
Graph-Based Transduction with Confidence

Matan Orbach and Koby Crammer

Dept. of Electrical Engineering
Technion - Israel Institute of Technology

Haifa 32000, Israel
{matanorb@tx,koby@ee}.technion.ac.il

Abstract. We present a new multi-class graph-based transduction algo-
rithm. Examples are associated with vertices in an undirected weighted
graph and edge weights correspond to a similarity measure between ex-
amples. Typical algorithms in such a setting perform label propagation
between neighbours, ignoring the quality, or estimated quality, in the
labeling of various nodes. We introduce an additional quantity of con-
fidence in label assignments, and learn them jointly with the weights,
while using them to dynamically tune the influence of each vertex on its
neighbours. We cast learning as a convex optimization problem, and de-
rive an efficient iterative algorithm for solving it. Empirical evaluations
on seven NLP data sets demonstrate our algorithm improves over other
state-of-the-art graph-based transduction algorithms.

1 Introduction

Supervised machine learning algorithms are powerful. Given a training set com-
posed of example-label pairs, many methods have been proposed and successfully
used for a variety of real-world tasks in different domains. Typically, performance
improves as the size of the training set increases. However, this improvement
comes with a price, labeling a large amount of data is slow, costly and prone to
human errors, especially in complex tasks. This is in contrast to the fact that
a large amount of unlabeled data can be cheaply collected in many different
domains. As a result, it has become beneficial to research and develop semi-
supervised learning (SSL) algorithms. These algorithms are designed to learn
from a small set of labeled data and a much larger set of unlabeled data.

Graph-based methods are an important class of SSL algorithms [3,11,12,14].
These methods construct an undirected weighted graph reflecting a similarity
relation between examples, both labeled and unlabeled. Each example is asso-
ciated with a vertex. Edge weights correspond to a similarity measure between
examples. Learning is then based on a smoothness assumption [3]: two neighbour
vertices are likely to have the same label. In this paper we consider the transduc-
tive graph-based setting. The goal of the learning algorithm is to assign labels
to the unlabeled vertices of the graph. Starting with the small set of labeled ver-
tices, the learning algorithm propagates label information from the small set of
known labels to the rest of the graph. In other settings, algorithms learn (also) a
model and are thus also capable of classifying new, previously unseen, examples.

P. Flach et al. (Eds.): ECML PKDD 2012, Part II, LNCS 7524, pp. 323–338, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

324 M. Orbach and K. Crammer

(-)B C

A

(-)

(+)

(+)

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) MAD

(-)B C

A

(-)

(+)

(+)

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b) Ours (TACO)

Fig. 1. Illustration of label-propogation properties for two algorithms : MAD [12] and
ours (named TACO). MAD is sensitive to vertex-degree differences while our algorithm
is robust to it.

Two new transductive graph-based algorithms have been introduced recently:
Adsorption [1] and Modified Adsorption (MAD) [12]. The label propagation in
Adsorption can be viewed as a controlled random walk over the graph. The
transition probabilities in the random walk are determined by edge weights and
the degree of each vertex. Specifically, transition probabilities to and from high
degree vertices are reduced, assuming a larger neighbours set is more likely to
contain disagreements among the neighbours. We further discuss this assumption
shortly. MAD builds upon Adsorption, formulating a convex optimization prob-
lem including the controlled random walk transition probabilities, and solving
this problem with an efficient iterative algorithm.

We present a new multi-class graph-based transductive algorithm. The main
motivation for our new algorithm is the following question: should we always
discourage high degree vertices? While both Adsorption and MAD are based on
a definite positive answer (and label propagation (LP) [14] is somewhat based
on an implicit negative answer), our goal is aimed at letting the data decide for
us. Assume we have a high degree vertex, and our label propagation algorithm
is in a state where almost all of its neighbours have the same estimated label.
Here, we can be highly confident in our estimated label because we have many
agreeing neighbours. Thus, in this case, the influence of the high degree vertex on
its neighbours should not be reduced. Only when we have a high degree vertex,
combined together with a large measure of disagreement among neighbours, we
should lower the effect of this vertex on its neighbours.

Our motivation is illustrated in Fig. 1, showing a simple graph for a binary
label propagation problem. Labeled vertices with positive class are marked with
(+) (white) and negative class with (−) (black). Vertex A has low degree and
a large measure of disagreement among its neighbours, and vertex C has high
degree and is connecting many other vertices (in the middle of a cluster). Vertex
B is member of the cluster, and is also connected to vertexA. Gray level indicates
the assigned label value by the algorithms. Our intuition implies that the correct
action will be to lower the effect of the confusing A, while propagating the
negative label from right to left through C to B and the entire cluster. MAD
lowers the effect of C, thus damaging the ability to identify all vertices in the

Graph-Based Transduction with Confidence 325

cluster. In contrast, our algorithm (named TACO below) correctly identifies the
cluster while ignoring the unreliable vertex A.

To measure the level of agreement between neighbours, as well as account
for vertex degree, our algorithm maintains per vertex confidence information in
addition to label information. The confidence parameters capture the quality
of the estimated label information. One consequence of that model is that the
algorithm does not reduce the effect of all high degree vertices, but only the
effect of vertices with low confidence in their estimated labels. Both confidence
and label information are propagated throughout the graph.

After introducing our model we cast learning as a convex optimization prob-
lem and propose an efficient algorithm for solving it. We experiment with seven
text categorization problems of various sizes and show that our algorithm, eval-
uated with several metrics, outperforms other algorithms (MAD and alternating
minimization (AM) [10]) on most tasks.

2 Problem Formulation

We focus on transductive learning using graphs. The input is constituted of two
sets: a set of nl labeled examples Dl = {(xi, yi)}nl

i=1 and a set of nu unlabeled

examplesDu = {xi}nl+nu

i=nl+1. Examples belong to some input space xi ∈ X , where

we assume in this paper that it is a vector space X = R
d. Labels belong to a

finite label set yi ∈ L denoted by L = {1, . . . ,m}. The goal of the learning
algorithm is to assign a label ŷi ∈ L to each of the (unlabeled) examples in Du.
We denote the total number of examples by n = nl + nu.

In order to be able to propagate the labels from the labeled examples to
the unlabeled ones, we assume the existence of an undirected weighted graph
G = (V,E,W) over all input examples. Each input example xi is associated
with a vertex vi ∈ V . For ease of presentation we assume that the labeled input
examples are associated with the first nl vertices in V and we refer to them as
labeled vertices. Similarly, the remaining nu vertices in V are associated with the
unlabeled input examples, and are called unlabeled vertices.

A weighted edge e ∈ E = V × V represents label-similarity. The larger the
weight wi,j ∈ W of an edge between vertices vi and vj is, the more we believe
the labels of xi and xj should be the same. We assume that the weight matrix
W ∈ R

n×n is symmetric with non-negative elements, and that there is an edge
between any two vertices, although in practice most edges will have the lowest
weight of zero.

We denote by δl(i) = 1[i≤nl] the indicator of a vertex to be labeled, that
is δl(i) = 1 iff the vertex vi is a labeled vertex. We associate a labels vector
yi ∈ {0, 1}m with each vertex. For vertices associated with labeled examples vi
we set yi,r = 1 iff the correct label of example xi is yi = r. All other entries are
set to 0. For vertices associated with unlabeled examples vj we set yj = 0, the
vector with all elements equal to zero. We denote the complete prior information
matrix by Y ∈ R

n×m, where the ith row yi corresponds to vertex vi.

326 M. Orbach and K. Crammer

3 Algorithm

We cast learning as an optimization over two sets of parameters, each contains
one element per vertex vi in the graph. The first set of parameters the algorithm
maintains is a per vertex score vector µi = [μi,1, . . . , μi,m]

� ∈ R
m. The larger

the rth element μi,r is, the stronger is our belief that the input xi associated
with vertex vi belongs to class r. The final predicted label is given according to
the highest score, namely ŷi = argmaxr μi,r.

In addition, the algorithm maintains a diagonal non-negative matrix per ver-
tex, Σi ∈ R

m×m, where we denote by σi,r the rth diagonal element of Σi. Each
parameter σi,r is associated with our uncertainty in the corresponding score pa-
rameter μi,r. The lower the value of σi,r is, the higher our confidence in the score
value μi,r.

Conceptually, the score vectors are our first order information over labels,
while the uncertainty matrices are our second order information. Most, if not
all, previous graph-based transduction algorithms maintain only first order in-
formation (scores) over vertices, ignoring agreement or disagreement between
neighbour vertices. The second order information is designed to capture this
exact information, allowing the algorithm to better label various vertices by
considering agreement levels among their neighbours.

Next, we formulate an unconstrained convex optimization problem in the
variables {(µi,Σi)}ni=1 as our learning objective, and derive an efficient iterative
algorithm for minimizing it.

3.1 Objective

We have three desired properties of the optimization problem used to define
learning, the first two properties build on previous research [12,14], while the
last is required for the usage of confidence.

First, a pair of close vertices vi and vj (i.e. with large wi,j) should have close
score vectors µi and µj if we are certain in both vectors, that is if both matrices
Σi and Σj have low eigen-values. If at least one of these matrices has large
eigen-values, then we are not confident in the score values of at least one of
the corresponding vertices, and therefore relax the demand that the two score
vectors µi and µj should be close.

Second, the score vectors of labeled vertices should be close to the true label
vectors associated with them, again, if the corresponding uncertainty is low (or
large certainty). In other words, if the eigenvalues of Σi are low, then µi ≈ yi.

Third, the uncertainty should be far from infinity and not close to zero. As in
both cases, the first two properties would be invalid. Specifically, we add a term
that drives the uncertainty close to some predefined values, one can think of
this term as a combination of both regularization (far from infinity) and barrier
(strictly greater than zero) for uncertainty.

Graph-Based Transduction with Confidence 327

We formalize the above intuition using a symmetric Mahalanobis distance
that is based on the uncertainty matrices. Specifically, given two pairs (x,S)
and (y,T) of score vectors x,y ∈ R

m and uncertainty matrices S,T ∈ R
m×m

we define the squared-distance between them to be,

DM (x,y,S,T) = (x− y)
� (

S−1 +T−1
)
(x− y) . (1)

If either S or T have large eigenvalues, then the distance is low even if x and
y are not close to each other. On the other hand, if both S and T have low
eigenvalues, then in order for the distance to be low, we require that x and y
would be close to each other.

Common [11,12,14] choice for formulating the first property is to require that
neighbour vertices would have close scores, that is,

n∑

i,j=1

wi,jD (vi, vj) (2)

where D (vi, vj) is some distance function measuring the difference between
scores for vi and vj .

The second desired property is that the scores for labeled vertices should be
close to the input labels of these vertices. We formulate this requirement using
the same conceptual ideas of the first property. We view each labeled vertex as
two vertices, denoted by vi and zi. As before, the vertex vi is associated with
scores µi and uncertainty Σi. The new vertex zi has fixed scores yi and fixed
uncertainty 1

γ I ∈ R
m×m for some γ > 0. The new vertex zi with fixed parameters

is connected only to its counterpart vi with an edge of weight 1. Similarly to (2)
we add a second term to our objective capturing the second property,

nl∑

i=1

D (vi, zi) . (3)

The third and last property is formally a regularization term forcing the uncer-
tainty matrix to be close to some predefined matrix. We use the following convex
function which is a sum of two terms, the first monotonic in the eigenvalues, and
the second prevents matrices from having zero eigenvalues,

n∑

i=1

TrΣi − η

n∑

i=1

log detΣi , (4)

for some η > 0. Clearly, the minimizers of the last terms are the matricesΣi = ηI.
Combining (2) (3) and (4) together with weights ν, κ, α ≥ 0 and using our

distance (1) we get the final objective,

328 M. Orbach and K. Crammer

C (G, {µi}, {Σi}) =1

4
ν

n∑

i,j=1

wi,j

[(
µi − µj

)� (
Σ−1

i + Σ−1
j

) (
µi − µj

)]

+
1

2
κ

nl∑

i=1

[
(µi − yi)

�
(
Σ−1

i +
1

γ
I

)
(µi − yi)

]

+ α

n∑

i=1

TrΣi − αη

n∑

i=1

log detΣi .

We can divide the last equation by one of the constants (e.g. ν), set in practice
the other constant to be κ = 1 and denote by β = αη, ending up with the
following,

C (G, {µi}, {Σi}) =1

4

n∑

i,j=1

wi,j

[(
µi − µj

)� (
Σ−1

i + Σ−1
j

) (
µi − µj

)]

+
1

2

nl∑

i=1

[
(µi − yi)

�
(
Σ−1

i +
1

γ
I

)
(µi − yi)

]

+ α
n∑

i=1

TrΣi − β
n∑

i=1

log detΣi . (5)

We conclude this section by noting that the above objective is convex in all argu-
ments. Thus, any algorithm for solving convex problems, like gradient-descent,
can be used. In the next section we propose an efficient iterative algorithm for
specifically solving (5). We then note the connections between the derived algo-
rithm and our initial intuition.

3.2 An Iterative Algorithm

We now present an efficient algorithm for minimizing (5). The algorithm is iter-

ative in nature. Let µ
(t)
i and Σ

(t)
i denote the score vector and confidence matrix

maintained by our algorithm at iteration t for vertex vi. Roughly speaking, on
each iteration t, the algorithm optimizes the objective over scores µi given the

score values of all other vertices µ
(t−1)
j for j �= i and all uncertainty matrices

Σ
(t−1)
j (for all j), and optimizes all the uncertainty matrices {Σi} given all the

scores {µ(t−1)
i }.

We first develop the update step for µ
(t)
i and then follow with the update step

for Σ
(t)
i . Setting to zero the derivative of (5) with respect to µi we get,

n∑

j �=i
j=1

wi,j

[(
Σ

(t−1)
i

)−1

+
(
Σ

(t−1)
j

)−1
](

µ
(t)
i − µ

(t−1)
j

)

+ δl(i)

[(
Σ

(t−1)
i

)−1

+
1

γ
I

] (
µ

(t)
i − yi

)
= 0 . (6)

Graph-Based Transduction with Confidence 329

For simplicity we introduce the following notation,

K
(t−1)
i,j = wi,j

[(
Σ

(t−1)
i

)−1

+
(
Σ

(t−1)
j

)−1
]
, P

(t−1)
i = δl(i)

[(
Σ

(t−1)
i

)−1

+
1

γ
I

]
.

(7)

Substituting (7) in (6) we get the following equation relating the optimal solution

µ
(t)
i to all other quantities,

(
∑n

j �=i
j=1

K
(t−1)
i,j

)
µ

(t)
i +P

(t−1)
i µ

(t)
i =

∑n
j �=i
j=1

K
(t−1)
i,j µ

(t−1)
j

+P
(t−1)
i yi . Solving for µ

(t)
i we obtain,

µ
(t)
i =

⎛

⎜
⎜
⎝

n∑

j �=i
j=1

K
(t−1)
i,j +P

(t−1)
i

⎞

⎟
⎟
⎠

−1 ⎛

⎜
⎜
⎝

n∑

j �=i
j=1

K
(t−1)
i,j µ

(t−1)
j +P

(t−1)
i yi

⎞

⎟
⎟
⎠ . (8)

Note that µ
(t)
i is a matrix weighted average of all the other score vectors{

µ
(t−1)
j

}

j �=i
, and the true labels yi (for a labeled vertex). The matrix-weights

are exactly the inverse of the uncertainty matrices.
Next, we develop the update for the confidence matrices. Setting to zero the

derivative of (5) with respect to Σi we get,

− 1

2

n∑

j=1

wi,j

[(
Σ

(t)
i

)−1 (
µ

(t−1)
i − µ

(t−1)
j

)(
µ

(t−1)
i − µ

(t−1)
j

)� (
Σ

(t)
i

)−1
]

− 1

2
δl(i)

[(
Σ

(t)
i

)−1 (
µ

(t−1)
i − yi

)(
µ

(t−1)
i − yi

)� (
Σ

(t)
i

)−1
]

+ αI− β
(
Σ

(t)
i

)−1

= 0 . (9)

We define the following positive semi-definite matrix,

R
(t−1)
i =

1

2

n∑

j=1

wi,j

(
µ

(t−1)
i − µ

(t−1)
j

)(
µ

(t−1)
i − µ

(t−1)
j

)�

+
1

2
δl(i)

(
µ

(t−1)
i − yi

)(
µ

(t−1)
i − yi

)�
(10)

and rewrite (9) as −
(
Σ

(t)
i

)−1

R
(t−1)
i

(
Σ

(t)
i

)−1

+ αI − β
(
Σ

(t)
i

)−1

= 0 . Multi-

plying both sides by Σ
(t)
i leads to a quadratic matrix equation in Σ

(t)
i :

α
(
Σ

(t)
i

)2

− βΣ
(t)
i −R

(t−1)
i = 0 .

This is matrix quadratic equation with solution (as in scalars),

Σ
(t)
i =

β

2α
I+

1

2α

(
β2I+ 4αR

(t−1)
i

) 1
2

. (11)

330 M. Orbach and K. Crammer

Both updates (8) and (11) are valid for full matrices Σi. Diagonal matrices
are obtained by diagonalizing the update (11) or specifically, taking the diago-

nal elements of the matrix R
(t−1)
i defined in (10). Thus, denoting the diagonal

elements by Σ
(t)
i = diag

(
σ
(t)
i,1 , . . . , σ

(t)
i,m

)
and substituting into (8) we obtain the

following update step for each score μ
(t)
i,r :

μ
(t)
i,r =

∑n
j �=i
j=1

wi,j

(
1

σ
(t−1)
i,r

+ 1

σ
(t−1)
j,r

)
μ
(t−1)
j,r + δl(i)

(
1

σ
(t−1)
i,r

+ 1
γ

)
yi,r

∑n
j �=i
j=1

wi,j

(
1

σ
(t−1)
i,r

+ 1

σ
(t−1)
j,r

)
+ δl(i)

(
1

σ
(t−1)
i,r

+ 1
γ

) (12)

Similarly, using (11) we obtain an update step for each σ
(t)
i,r :

σ
(t)
i,r =

β

2α
+

1

2α

√√√
√
√β2 + 2α

⎡

⎣
n∑

j=1

wi,j

(
μ
(t−1)
i,r − μ

(t−1)
j,r

)2

+ δl(i)
(
μ
(t−1)
i,r − yi,r

)2

⎤

⎦

(13)

Note both updates (12) and (13) are separable in the labels and involve only
variables with one specific label index r. In fact, if the confidence matrices are
forced to be diagonal, the objective (5) can be decomposed into m separate
optimization problems in independent parameters. In the experiments below we
evaluated both the diagonal and full versions of the algorithm (updates (8) and
(11)) and found no advantage for full confidence matrices over diagonal ones.
We thus restrict ourself to diagonal matrices.

We call our algorithm TACO for Transduction Algorithm with COnfidence,
and its pseudocode is summarized in Figure 2. The algorithm iterates over ver-
tices, updating both parameters for each vertex, until some convergence criteria
is met. In practice, we ran the algorithm for not more than 10 iterations.

As mentioned above for full matrices, the update of (12) sets μ
(t)
i,r to be a

weighted average of neighbouring scores for each label r (and the true label if
given), where each weight is a product of the edge-weight and a correction factor
that depends on estimated confidence parameters. The more certain we are in a
neighbour, the higher relative weight it will have.

Looking at the update step for the uncertainty matrices (either full in (11) or

diagonal (13)) we note that σ
(t)
i,r is monotonic on a quadratic measure of disagree-

ment between neighbours,
∑n

j=1 wi,j

(
μ
(t−1)
i,r − μ

(t−1)
j,r

)2

+ δl(i)
(
μ
(t−1)
i,r − yi,r

)2

.

In addition, this measure is not normalized using the degree of vi, implying that
for high degree vertices this measure is more likely to have a high-value, lowering
the influence of the high degree vertex on its neighbours. However, this happens
only when combined together with neighbours disagreement. If the score of all
neighbour nodes is about the same, even if the number of them is very large, the
certainty would be large (or uncertainty low).

Graph-Based Transduction with Confidence 331

Parameters: α > 0, β > 0,γ > 0
Input: A graph G = (V, E,W) and prior labeling yi for all vi ∈ V

Initialize: t = 1, µ
(0)
i = 0 and Σ

(0)
i = I for all vi ∈ V

Repeat

– For vi ∈ V :
• Compute µ

(t)
i from µ

(t−1)
j and Σ

(t−1)
j :

μ
(t)
i,r =

∑n
j �=i
j=1

wi,j

(
1

σ
(t−1)
i,r

+ 1

σ
(t−1)
j,r

)
μ
(t−1)
j,r + δl(i)

(
1

σ
(t−1)
i,r

+ 1
γ

)
yi,r

∑n
j �=i
j=1

wi,j

(
1

σ
(t−1)
i,r

+ 1

σ
(t−1)
j,r

)
+ δl(i)

(
1

σ
(t−1)
i,r

+ 1
γ

) (12)

• Compute Σ
(t)
i from µ

(t−1)
j :

σ
(t)
i,r =

β

2α
+

1

2α

√√√√β2 + 2α

[
n∑

j=1

wi,j

(
μ
(t−1)
i,r − μ

(t−1)
j,r

)2

+ δl(i)
(
μ
(t−1)
i,r − yi,r

)2
]

(13)

– t← t+ 1

Until convergence
Output: Score vectors µ

(t)
i and confidence matrices Σ

(t)
i .

Fig. 2. The TACO algorithm for graph-based transduction

4 Empirical Evaluation

We evaluate our algorithm along with two other state-of-the-art graph-based
transduction algorithms: Alternating Minimization (AM) [11] and Modified Ad-
sorption (MAD) [12]. Both were empirically shown to outperform LP [12,11].

4.1 Data Sets

We evaluate our algorithm using seven NLP data sets summarized in Table 1.

WebKB: World Wide Knowledge Base is a text categorization data set pre-
viously used for the evaluation of several transductive algorithms [7,8,11,12].
Documents in the data set are web pages from four academic web domains, cat-
egorized according to domain and topic. We used documents from four topic
categories course, faculty, project and student, for a total of 4, 199 documents.
We construct the graph by first removing all non-textual information (HTML
tags), followed by lower casing all tokens, computing TFIDF features, and lastly
using cosine similarity to form edge weights. This graph yields better results
for all evaluated algorithms in comparison to the graph used previously [11,12]
where both textual and non-textual information was used.

332 M. Orbach and K. Crammer

20 Newsgroups: The dataset contains a collection of 18, 828 newsgroup doc-
uments partitioned across 20 different newsgroups1. We select one-quarter of
the documents from each category, yielding a total of 4, 715 documents. Graph
construction is as described for WebKB except for HTML removal.

Sentiment: Sentiment classification of book reviews from Amazon. Each review
is labeled with stars corresponding to the opinion of the author. The range of
the stars (labels) is from one (low rating) to five (high rating). We used 5, 000
reviews. Graph construction follows TFIDF features along with cosine similarity.

Table 1. A summary of data sets used in empir-
ical evaluation

Data set Instances Labels Test set size

WebKB 4,199 4 3,148
20 News 4,175 20 3,534
Sentiment 5,000 5 3,750
Reuters 4,000 4 3,000
Enron A 3,019 10 2,262
Enron B 3,171 10 2,376
Amazon3 7,000 3 5,250

In addition to the aforemen-
tioned data sets we use the
following data of Crammer et
al [4]. This data contains pre-
processed feature vectors gener-
ated for several NLP data sets.
Further details concerning fea-
ture extraction per data set can
be found in [4]. For each data
set, we computed TFIDF fea-
tures from the given counts, and
constructed the graph using co-
sine similarity.
Reuters: Topic classification

of newswire stories (RCV1-v2) [9]. We used 4,000 instances, categorized by
the following general topics: corporate, economic, government and markets.
Enron: A collection of e-mails from over 100 different users organized in fold-
ers2. The task is automatic classification of e-mails into folders. E-mails from two
users are used: farmer-d (Enron A) and kaminski-v (Enron B). Enron A con-
tains 3,019 instances and Enron B has 3,171 instances. For each user there are
10 labels - email folders. Amazon3: Product reviews from Amazon. The task
is to classify reviews to one of the 3 product domains: books, dvds and music.
7,000 reviews are used.

4.2 Experimental Setup

We follow previous experimental setup [11,12]. From the initial input graph we
construct a K Nearest Neighbour (K-NN) graph, by keeping for every vertex
only its K closest neighbours. The result of this preprocessing step is a directed
graph. We then removed the direction of edges, ending up with an undirected
graph, where degrees of edges may be larger than K. Next, we assign labels to
randomly sampled nl documents, under the constraint that each class is repre-
sented by at least one sample in the labeled set. Finally, we sample three-quarters
of the remaining documents to constitute the test set. This process gives a single
transduction set, and we repeat it 21 times.

1 http://people.csail.mit.edu/jrennie/20Newsgroups/
2 http://www.cs.cmu.edu/~enron/

http://people.csail.mit.edu/jrennie/20Newsgroups/
http://www.cs.cmu.edu/~enron/

Graph-Based Transduction with Confidence 333

We use the first transduction set for hyper-parameter tuning, and the others
for evaluation. The hyper-parameters search grid for each of the evaluated algo-
rithms is as follows: for AM α, μ, and ν as described in [11], for MAD μ1, μ2 and
μ3 as described in [12] (Sec. 6.1) and for TACO α, β ∈ {1e-8, 1e-4, 1e-2, 1, 10, 100}
and γ ∈ {1, 2, 5}. We search over same range of K for all algorithms: K ∈
{100, 500, 1000, 2000}. We found that setting the maximum number of iterations
per single run to 10, for all evaluated algorithms, was sufficient for convergence.

We perform class prior normalization (CPN) by column normalizing the prior
information matrix Y for MAD and TACO. This ensures the total initial input
score is the same for all classes and reduces the advantage common classes have
on rare classes during label propagation. Since the rows of Y for AM are proba-
bility distribution, it is not possible to perform CPN prior to running AM, and
it was not used when experimenting with AM before [11].

4.3 Evaluation Metrics

We evaluate the results of our experiments using five evaluation metrics: macro-
averaged Precision-Recall Break Even Point (PRBEP), accuracy (ACC), macro-
averaged accuracy (M-ACC), Mean Reciprocal Rank (MRR) and macro-averaged
Mean Reciprocal Rank (M-MRR).

PRBEP is defined as the point in which precision and recall are equal. For
each label r ∈ L we compute PRBEP as follows. Let sr = [μ1,r, . . . , μn,r] denote
a vector containing the score assigned for all vertices and the label r. We define
a threshold τ and use it for prediction: each vertex vi with score μi,r > τ is
considered as being in class r. We move τ in steps through the complete range
of values in sr in descending order. For each step we update our prediction and
calculate precision and recall. PRBEP is reported when the values are equal.
Finally, we macro-average over all possible labels.

While PRBEP has been used as the evaluation metric in previous work [11,12],
it does not capture the performance of the common multi-class inference rule
ŷi = argmaxr μi,r used also by TACO. We thus also report accuracy. However,
graph-based transduction algorithms tend to create degenerate solutions, such as
solutions for which all unlabeled vertices are classified as being in the most com-
mon single class. Therefore, we also report macro-averaged accuracy: we divide
the complete test set into disjoint sets according to true labels, compute accu-
racy on each individual set and average. This increases the effect of prediction
accuracy in rare classes and demotes degenerate solutions.

In addition to PRBEP and accuracy, we report Mean Reciprocal Rank (MRR),
MRR = (1/|Q|)∑vi∈Q (1/ri) where Q is the test set and ri is the rank of the
true label yi within the score vector µi. This metric has been recently used for
comparing several graph-based transductive algorithms on the task of acquir-
ing class-instance pairs from text [13]. While accuracy is based on prediction
alone, this metric favours both accurate prediction as well as a good rank for
the true label in case of a mistake. As before, in addition to MRR we report also
macro-averaged MRR, discouraging degenerate solutions.

334 M. Orbach and K. Crammer

Table 2. A comparison of empirical results for three algorithms on all data sets. Each
reported result is an average over 20 randomly generated transduction sets. Left block
results were obtained by tuning hyper-parameters using macro-averaged PRBEP, while
results on the right block were tuned using macro-averaged accuracy (M-ACC).

Optimized by Optimized by
PRBEP M-ACC

MAD AM TACO MAD AM TACO

PRBEP 65.5 64.5 67.7 54.9 61.2 67.7
WebKB ACC 22.0 43.8 72.5 59.5 63.5 72.5
48 labeled M-ACC 26.0 31.6 70.9 62.2 56.7 71.5

MRR 49.8 66.1 84.5 76.5 78.7 84.6
M-MRR 52.7 57.1 83.4 78.0 73.9 83.9

PRBEP 50.7 49.8 57.0 49.3 47.7 55.6
20 News ACC 16.6 40.3 58.8 50.0 45.8 61.0

105 labeled M-ACC 16.6 39.9 57.9 49.6 45.3 60.2
MRR 34.9 54.5 72.9 65.3 59.8 74.8

M-MRR 35.1 54.2 72.4 65.1 59.5 74.4

PRBEP 34.4 34.9 34.5 27.8 31.0 33.7
Sentiment ACC 24.3 38.6 25.4 32.6 41.7 38.3
500 labeled M-ACC 26.6 20.0 27.4 32.5 29.3 32.2

MRR 50.7 59.9 51.6 56.9 61.9 60.7
M-MRR 52.4 45.8 53.1 56.6 52.9 55.7

PRBEP 73.2 73.2 73.0 72.0 67.6 74.9
Reuters ACC 60.0 69.4 82.7 76.3 75.8 81.6

48 labeled M-ACC 59.1 55.6 73.0 75.6 67.2 76.2
MRR 76.7 82.7 90.0 86.6 86.3 89.7

M-MRR 76.2 72.8 83.3 85.9 80.1 85.9

PRBEP 54.3 54.8 54.2 46.7 50.5 50.9
Enron A ACC 45.4 60.0 46.0 49.5 56.6 55.6
48 labeled M-ACC 51.3 41.1 52.0 52.4 49.0 50.0

MRR 62.8 74.2 63.3 66.2 70.2 71.6
M-MRR 66.1 59.4 66.7 67.0 64.1 66.3

PRBEP 39.7 36.3 41.7 36.7 35.7 41.5
Enron B ACC 20.4 26.4 41.4 36.5 35.8 41.1
48 labeled M-ACC 21.0 16.6 38.5 38.7 29.9 38.4

MRR 40.8 46.0 59.1 54.9 54.2 58.7
M-MRR 39.3 36.4 56.6 55.5 48.4 56.6

PRBEP 89.4 77.7 88.4 75.4 74.1 87.8
Amazon3 ACC 34.7 43.9 88.5 73.0 68.9 88.9
35 labeled M-ACC 34.8 43.9 88.5 73.0 68.9 88.9

MRR 62.7 67.4 93.9 85.2 83.0 94.2
M-MRR 62.8 67.4 93.9 85.2 83.0 94.2

Graph-Based Transduction with Confidence 335

10
1

10
2

10
3

50

55

60

65

70

75

80

Number of Labeled Examples

m
a
cr

o
−

a
ve

ra
g
e
d
 P

R
B

E
P

MAD
AM
TACO

(a) PRBEP tuned according to PRBEP

10
1

10
2

10
3

50

55

60

65

70

75

80

Number of Labeled Examples

m
a
cr

o
−

a
ve

ra
g
e
d
 P

R
B

E
P

MAD
AM
TACO

(b) PRBEP tuned according to M-ACC

10
1

10
2

10
3

20

30

40

50

60

70

80

Number of Labeled Examples

m
a
cr

o
−

a
ve

ra
g
e
d
 a

cc
u
ra

cy
 (

M
−

A
C

C
)

MAD
AM
TACO

(c) M-ACC tuned according to M-ACC

10
1

10
2

10
3

20

30

40

50

60

70

80

Number of Labeled Examples

m
a
cr

o
−

a
ve

ra
g
e
d
 a

cc
u
ra

cy
 (

M
−

A
C

C
)

MAD
AM
TACO

(d) M-ACC tuned according to PRBEP

Fig. 3. A comparison of macro-averaged PRBEP and macro-averaged accuracy (M-
ACC) for different amounts of labeled data on the WebKB data set. All results are
averages over 20 randomly generated transduction sets. In figures (a) and (d) hyper-
parameters were tuned according to PRBEP. In figures (b) and (c) tuning is according
to M-ACC. Error bars indicate 95% confidence intervals.

4.4 Results

Results for seven NLP tasks are summarized in Table 2. All results are averages
over 20 randomly generated transduction sets as described in Sec. 4.2. We per-
formed hyper-parameters tuning according to PRBEP since it is the reported
metric in previous work [7,8,11,12]. In addition, we tune by M-ACC since it
better relates to our inference rule and also penalizes degenerate solutions.

Results reported in the left part of Table 2 are from experiments where tun-
ing was performed according to PRBEP. Focusing on the tuned metric, TACO
outperforms the other two algorithms on three of the seven data sets by at least
2 points and is worse by at most 1 point. However, TACO outperforms the other
algorithms on all datasets when evaluated using either M-ACC or M-MRR. This
implies solutions generated by TACO are preferable.

Results reported in the right part of Table 2 were obtained by tuning with
macro-averaged accuracy (M-ACC). Here, considering the tuned metric, TACO
is best on four of the seven data sets, three of which by at least 9 points. When

336 M. Orbach and K. Crammer

TACO is not the best performing algorithm, the second best algorithm has M-
ACC not larger than 1 point, except in one case where the difference is about
2.5 points. As before, considering other metrics, TACO is best on at least four
data sets for all other metrics.

Comparing both parts of Table 2 suggests TACO is robust to the choice
of the metric used for tuning. For example, on WebKB, tuning according to
PRBEP or M-ACC does not change much the reported results. AM and MAD
are more sensitive to the specific choice of a metric for tuning. Considering again
WebKB, there are significant differences between results from the left and right
parts of Table 2. In general, for most data sets, the difference between results in
experiments tuned according to PRBEP or M-ACC is substantially smaller for
TACO compared to both MAD and AM.

Overall performance is high in absolute values on WebKB, 20 Newsgroups,
Reuters and Amazon3. On these data sets, TACO is best by almost any used
evaluation metric. This suggests our algorithm gains from the merits of a good
input graph better than others. Finally, comparing ACC vs M-ACC, and MRR
vs M-MRR, we note that using averaged metrics the results are in general higher
than using their macro-average counterparts. Yet, for TACO this difference is
smaller, which indicates that TACO predicts better the less frequent classes,
while not harming performance on the more frequent classes (see also Table 3).

Table 3. Precision-Recall Break Even Point
(PRBEP) results per class on WebKB data
set, with 48 labeled examples. All results are
averages over 20 randomly generated trans-
duction sets.

class size MAD AM TACO
course 930 85.4 81.1 85.4
faculty 1,124 58.9 59.9 60.8
project 504 41.4 42.6 46.2
student 1,641 76.1 74.4 78.4

average - 65.5 64.5 67.7

A comparison of PRBEP and M-
ACC vs amount of labeled exam-
ples is given in Fig. 3. In Fig. 3(a)
and Fig. 3(c) the evaluation met-
ric used for tuning is also the re-
ported metric. In these two plots,
we observe that performance in-
creases as more labeled examples
are given as input, as expected.
TACO outperforms other algorithms,
especially when the amount of la-
beled examples is small. Fig. 3(d)
and Fig. 3(b) show how tuning
by one metric affects the perfor-
mance of the other metric. After
tuning using PRBEP, TACO achieves

far better M-ACC score than other algorithms, and vice-versa, although with
smaller gap, tuning with M-ACC, TACO achieves better PRBEP score than oth-
ers algorithms. Additionally, as more labeled examples are used, performance in
the not-tuned metric may not grow. This implies tuning by PRBEP overfits the
algorithm output towards solutions specifically maximizing the PRBEP mea-
sure, and results evaluated with other evaluation metrics such as M-ACC, are
decreased. This phenomenon is most visible considering AM. As illustrated by
Fig. 3(b), as the number of input labeled examples grows, performance in the

Graph-Based Transduction with Confidence 337

not-tuned metric, namely PRBEP, increases. This suggests tuning by M-ACC is
better for the WebKB data set.

Finally, per-class PRBEP for the WebKB dataset is summarized in Table 3.
The average PRBEP (bottom line) corresponds to the top-left line in Table 2.
TACO achieves the best performance in all four labels, and there is no clear
winner between the two other algorithms. The highest improvement is for the
project category, the one with the smallest number of test samples, (from 42.6
to 46.2), for which all algorithms obtain lowest performance among the four
categories. It seems that the tuning via confidence information allows TACO to
automatically adapt to unbalanced data.

5 Related Work

Our work builds on previous graph-based transduction learning, where the graph
is built using nearest-neighbours based on some distance. Label propagation
(LP) [14] and Modified Adsorption (MAD) [12] use squared Euclidean distance,
while alternating minimization (AM) [10,11] uses the Kullback-Leibler diver-
gence. To the best of our knowledge, our work is the first to apply second order
information into transductive learning, implemented using the Mahalanobis dis-
tance with parameters (matrix) being optimized as well.

One of the first and best performing graph-based transduction algorithm
based on �2 norm is label propagation (LP) [14], with update rule,

μ
(t)
i,r = δl(i)yi,r + (1− δl(i))

∑n
j=1 wi,jμ

(t−1)
j,r∑n

j=1 wi,j
.

Setting our confidence parameters σi,r to 2, our update (12) becomes

μ
(t)
i,r =

∑n
j=1 wi,jμ

(t−1)
j,r + C · δl(i)yi,r

∑n
j=1 wi,j + C · δl(i) (14)

where we set C = 1/2 + 1/γ and assume wi,i = 0. The update step in (14) is a
close variant of LP, allowing label information for labeled vertices to differ from
the given known input labels. A very close version appears in a recent book [3]
(Section 11.2, Algorithm 11.2). Thus, we can view this variant of LP as a special
case of our algorithm with constant confidence parameters.

The idea of discouraging high degree vertices in label propagation first appears
in Adsorption [1] and is later used in MAD [12]. Both algorithms use a static
measure that considers only vertex degree to limit the effect of vertices with a
large degree. TACO performs similar tuning, but automatically or dynamically
based on the confidence parameters, which measure both degree and agreement
level among neighbours.

Measures of confidence in estimated parameters have been successfully used
in a number of non-SSL settings such as online learning [2,6] and multi-armed
bandits with partial feedback [5].

338 M. Orbach and K. Crammer

6 Conclusion

We introduced the notion of confidence in label assignments to graph-based
transduction. We formulated learning as an unconstrained convex optimization
problem in both confidence and label parameters, and derived an efficient iter-
ative algorithm for solving it. Our algorithm uses its confidence parameters to
dynamically control the influence each vertex has on its neighbours during label
propagation. Empirical evaluations on seven NLP tasks demonstrate that TACO
improves over current state-of-the-art graph-based transductive algorithms, and
is more robust to parameter tuning.

Currently, we plan to analyze TACO formally, experiment with more large-
scale data and extend our work to multi-label, complex and structured problems.
We also plan to generalize TACO to be able to generate models that will allow
labeling unseen inputs beyond the transduction setting.

References

1. Baluja, S., Seth, R., Sivakumar, D., Jing, Y., Yagnik, J., Kumar, S., Ravich, D., Aly,
R.M.: Video suggestion and discovery for youtube: taking random walks through
the view graph. In: WWW (2008)

2. Cesa-Bianchi, N., Conconi, A., Gentile, C.: A Second-Order Perceptron Algorithm.
SIAM Journal on Computing 34(3), 640 (2005)

3. Chapelle, O., Schölkopf, B., Zien, A. (eds.): Semi-Supervised Learning. MIT Press,
Cambridge (2006)

4. Crammer, K., Dredze, M., Kulesza, A.: Multi-class confidence weighted algorithms.
In: EMNLP (2009)

5. Crammer, K., Gentile, C.: Multiclass classification with bandit feedback using
adaptive regularization. In: ICML, pp. 273–280 (2011)

6. Dredze, M., Crammer, K.: Confidence-weighted linear classification. In: ICML, pp.
264–271 (2008)

7. Joachims, T.: Transductive inference for text classification using support vector
machines. In: ICML, pp. 200–209 (1999)

8. Joachims, T.: Transductive learning via spectral graph partitioning. In: ICML, pp.
290–297 (2003)

9. Lewis, D.D., Yang, Y., Rose, T.G., Li, F., Dietterich, T.G.: Rcv1: A new benchmark
collection for text categorization research. In: JMLR (2004)

10. Subramanya, A., Bilmes, J.: Soft-supervised learning for text classification. In:
EMNLP (2008)

11. Subramanya, A., Bilmes, J.: Semi-Supervised Learning with Measure Propagation.
The Journal of Machine Learning Research 12, 3311–3370 (2011)

12. Talukdar, P.P., Crammer, K.: New Regularized Algorithms for Transductive Learn-
ing. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML
PKDD 2009, Part II. LNCS, vol. 5782, pp. 442–457. Springer, Heidelberg (2009)

13. Talukdar, P.P., Pereira, F.: Experiments in graph-based semi-supervised learning
methods for class-instance acquisition. In: ACL (2010)

14. Zhu, X., Ghahramani, Z., Lafferty, J.: Semi-supervised learning using gaussian
fields and harmonic functions. In: ICML (2003)

	Graph-Based Transduction with Confidence
	Introduction
	Problem Formulation
	Algorithm
	Objective
	An Iterative Algorithm

	Empirical Evaluation
	Data Sets
	Experimental Setup
	Evaluation Metrics
	Results

	Related Work
	Conclusion
	References

