs, where [ represents the number of times value v is repeated
consecutively. This string is finally encoded using a Shannon-Fano or Huffman
code (see Section B.3)).

As a simplified illustration of how the MDL principle helps here to identify
components, consider data generated by the expression (67)™(01)" (4n integers
from the range {0,...,2% — 1}), where we assume n and the range are fixed.
In this data, each symbol occurs with the same frequency; we can encode the
time series hence with —log,(1/4) - 4 - n = 8n bits for the data, plus 8logn bits
for the dictionary of frequencies. Consider now the decomposition of the signal
into two time series, 62702 and (01)2". The first component, of which the run-
length encoding is (6,2n)(0,2n), can be encoded using only 2 bits for the time
series (as there is only one possible run-length value, we use 0 bits to encode
the run-lengths), 8log n bits for the dictionary of amplitudes, and 3logn bits to
identify the length of the one run-length (logn bit for identifying the number of
run-lengths, in this case one, logn to identify the one run-length present, and
logn to identify its frequency, from which the encoding with 0 bits follows). The
second component can be encoded using 4n bits for the time series, as well as
8logn bits for the dictionary. Assuming we also use 1 bit per component to
identify the type of encoding used, this gives us an encoding in 4 + 191logn + 4n
bits. Comparing this to 8n + 8logn bits, for n > 11 we will hence correctly
identify the two components in this simplified data.

Segmentation-Based Representation. The main assumption on which we
base this method is that a clear transient event can be accurately represented by
a simple function, such as a polynomial of a bounded degree. Hence, if a signal
contains a number of clear transient events, it should be possible to accurately
represent this signal with a number of segments, each of which represented by a
simple function.

Given a component x; of length n, let

z(x;) = {t1,t2,..stm}, 1<t; <n

be a set of indexes of the segment boundaries.
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Let fit(x;[a : b],d;) be the approximation of x;[a : b] obtained by fitting a
polynomial of degree d;. Then, we represent each component x; with the ap-
proximation X;, such that:

)A(Z[O : Zl] = fit(Xi[O : Zl],di)
)A(Z[ZZ : Zzurﬂ = fit(Xi[Zi : Zzurﬂ,di), 1<i1<m
Xilzm :n] = fit(Xi[zm : ], d;)

Note that approximation X; is quantized again by reapplying the function @ to
each of its values.

For a given k-components scale decomposition Dy (C') and a fixed polynomial
degree for each of its components, we calculate the complexity in bits of the
model Mp_(cy, based on this representation scheme, as follows. Each approxi-
mated component X; consists of |2(x;)| + 1 segments. For each segment, we need
to represent its length and the d; 4+ 1 coefficients of the fitted polynomial. The
length [s; of the longest segment in X; is given by

ls; = max(z1 U{zit1 — 2z | 0 <i <m})

We therefore use log,(Is;) bits to represent the segment lengths, while for the
coefficients of the polynomials we employ floating point numbers of fixed bit
complexity ¢. The MDL model cost is thus defined as:

=

L(Mp,c)) = > (|2(xi)| + 1) ([logz(Is:)] + ¢ (di + 1))

i=1

So far we assumed to have a set of boundaries z(x;), but we did not specify
how to compute them. A desirable property for our segmentation would be
that a segmentation at a coarser scale does not contain more segments than a
segmentation at a finer scale.

The scale space theory assures that there are fewer zero-crossing of the deriva-
tives of a signal at coarser scales [I2]. In our segmentation we use the zero-
crossings of the first and second derivatives.

More formally, we define the segmentation boundaries of a component x; to

d’x

z(xi)—{teR ‘ d;i(t)—O}U{te]R dti(t)—()}.

Figure BH] shows an example of segmentation obtained as above using fitted
polynomials of degree 1.

However, many other segmentation algorithms are known in the literature
[45] and all of them can be interchangeably employed in this context.

3.3 Residual Encoding

Given a model Mp_(¢), its residual r = x — Zle X;, computed over the com-
ponents approximations, represents the information of x not captured by the

® In our experiments ¢ = 32.
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Fig. 4. Example of discretization-based encoding (a) and segmentation-based encoding
with first degree polynomial approximations (the markers show the zero-crossings) (b)

model. Having already defined the model cost for the two proposed encoding
schemes, we only still need to define L(x | Mp,(¢)), i.e., a bit complexity L(r)
for the residual r.

Here, we exploit the fact that we operate in a quantized space; we encode each
bin in the quantized space with a code that uses approximately — log(P(z)) bits,
where P(z) is the frequency of the zth bin in our data. The main justification for
this encoding is that we expect that the errors are normally distributed around 0.
Hence, the bins in the discretization that reflect a low error will have the highest
frequency of occurrences; we will give these the shortest codes. In practice, such
codes can be obtained by means of Shannon-Fano coding or Huffman coding; as
Hu et al. [3] we use Huffman coding in our experiments.

3.4 Model Selection
We can now define the MDL score that we are optimizing as follows:

Definition 4. Given a model Mp, ¢y, its MDL score is defined as:
L(Mp,(c)) + L(r)

In the case of discretization-based encoding, the MDL score is affected by the
cardinality used to encode each component. In the case of segmentation-based
encoding the MDL score depends on the boundaries of the segments and the
degrees of the polynomials in the representation. In both cases, also the cut-
points of the considered decomposition affect the final score.

The simplest way to find the model that minimizes this score is to enumerate,
encode and compute the MDL score for every possible scale-space decomposition
and all possible encoding parameters. As we shall now show, this brute-force
approach is practically feasible.

The number of possible scale decompositions depends on the total number
of cut-points sets we can build from the computed scale parameters in @,. We
fix the maximum number of cut-points in a candidate set to some value ¢,qq-
This also means that we limit our search to those scale decompositions having
Cmaz + 1 components or less. Moreover, given our wish to consider only simple
approximations of the signals, we can also assume a reasonably low limit d,qz
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(in practice, dpmqz = 2) on the degree of the polynomials that approximate the
segments of each given component.

Computing the MDL score for each encoded scale decomposition, obtained
by ranging over all the possible configurations of cut-points Ci,...,Cx_1, and
all the possible configurations of polynomial degrees di, ..., d;, hence requires

calculating MDL scores for
maz+1
‘ 3 S| g
k: _ 1 max
k=2

scale decompositions. This turns out to be a reasonable number in most practical
cases we consider, and hence we use an exhaustive approach in our experiments.

4 Experiments

In this section, we experimentally evaluate our method, both on artificial data
and on actual sensor data from the highway bridge mentioned in the introduc-
tion. To evaluate the strengths and weaknesses of our method, we have tested it
on a range of artificial datasetdd that mimic some of the multi-scale phenomena
present in the bridge data. Our constructed data deliberately varies from easy,
with clearly separated scales, to challenging with a variety of event shapes and
sizes. All artificial datasets represent sensor data measured at 1 Hz for a du-
ration of three days (totaling 259,200 data points). The data was produced by
combining three components at three distinct scales, resembling 1) individual
events from vehicles, 2) traffic jams that last several tens of minutes, and 3)
gradual change of the baseline, due to temperature changes of the bridge over
the course of several days.

Artificial Data. We start by considering one particular dataset in detail (see
Figure Bal). This dataset was constructed by using Gaussian shapes for both the
small and medium-scale events, and a sine wave of period 2.25 days at the largest
scale. Medium events have a constant height, whereas small-scale events have a
random height. We limited the search space to decompositions having a maxi-
mum of 4 components (3 cut-points). As can be seen in Figure (al our method
was able to identify the fact that this data contains three important scales.
Furthermore, the method correctly identified the two necessary cut-points, such
that the three original components were reconstructed. The selected cut-point

appear at scales 2° = 512 and 2'2 = 4096. When considering the separated
components in detail, some influence across the scale-boundaries is visible, for
example where small effects of the ‘traffic jams’ appear among the small-scale

5 The artificial datasets and the source code can be obtained by contacting the first
author.

" Note that our method returns the boundaries between scales, rather than the actual
scales of the original components.
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Fig. 5. Signals (top) and top-ranked decompositions for the two artificial datasets

events. These effects seem unavoidable, with the inherent limitations of the scale-
space-based band-pass filtering and the discrete collection of scales we consider
(powers of 2).

This optimal result has an MDL-score of 509,000 bits, being the sum of the
model cost (L(M) = 75,072) and the error length (L(D | M) = 433,928).
The second-ranked result on this data, with cut-points C' = {211 213} shows a
similar result, however with slightly more pronounced cross-boundary artifacts
in the smallest scale, as is expected with a doubling of the lower cut-point. The
MDL-score of this result is 64,896 + 450,487 = 515,383. The k = 1 case, which
corresponds to compression of the original signal without any decomposition,
appears at rank three, with an MDL-score of 44,6404 471,271 = 515,911. This
model obviously has a much lower model cost, due to having to represent only
a single component, but this is compensated by the substantially higher error
length, putting it below the scale-separated results. Ranks four and five represent
two k = 2 results, where the former groups the small and medium scales together,
and the latter the medium and large. All results in the top 10 relate to models
that use polynomial representations (d < 2).

Not all artificial datasets considered produced perfect results. In Figure [5h]
we show an example of a dataset that includes ‘traffic jams’ that resemble more
closely some of the phenomena in the actual sensor data. In many cases, traffic
jams appear fairly rapidly, and then show an increased load on the bridge over a
prolonged period. This is modeled in the data by medium-scale events that start
and stop fairly rapidly, and remain constant in the meantime. The best result
found, with cut-points C' = {212,213} is shown in Figure This demonstrates
that the proposed method is not able to properly separate the medium and
low-scale events. In fact, even though the medium component does identify the
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Fig. 6. Signal (top) and top-ranked scale decomposition for the InfraWatch data

location of the ‘traffic jams’, most of the rectangular nature is accounted for by
the small scale. To some extent, this is understandable, as the start and end of
the event could be considered high-frequency events with rapid changes in value.
Therefore, parts of these events appear at a small scale, and the algorithm is
mirroring this effect. In any case, the algorithm is able to identify the correct
number of components, and is able to produce indications as to the location of
the traffic jams. The top four results all show similar mixtures of scales, whereas
the rank-five result groups the lowest two scales together. The k£ = 1 result
appears at rank 14.

In order to better understand to what extent the proposed method is able
to separate components at different scales, we carried out a more controlled
experiment. We generated 11 different datasets constructed from 3 components.
We fixed the scales of the short-term and long-term components respectively
around o = 23 and o = 2'%, while the scale of the medium-term component varies
from dataset to dataset in the range (2%,...,2!%). The table below shows the
number of components (k) of the top-ranked decomposition for the 11 datasets
according to the scale parameter o of the medium-term component.

o 24 25 26 27 28 29 210 211 212 213 214
k 1 2 2 2 3 3 3 3 1 1 1

As the table suggests, the proposed method fails to identify the right number
of components when the scales are too close to each other. However, when the
scales are separated sufficiently (28 < ¢ < 2!1); the right number of components
is identified. Also in this case, all the top-ranked decompositions relate to models
that use polynomial representations.

InfraWatch Data. As anticipated by the motivating example in the introduc-
tion, we consider the strain measurements produced by a sensors attached to a
large highway bridge in the Netherlands. For this purpose, we consider a time
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Fig. 7. A detail of the original strain signal (one hour) and the selected first component
as represented with 4 symbols

series consisting of 24 hours of strain measurements sampled at 1 Hz (totaling
86,400 data points). A plot of the data is shown in Figure [l (topmost plot).
We evaluated all the possible decompositions up to three components (two cut-
points) allowing both the representation schemes we introduced. In the case of
the discretization-based representations, we limit the possible cardinalities to 4,
16 and 64.

The top-ranked decomposition results in 3 components as shown in the last
three plots in Figure B The selected cut-points appear at scales 26 = 64 and
21 = 2048. All three components are represented with the discretization-based
scheme, with a cardinality of respectively 4, 16, and 16 symbols. The decompo-
sition has an MDL-score of 344,276, where L(M) = 19,457 and L(D | M) =
324,818. The found components accurately correspond to physical events on the
bridge. The first component, covering scales lower than 2%, reflects the short-
term influence caused by passing vehicles and represented as peaks in the signal.
Note that the cardinality selected for this component is the lowest admissible in
our setting (4). This is reasonable considering that the relatively simple dynamic
behavior occurring at these scales, mostly the presence or not of a peak over a
flat baseline, can be cheaply described with 4 or fewer states without incurring
a too large error. The middle component, covering scales between 26 and 2'7,
reflects the medium-term effects caused by traffic jams. As in the artificial data,
the first component is slightly influenced by the second one, especially at the
start and ending points of a traffic jam. Finally, the third component captures
all the scales greater than 2'!, here representing the effect of temperature during
a whole day. To sum up, the top-ranked decomposition successfully reflects the
real physical phenomena affecting the data. The decompositions with rank 8 or
less all present similar configurations of cut-points and cardinalities, resulting
in comparable components where the conclusions above still hold. The first 2-
component decomposition appears at rank 10 with the cut-point placed at scale
26, which separates the short-term peaks from all the rest of the signal (traffic
jams and baseline mixed together). These facts make the result pretty stable as
most of the good decompositions are ranked first.

An Application: Detecting Passing Vehicles. The component selection and
representation generated by the MDL procedure may be useful in itself for tasks
such as classification. For example, consider the short-term component of the
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previous example, Figure [@ (second plot). It represents the traffic activity over
the bridge and has been represented with a discretization-based scheme using 4
symbols. Figure[flshows a detail (1 hour) of the discretized component (bottom)
and the relative original signal (top). The first 2 symbols (0 and 1) respectively
classify the absence or presence of a passing vehicle, while the other two, con-
siderably less frequent, are outliers in the data. The represented component, as
selected by MDL, can thus be used to monitor traffic activity over the bridge, a
task that is considerably more challenging using the original signal, due to the
variations introduced by temperature fluctuations and traffic jams.

5 Related Work

Papadimitriou et al. [9] propose a method to discover the key trends in a time
series at multiple time scales (window lengths) by defining an incremental version
of Singular Value Decomposition. In signal processing, Independent Component
Analysis [I] aims at separating a set of signals from a set of mixed signals but,
in its standard formulation, requires at least as many sensors as sources. Our
method is able to operate on a single input sensor and a variable number of
sources to be discovered. Megalooikonomou et al. [8] introduce a multi-scale
vector quantized representation of time series which enables fast and robust
retrieval. The considered scales are however predefined and our approach could
be used as a preprocessing step to determine those to include in the dictionary.
The Minimum Description Length principle has been applied to the problem of
choosing the best representation for a given time series by Hu et al. [3]. The
authors propose a method to choose the best representation (and its parameters)
among APCA, PLA and DFT. While there are similarities with our method (we
also use the MDL principle to select the best model parameters for a given
component), the authors put the stress on discovering the intrinsic cardinality
of the data, other than its constituent multi-scale components. MDL has also
been adopted to detect changes in the distribution of a data stream by van
Leeuwen et al. [10].

6 Conclusions and Future Work

We introduced a novel methodology to discover the fundamental scale compo-
nents in a time series in an unsupervised manner. The methodology is based on
building candidate scale decompositions, defined over the scale-space image [12]
of the original time series, with an MDL-based selection procedure aimed at
choosing the optimal one.

A useful side product of the presented technique, due to the adoption of MDL,
is that each discovered component is represented independently according to its
inherent complexity and often results in a cheaper model (in terms of MDL
score) in relation to the original raw time series. These cheaper per-component
representations may better serve tasks like classification, regression or association
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analysis for time series produced by inherently multi-scale physical and artificial
systems.

We have shown that our approach successfully identifies the relevant scale
components in both artificial and real-world time series, giving meaningful in-
sights about the data in the latter case. Future work will experiment with diverse
representation schemes and hybrid approaches (such as using combinations of
segmentation, discretization and Fourier-based encodings). Moreover, another
interesting research question is how to substitute the presently employed ex-
haustive search of the optimal decomposition with a computationally cheaper
heuristic approach, which is necessary in the case of large time series data.
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