
Input-Driven Stack Automata

Suna Bensch1, Markus Holzer2, Martin Kutrib2, and Andreas Malcher2

1 Department of Computing Science,
Ume̊a University, 90187 Ume̊a, Sweden

suna@cs.umu.se
2 Institut für Informatik, Universität Giessen,

Arndtstr. 2, 35392 Giessen, Germany
{holzer,kutrib,malcher}@informatik.uni-giessen.de

Abstract. We introduce and investigate input-driven stack automata,
which are a generalization of input-driven pushdown automata that re-
cently became popular under the name visibly pushdown automata. Basi-
cally, the idea is that the input letters uniquely determine the operations
on the pushdown store. This can nicely be generalized to stack automata
by further types of input letters which are responsible for moving the
stack pointer up or down. While visibly pushdown languages share many
desirable properties with regular languages, input-driven stack automata
languages do not necessarily so. We prove that deterministic and non-
deterministic input-driven stack automata have different computational
power, which shows in passing that one cannot construct a deterministic
input-driven stack automaton from a nondeterministic one. We study the
computational capacity of these devices. Moreover, it is shown that the
membership problem for nondeterministic input-driven stack automata
languages is NP-complete.

1 Introduction

Finite automata have intensively been studied and, moreover, have been ex-
tended in several different ways. Typical extensions in the view of [8] are push-
down tapes [4], stack tapes [9], or Turing tapes. The investigations in [8] led to
a rich theory of abstract families of automata, which is the equivalent to the
theory of abstract families of languages (see, for example, [18]). On the other
hand, slight extensions to finite automata such as a one-turn pushdown tape lead
to machine models that can no longer be determinized, that is, the nondeter-
ministic machine model is more powerful than the deterministic one. Moreover,
fundamental problems such as membership become more complicated than for
languages accepted by finite automata. For example, the equivalence problem
turns out to be undecidable, while for regular languages this problem is decid-
able, and its complexity depends on the machine type used (deterministic or
nondeterministic finite automata).

Recently a pushdown automaton model, called visibly pushdown automaton,
was popularized by [1], which shares many desirable properties with regular lan-
guages, but still is powerful enough to describe important context-free-like be-
havior. The idea on visibly pushdown automata is that the input letters uniquely

J.C.M. Baeten, T. Ball, and F.S. de Boer (Eds.): TCS 2012, LNCS 7604, pp. 28–42, 2012.
c© IFIP International Federation for Information Processing 2012

Input-Driven Stack Automata 29

determine whether the automaton pushes a symbol, pops a symbol, or leaves the
pushdown unchanged. Such devices date back to the seminal paper [15] and its
follow-ups [2] and [6], where this machine model is called input-driven pushdown
automaton. One of the most important properties on visibly pushdown automata
languages or, equivalently, input-driven pushdown automata languages is that
deterministic and nondeterministic automata are equally powerful. Moreover,
the language class accepted is closed under almost all basic operations in formal
language theory. Since the recent paper [1], visibly pushdown automata are a
vivid area of research, which can be seen by the amount of literature, for exam-
ple, [1,3,5,10,16,17]. In some of these papers yet another name is used for visibly
pushdown automata, namely nested word automata, which may lead to some
confusion.

Here we generalize the idea of input-driven pushdown automata to input-
driven stack automata. Since the main difference between a pushdown and a
stack is that the latter storage type is also allowed to read information from
the inside of the stack and not only from the top, the idea that input letters
control the stack behavior easily applies. Hence, in addition to the letters that
make the automaton push, pop, or leave the stack unchanged, two new types of
letters that allow the movement of the stack pointer up or down are introduced.
This leads us to the strong version of a input-driven stack automaton. Relaxing
the condition on being input-driven when reading the stack contents, gives the
basic idea of a weak input-driven stack automaton. We compare both automata
models and show that the strong version is strictly less powerful than the corre-
sponding weak version for deterministic devices. Moreover, when staying with the
same model, nondeterminism turns out to be more powerful than determinism,
which shows in passing that in both cases determinization is not possible. This
sharply contrasts the situation for input-driven pushdown automata. Concerning
decidability questions, we would like to note that the results in [9] imply that
emptiness is decidable for nondeterministic input-driven stack automata and
equivalence with regular languages is decidable for deterministic input-driven
stack automata. Finally, we also show that the fixed membership problem for
input-driven stack automata languages, even for the strong automaton model,
has the same complexity as for languages accepted by ordinary stack automata,
namely it is NP-complete, and therefore intractable. This again is in sharp con-
trast to the situation on input-driven pushdown automata languages, whose
membership problem is NC1-complete [6] while ordinary pushdown automata
languages are LOGCFL-complete [20].

2 Preliminaries and Definitions

We write Σ∗ for the set of all words over the finite alphabet Σ. The empty word
is denoted by λ, and we set Σ+ = Σ∗ \ {λ}. The reversal of a word w is denoted
by wR and for the length of w we write |w|. We use ⊆ for inclusions and ⊂ for
strict inclusions.

30 S. Bensch et al.

A nondeterministic one-way stack automaton is a classical nondeterministic
pushdown automaton which is enhanced with an additional pointer that is al-
lowed to move inside the stack without altering the stack contents. In this way
it is possible to read but not to change information which is stored on the stack.
Such a stack automaton is called input-driven, if the next input symbol defines
the next action on the stack, that is, pushing a symbol onto the stack, popping a
symbol from the stack, changing the internal state without changing the stack,
or moving inside the stack by going up or down. To this end, we assume that
the input alphabet Σ is partitioned into the sets Σc, Σr, Σi, Σu, and Σd, that
control the actions push (call), pop (return), state change without changing the
stack (internal), and up and down movement of the stack pointer. A formal
definition reads as follows.

Definition 1. A strong nondeterministic one-way input-driven stack automa-
ton (1sNVSA) is a system M = 〈Q,Σ, Γ,⊥, q0, F, δc, δr, δi, δu, δd〉, where
1. Q is the finite set of internal states,
2. Σ is the finite set of input symbols consisting of the disjoint union of sets

Σc, Σr, Σi, Σu, and Σd,
3. Γ is the finite set of stack symbols,
4. ⊥ ∈ Γ is the initial stack or bottom-of-stack symbol,
5. Γ ′ is a marked copy of Γ , that is Γ ′ = { a′ | a ∈ Γ }, where the symbol ⊥′ is

denoted by ⊥,
6. q0 ∈ Q is the initial state,
7. F ⊆ Q is the set of accepting states, and
8. δc is the partial transition function mapping Q × Σc into the subsets of

Q× (Γ ′ \ {⊥}),
9. δr is the partial transition function mapping Q × Σr × Γ ′ into the subsets

of Q,
10. δi is the partial transition function mapping Q×Σi into the subsets of Q,
11. δd is the partial transition function mapping Q × Σd × (Γ ∪ Γ ′) into the

subsets of Q,
12. δu is the partial transition function mapping Q × Σu × (Γ ∪ Γ ′) into the

subsets of Q.

A configuration of a 1sNVSA M = 〈Q,Σ, Γ,⊥, q0, F, δc, δr, δi, δu, δd〉 at some
time t ≥ 0 is a quadruple ct = (q, w, s, p), where q ∈ Q is the current state,
w ∈ Σ∗ is the unread part of the input, s ∈ Γ ′Γ ∗⊥ ∪ {⊥} gives the cur-
rent stack contents, and 1 ≤ p ≤ |s| gives the current position of the stack
pointer. Let s = snsn−1 · · · s1 denote the stack contents. Consider the projec-
tion [·] : (Γ ∪ Γ ′)+ → (Γ ∪ Γ ′) such that s[p] = sp, for 1 ≤ p ≤ n. Furthermore,
let ϕ be a mapping which marks the first letter of a string in Γ+, that is,
ϕ : Γ+ → Γ ′Γ ∗ such that ϕ(a1a2 · · · an) = a′1a2 · · · an. By definition, ϕ(⊥) = ⊥.

The initial configuration for input w is set to (q0, w,⊥, 1). During its course
of computation, M runs through a sequence of configurations. One step from a
configuration to its successor configuration is denoted by �. Let a ∈ Σ, w ∈ Σ∗,
s ∈ Γ ′Γ ∗⊥ ∪ {⊥}, t ∈ Γ ∗⊥, 1 ≤ p ≤ |s|, and Z ∈ Γ . We set

Input-Driven Stack Automata 31

1. (q, aw, s, p) � (q′, w, Z ′ϕ−1(s), |s|+ 1), if a ∈ Σc and (q′, Z) ∈ δc(q, a),
2. (q, aw, Z ′t, p) � (q′, w, ϕ(t), |t|), if a ∈ Σr and q′ ∈ δr(q, a, Z

′),
3. (q, aw,⊥, 1) � (q′, w,⊥, 1), if a ∈ Σr and q′ ∈ δr(q, a,⊥),
4. (q, aw, s, p) � (q′, w, s, p), if a ∈ Σi and q′ ∈ δi(q, a),
5. (q, aw, s, p) � (q′, w, s, p+ 1), if a ∈ Σu, q

′ ∈ δu(q, a, s[p]), and s[p]
∈ Γ ′,
6. (q, aw, s, p) � (q′, w, s, p), if a ∈ Σu, q

′ ∈ δu(q, a, s[p]), and s[p] ∈ Γ ′,
7. (q, aw, s, p) � (q′, w, s, p− 1), if a ∈ Σd, q

′ ∈ δd(q, a, s[p]), and s[p]
= ⊥,
8. (q, aw, s, p) � (q′, w, s, p), if a ∈ Σd, q

′ ∈ δd(q, a, s[p]), and s[p] = ⊥.

As usual, we define the reflexive, transitive closure of � by �∗.
So, the pushing of a symbol onto the stack is described by Σc and δc, and the

popping of a symbol is described by Σr and δr. With the help of the mappings ϕ
and ϕ−1 it is possible to mark the new topmost symbol suitably. The internal
change of the state without altering the stack contents is described by Σi and
δi. We remark that δc and δi do not depend on the topmost stack symbol, but
only on the current state and input symbol. This is not a serious restriction since
every automaton can be modified in such a way that the topmost stack symbol
is additionally stored in the state set. In this context, the question may arise of
how a state can store the new topmost stack symbol in case of popping. This
can be solved by a similar construction as given in [12], where every pushdown
automaton is converted to an equivalent pushdown automaton such that every
stack symbol is a pair of stack symbols consisting of the symbol on the stack
and its immediate predecessor.

The moves inside the stack are described by Σd, δd and Σu, δu, respectively.
Up-moves at the top of the stack and down-moves at the bottom of the stack
can only change the state, but do not affect the position of the stack pointer.
So, the pointer can never go below the bottom and beyond the top of the stack.
To ensure the latter the topmost stack symbol is suitably marked. By definition,
transition functions δc and δr can only be applied if the stack pointer is at the
topmost stack symbol. Thus, we stipulate the following behavior: if δc or δr have
to be applied and the stack pointer is inside the stack, then the stack pointer
is set to the topmost symbol, and the new symbol is pushed onto the stack or
the topmost symbol is popped off the stack. The bottom-of-stack symbol ⊥ can
neither be pushed onto nor be popped from the stack.

The language accepted by a 1sNVSA is precisely the set of words w such that
there is some computation beginning with the initial configuration and ending
in a configuration in which the whole input is read and an accepting state is
entered:

L(M) = {w ∈ Σ∗ | (q0, w,⊥, 1) �∗ (q, λ, s, p) with q ∈ F,

s ∈ Γ ′Γ ∗⊥ ∪ {⊥}, and 1 ≤ p ≤ |s| }.

If in any case each δr, δc, δi, δu, and δd is either undefined or a singleton,
then the stack automaton is said to be deterministic. Strong deterministic stack
automata are denoted by 1sDVSA. In case that no symbol is ever popped from
the stack, that is, δr = ∅, the stack automaton is said to be non-erasing. Strong

32 S. Bensch et al.

nondeterministic and deterministic non-erasing stack automata are denoted by
1sNENVSA and 1sNEDVSA. The family of all languages accepted by an input-
driven stack automaton of some type X is denoted by L (X).

In order to clarify our notion we continue with an example.

Example 2. The non-context-free language { anbncn+1 | n ≥ 1 } is accepted
by the 1sNEDVSA M = 〈{q0, q1, q2, q3}, Σ, {A,⊥},⊥, q0, {q3}, δc, δr, δi, δu, δd〉,
where Σc = {a}, Σu = {c}, Σd = {b}, and Σr = Σi = ∅. The transition
functions δr and δi are undefined, and δc, δu, and δd are as follows.

(1) δc(q0, a) = (q0, A
′)

(2) δd(q0, b, A
′) = q1

(3) δd(q1, b, A) = q1

(4) δu(q1, c,⊥) = q2
(5) δu(q2, c, A) = q2
(6) δu(q2, c, A

′) = q3

Since δr is undefined,M is non-erasing. An input is accepted only ifM eventually
enters state q3. To this end, it must be in state q2. Similarly, to get into state q2
it must be in state q1, and the only possibility to change into state q1 is from q0.

If the input does not begin with an a, the computation blocks and rejects
immediately. So, any accepting computation starts with a sequence of tran-
sitions (1) reading a prefix of the form an, for n ≥ 1. This yields a con-
figuration (q0, w1, A

′An−1⊥, n + 1). Since for input symbol c no transition is
defined from q0, the remaining input w1 must have a prefix of the form bm, for
m ≥ 1. Therefore, M applies one transition (2) and, subsequently, tries to apply
m− 1 transitions (3). If m < n, this yields a configuration (q1, w2, A

′An−1⊥, p),
where 2 ≤ p ≤ n, and M blocks and rejects if an a or a c follows. Similarly,
if m > n, after reading bn a configuration (q1, w2, A

′An−1⊥, 1) is reached, on
which M blocks and rejects when trying to read the next b. Therefore, in any
accepting computation w1 must begin with exactly n copies of b. Since for in-
put symbol a no transition is defined from q1, the remaining input w2 must
have a prefix of the form c�, for � ≥ 1. Therefore, M applies one transition (4)
and, subsequently, applies transitions (5). If � < n, this yields a configuration
(q2, w3, A

′An−1⊥, p), where 2 ≤ p ≤ n, and M blocks and rejects if an a or a b
follows, and does not accept if the input has been consumed. If � ≥ n, a config-
uration (q2, w3, A

′An−1⊥, n + 1) is reached. Next, if � = n + 1 then M applies
transition (6) and accepts the input anbbcn+1. For � > n + 1 the computation
blocks. ��
Next, we introduce weak variants of input-driven stack automata, for which
moves inside the stack are not necessarily input-driven. To this end, we have
to extend the domain of δd and δu appropriately and to adapt the derivation
relation � accordingly. First we explain how to modify the transition functions
in the definition of input-driven stack automata, where items 11 and 12 are
changed to

11′. δd is the partial transition function mapping Q × Σ × (Γ ∪ Γ ′) into the
subsets of Q,

12′. δu is the partial transition function mapping Q × Σ × (Γ ∪ Γ ′) into the
subsets of Q.

Input-Driven Stack Automata 33

In the weak mode, the stack can only by entered by reading an input symbol
from Σd. Being inside the stack, the pointer may move up and down for any
input symbol. When the top of the stack is reached, the stack is left and any
new entering needs another input symbol from Σd. So, Σu is not necessary, but
we keep it for the sake of compatibility. For the weak mode, the relation � is
adapted by replacing items 5 to 8 by the following ones:

5′. (q, aw, s, p) � (q′, w, s, p+ 1), if a ∈ Σ, q′ ∈ δu(q, a, s[p]), and s[p]
∈ Γ ′,
6′. (q, aw, s, p) � (q′, w, s, p), if a ∈ Σu, q

′ ∈ δu(q, a, s[p]), and s[p] ∈ Γ ′,
7′a. (q, aw, s, p) � (q′, w, s, p − 1), if a ∈ Σd, q

′ ∈ δd(q, a, s[p]), s[p] ∈ Γ ′, and
s[p]
= ⊥,

7′b. (q, aw, s, p) � (q′, w, s, p − 1), if a ∈ Σ, q′ ∈ δd(q, a, s[p]), s[p] ∈ Γ , and
s[p]
= ⊥,

8′a. (q, aw, s, p) � (q′, w, s, p), if |s| = 1, a ∈ Σd, q
′ ∈ δd(q, a, s[p]), and s[p] = ⊥.

8′b. (q, aw, s, p) � (q′, w, s, p), if |s| ≥ 2, a ∈ Σ, q′ ∈ δd(q, a, s[p]), and s[p] = ⊥.

If for every q ∈ Q, a ∈ Σ, and Z ∈ Γ ′ ∪ Γ each of the three sums |δr(q, a, Z)|+
|δu(q, a, Z)|+ |δd(q, a, Z)|, |δc(q, a)|+ |δu(q, a, Z)|+ |δd(q, a, Z)|, and |δi(q, a)|+
|δu(q, a, Z)|+|δd(q, a, Z)| is at most one, then the weak stack automaton is said to
be deterministic. Weak deterministic stack automata are denoted by 1wDVSA.
Moreover, weak nondeterministic and deterministic non-erasing stack automata
are denoted by 1wNENVSA and 1wNEDVSA, respectively.

3 Computational Capacity

We investigate the computational capacity of input-driven stack automata work-
ing in strong and weak mode, and prove that these machines induce a strict hier-
archy of language families with respect to the following three features: (i) strong
and weak mode, (ii) determinism and nondeterminism, and (iii) non-erasing and
erasing stack. First we consider deterministic machines and compare weak non-
erasing mode with strong erasing mode.

Lemma 3. L1 = { anban−1c | n ≥ 1 } ∈ L (1wNEDVSA) \ L (1sDVSA).

Proof. The main idea for a 1wNEDVSA accepting L1 is to push some symbol on
the stack for every input symbol a. When the b appears in the input the stack
pointer is moved one position down, that is, to position n. At the same time
a certain state is entered which ensures that the stack pointer moves down for
subsequent symbols a. In this way, the pointer reaches the bottom of the stack
after reading an−1. If in this situation a c follows, the input is accepted with an
up move, otherwise the input is rejected. Clearly, the automaton constructed is
deterministic and non-erasing.

To show that L1
∈ L (1sDVSA), we assume in contrast to the assertion
that L1 is accepted by a 1sDVSA M = 〈Q,Σ, Γ,⊥, q0, F, δc, δr, δi, δu, δd〉. Sup-
pose that a
∈ Σc. Since the stack is initially empty up to ⊥, any application

34 S. Bensch et al.

of δi, δu, δd, or δr can only alter the current state. Therefore, there are two
sufficiently large natural numbers n1
= n2 and a state q ∈ Q, so that

(q0, a
n1ban1−1c,⊥, 1) �∗ (q, ban1−1c,⊥, 1) �∗ (f1, λ, s1, p1)

and
(q0, a

n2ban2−1c,⊥, 1) �∗ (q, ban2−1c,⊥, 1) �∗ (f2, λ, s2, p2),

for f1, f2 ∈ F , s1, s2 ∈ Γ ′Γ ∗⊥∪{⊥}, and 1 ≤ pi ≤ |si|, for i = 1, 2. This implies

(q0, a
n1ban2−1c,⊥, 1) �∗ (q, ban2−1c,⊥, 1) �∗ (f2, λ, s2, p2)

and, thus, an1ban2−1c ∈ L1, which is a contradiction.
Now suppose that a ∈ Σc. Then for every symbol a, some stack symbol is

pushed onto the stack. Since Q is finite, the sequence of states passed through
while reading a large number of a’s is eventually periodic. Therefore, the sequence
of symbols pushed onto the the stack is also eventually periodic. Say, it is of the
form uv∗w, where u is a suffix of v, v ∈ Γ+, w ∈ Γ ∗⊥, and |w|, |v| ≤ |Q|.
Therefore, there are two sufficiently large natural numbers n1
= n2, a state
q ∈ Q, strings u, v, w, where u is a suffix of v, v ∈ Γ+, w ∈ Γ ∗⊥, and natural
numbers k2 > k1 > 0 so that

(q0, a
n1ban1−1c,⊥, 1) �∗ (q, ban1−1c, ϕ(u)vk1w, n1 + 1) �∗ (f1, λ, s1, p1)

and
(q0, a

n2ban2−1c,⊥, 1) �∗ (q, ban2−1c, ϕ(u)vk2w, n2 + 1) �∗ (f2, λ, s2, p2)

for f1, f2 ∈ F , s1, s2 ∈ Γ ′Γ ∗⊥, and 1 ≤ pi ≤ |si| for i = 1, 2. Since the input
symbol b forces M to push or to pop a symbol, or to leave the stack as it is, the
stack is decreased by at most one symbol when the b is read. The subsequent
input symbols a increase the stack again. So, the bottommost n1 (n2) stack
symbols are not touched again. Since ϕ(u)vk1w and ϕ(u)vk2w have a common
prefix of length at most 2, we derive

(q0, a
n1ban2−1c,⊥, 1) �∗ (q, ban2−1c, ϕ(u)vk1w, n1 + 1) �∗ (f2, λ, s3, p3)

for some s3 ∈ Γ ′Γ ∗⊥ and p3 = |s3|. This implies that an1ban2−1c ∈ L1 which is
a contradiction and, hence, L1
∈ L (1sDVSA). ��
Now we turn to show how input-driven stack automata languages are related to
some important context-free language families. Let CFL refer to the family of
context-free languages. Then Example 2 shows the following result.

Lemma 4. L2 = { anbncn+1 | n ≥ 1 } ∈ L (1sNEDVSA) \ CFL. ��
The next lemma proves a converse relation, namely that a deterministic and
linear context-free language is not accepted by any deterministic weak input-
driven stack automaton. Let DCFL refer to the family of deterministic context-
free and LIN to the family of linear context-free languages, which are both strict
sub-families of CFL.

Input-Driven Stack Automata 35

Lemma 5. Let L3 = { anbmabman | n,m ≥ 1 } ∪ { bnan | n ≥ 1 }. Then,
L3 ∈ (DCFL ∩ LIN) \ L (1wDVSA).

Proof. Clearly, L3 belongs to DCFL ∩ LIN. Now assume that L3 is accepted by
some 1wDVSA M = 〈Q,Σ, Γ,⊥, q0, F, δc, δr, δi, δu, δd〉. Similarly as in the proof
of Lemma 3, we conclude a ∈ Σc and b ∈ Σc, since otherwise the words from L3

of the form b+a+ could not be accepted. Thus, every input from {a, b}+ forcesM
to only push symbols onto the stack. Continuing similar as in the second part of
the proof of Lemma 3 shows that then words not belonging to L3 are accepted.
This contradiction shows the lemma. ��
For the proof of the following lemma that compares deterministic weak and
strong input-driven stack automata (conversely to Lemma 3), we use an incom-
pressibility argument. General information on Kolmogorov complexity and the
incompressibility method can be found in [14]. Let w ∈ {0, 1}+ be an arbi-
trary binary string of length n. Then the plain Kolmogorov complexity C(w|n)
of w denotes the minimal size of a program that knows n and describes w. It
is well known that there exist binary strings w of arbitrary length n such that
C(w|n) ≥ n (see [14], Theorem 2.2.1). Similarly, for any natural number n, C(n)
denotes the minimal size of a program that describes n. It is known that there
exist infinitely many natural numbers n such that C(n) ≥ log(n).

Lemma 6. Let ˆ : {0, 1}∗ → {0̂, 1̂}∗ be the homomorphism that maps 0 to 0̂
and 1 to 1̂. L4 = { an+mbmwŵRbn | m,n ≥ 1, w ∈ {0, 1}+ } ∪ { anbn | n ≥ 1 } ∈
L (1sDVSA) \ L (1wNEDVSA).

Proof. The rough idea of a 1sDVSA M for L4 is to push a symbol A onto the
stack for every input symbol a, and to pop symbol A from the stack for every
input symbol b read. In order to check the infix wŵR, M pushes a Z for every 0
and an O for every 1 while reading w. Subsequently, it pops a Z for every 0̂ and
an O for every 1̂ while reading ŵ. If eventually the stack is empty up to ⊥, the
input is to be accepted and otherwise rejected. The concrete construction on M
is straightforward except for one detail. The machine must be able to recognize
when the stack is empty. To be more precise, it must know when the stack
pointer is moved at the bottom-of-stack symbol even if there are no more moves,
as for accepting computations. In order to implement this detail, M marks the
first symbol on the stack. When this symbol is popped again, M knows that the
stack is empty even without reading ⊥.

Next, we show that L4
∈ L (1wNEDVSA). Contrarily, assume that L4 is
accepted by a 1wNEDVSA M = 〈Q,Σ, Γ,⊥, q0, F, δc, δr, δi, δu, δd〉. Similar as in
the proof of Lemma 3, we conclude that a ∈ Σc. Moreover, since { anbn | n ≥ 1 }
is a subset of L4, we conclude that b ∈ Σd. Otherwise, b ∈ Σc or b ∈ Σi

which leads to a contradiction as shown before. Now we consider an accepting
computation K on an input of the form z = an+mbmwŵRbn, for w ∈ {0, 1}+,
n ≥ 2, k = �log(n)�, and m = 22

k − n. We distinguish two cases.

1. First, we assume that inK nothing is pushed onto the stack while reading the
infix w, and consider the configuration c = (q, ŵRbn, s, p) with s ∈ Γ ′Γ ∗⊥

36 S. Bensch et al.

and 1 ≤ p ≤ |s| after reading an+mbmw. We claim that the knowledge of M ,
n, m, |w|, q, and p suffices to write a program that outputs w. This is seen
as follows.
Since n and m are known, the stack contents s can be computed by simulat-
ing M on input an+m. Furthermore, due to our assumption that nothing is
pushed while reading w, and since q and the pointer position p are known, it
is possible to simulateM starting with a situation as configuration c but with
arbitrary input. This is done successively on all inputs v̂bn with |v̂| = |w|.
If v̂ = ŵR, then the simulation ends accepting. On the other hand, if the
simulation is accepting, then v̂ = ŵR, since otherwise an+mbmwv̂bn with
v̂
= ŵR would belong to L4 which is a contradiction. This suffices to iden-
tify and output w. The size of the program is a constant for the code itself
plus the sizes of M , n, m, |w|, q, and p. The size of M and, thus, of q is
also a constant, while p ≤ n + m. So, the size of the program is of order
O(log(n) + log(m) + log(n +m) + log(|w|)). Fixing n and m and choosing
|w| large enough, we obtain C(w||w|) ∈ o(|w|) which is a contradiction to
the above-cited result that there exist binary strings w of arbitrary length
such that C(w||w|) ≥ |w|.

2. Second, we assume that in K something is pushed onto the stack while
reading the infix w, and consider the configuration c = (q, x, s, |s|) with
s ∈ Γ ′Γ ∗⊥ and x ∈ {0, 1}∗{0̂, 1̂}+b+ is the remaining input when the first
symbol has been pushed onto the stack while reading w. We claim that the
knowledge of M , k, |w|, the length � of the prefix w′ of w which has been
already read, q, and the last symbol B pushed suffices to write a program
that outputs n.

The stack height |s| is m+ n+ 1 = 22
k

+ 1. Therefore, the stack contents s
can be computed by simulating M on input a|s|−1 using solely the knowledge
of k, and adding B on the top. Next the simulation of M beginning in state q
while having the stack pointer on the top of the stack contents s is started
successively on all inputs uv̂bi with u ∈ {0, 1}∗, |u| = |w| − �, |v̂| = |w|, and
1 ≤ i ≤ 22

k

. If w′uv̂ = wŵR and i = n, then the simulation ends accepting.
On the other hand, if the simulation is accepting, then w′uv̂ = wŵR and
i = n. This suffices to identify and output n. Again, the size of the program
is a constant for the code itself plus the sizes of M , k, |w|, �, q, and |Γ |. The
size of M and, thus, of q and |Γ | is also a constant, while � ≤ |w|. So, the size
of the program is of order O(log(k) + log(|w|)) = O(log(log(n)) + log(|w|)).
Fixing w and choosing n large enough, we obtain C(n) ∈ o(log(n)) which is
a contradiction since there are infinitely many natural numbers n such that
C(n) ≥ log(n).

This proves the lemma. ��
With the help of the previous four lemmata we can show the following strict
inclusion relations and incomparability results.

Theorem 7. All inclusions shown in Figure 1 are strict. Moreover, language
families that are not linked by a path are pairwise incomparable.

Input-Driven Stack Automata 37

L (1wDVSA) L (1wNEDVSA)

CFL L (1sDVSA) L (1sNEDVSA)

L (VPDA)

Fig. 1. Inclusion structure of deterministic language families. The arrows indicate strict
inclusions. All families not linked by a path are pairwise incomparable.

Proof. The inclusions of the language families induced by the input-driven stack
automata are clear by definition. Moreover, L (VPDA) ⊆ CFL is immediate and
L (VPDA) ⊆ L (1sDVSA) follows since every visibly (deterministic) pushdown
automaton is also a deterministic strong input-driven stack automaton (that is
not allowed to read the internal contents of the stack). First, we show that these
inclusions are strict. The strictness of the inclusion L (1sDVSA) ⊆ L (1wDVSA)
as well as the inclusion L (1sNEDVSA) ⊆ L (1wNEDVSA) is ensured by lan-
guage L1 of Lemma 3. Furthermore, a language similar to L1 was used in [1]
to show that the inclusion L (VPDA) ⊆ CFL is proper. Finally, the strict-
ness of both inclusions L (1sNEDVSA) ⊆ L (1sDVSA) and L (1wNEDVSA) ⊆
L (1wDVSA) follows by language L4 of Lemma 6. Next, we show the incompa-
rability results. The languages L2 and L3 from Lemmata 4 and 5 imply the
incomparability of CFL with the all language families of deterministic vari-
ants of input-driven stack automata, namely L (1sNEDVSA), L (1wNEDVSA),
L (1sDVSA), and L (1wDVSA). The incomparability of L (VPDA) with both
language families L (1sNEDVSA) and L (1wNEDVSA) follows by the
languages L2 from Lemma 4 and L4 from Lemma 6, and the obvious fact that L4

is a visibly pushdown language. Finally, L (1sDVSA) and L (1wNEDVSA) are
incomparable due to the languages L1 and L4 from Lemmata 3 and 6. This
proves the stated claim. ��
In the remainder of this section we investigate the relation between deterministic
and nondeterministic input-driven stack automata. To this end consider the
language L5 = T1 ∪ T2 ∪ T ′

1 ∪ T ′
2 ∪ T3 ∪ T4 with

T1 = { andn1un+1
1 | n ≥ 1 }

T2 = { andn2un+1
2 | n ≥ 1 }

T ′
1 = { anum

1 dn1u
n+1
1 | m,n ≥ 1 }

T ′
2 = { anum

2 dn2u
n+1
2 | m,n ≥ 1 }

T3 = { andn+1
1 | n ≥ 1 }

and
T4 = { an+mdm1 dn2u

n+1
2 um

1 wŵRdm1 dn+1
2 | m,n ≥ 1, w ∈ {0, 1}+ },

38 S. Bensch et al.

where ˆ is the mapping introduced in Lemma 6. Then we can prove the following
result, which allows us to categorize the different symbols used in the definition
of language L5.

Lemma 8. Let M = 〈Q,Σ, Γ,⊥, q0, F, δc, δr, δi, δu, δd〉 be a 1wDVSA.

1. If T1 is accepted by M , then d1
∈ Σc ∪Σr.
2. If T2 is accepted by M , then d2
∈ Σc ∪Σr.
3. If T ′

1 is accepted by M , then u1
∈ Σc ∪Σr.
4. If T ′

2 is accepted by M , then u2
∈ Σc ∪Σr.

Proof. We only prove the first claim. The other claims can be shown by similar
arguments. So assume that T1 is accepted by M . In order to show d1
∈ Σc ∪Σr,
we assume in contrast to the assertion that d1 is in Σc orΣr. Thus, we distinguish
two cases—note that we make no assumption on the containment of the letter a
within the sub-alphabets that come from the partition of Σ:

1. Assume that d1 ∈ Σr. Note that after reading the word andn1 the stack
of M is empty up to the bottom of stack symbol ⊥. This is due to the fact,
that M is deterministic and d1 ∈ Σr. Since Q is finite, there are two distinct
sufficiently large numbers n1
= n2 and a state q ∈ Q, such that

(q0, a
n1dn1

1 un1+1
1 ,⊥, 1) �∗ (q, un1+1

1 ,⊥, 1) �∗ (f1, λ, s1, p1)

and
(q0, a

n2dn2
1 un2+1

1 ,⊥, 1) �∗ (q, un2+1
1 ,⊥, 1) �∗ (f2, λ, s2, p2),

for f1, f2 ∈ F , s1, s2 ∈ Γ ′Γ ∗⊥ ∪ {⊥}, and 1 ≤ pi ≤ |si|, for i = 1, 2. This
implies

(q0, a
n1dn1

1 un2+1
1 ,⊥, 1) �∗ (q, un2+1

1 ,⊥, 1) �∗ (f2, λ, s2, p2)

and, thus, an1dn1
1 un2+1

1 ∈ T1, which is a contradiction.
2. Now suppose that d1 ∈ Σc. Then we argue as follows. Since M is deter-

ministic and d1 ∈ Σc, we know that the stack height is at least n + 1 after
reading word andn1 and the stack pointer is on the topmost symbol. Then
further reading of un+1

1 —here we make no assumption on letter u1 and its
containment in Σc Σr, Σi, Σu, or Σd—may only touch the topmost n + 1
symbols of the stack. Since Q and Γ are finite we find two sufficiently large
numbers n1
= n2, a state q ∈ Q and a stack symbol Z ∈ Γ , such that

(q0, a
n1dn1

1 un1+1
1 ,⊥, 1) �∗ (q, dn1

1 un1+1
1 , Z ′γ1, |γ1|+ 1) �∗ (f1, λ, s1, p1)

and
(q0, a

n2dn2

1 un2+1
1 ,⊥, 1) �∗ (q, dn2

1 un2+1
1 , Z ′γ2, |γ2|+ 1) �∗ (f2, λ, s2, p2),

for γi = λ, if Z = ⊥, and γi ∈ Γ ∗⊥, if Z
= ⊥, for i = 1, 2, and f1, f2 ∈ F ,
s1, s2 ∈ Γ ′Γ ∗⊥ ∪ {⊥}, and 1 ≤ pi ≤ |si|, for i = 1, 2. Since both topmost
stack symbols after processing an1 and an2 , respectively, are identical, and

Input-Driven Stack Automata 39

the stack contents below that particular symbol is never touched while pro-
cessing the remaining part dn1

1 un1+1
1 and dn2

1 un2+1
1 , respectively, we obtain

the accepting computation

(q0, a
n1dn2

1 un2+1
1 ,⊥, 1) �∗ (q, dn2

1 un2+1
1 , Z ′γ1, |γ1|+ 1) �∗ (f2, λ, s3, p3),

for some s3 ∈ Γ ′Γ ∗⊥∪{⊥} with |s3| ≥ |γ1|, and p3 ≥ |γ1|. This implies that
the word an1dn2

1 un2+1
1 ∈ T1, which is a contradiction. ��

Next we need some notation. Let Σc, Σr, Σi, Σu, and Σd be a partitioning of Σ.
Then we say that a partitioning Σ′

c, Σ
′
r, Σ

′
i, Σ

′
u, and Σ′

d of Σ′ ⊆ Σ is compatible
with the partitioning of Σ, if Σ′

c ⊆ Σc, Σ
′
r ⊆ Σr, Σ

′
i ⊆ Σi, Σ

′
u ⊆ Σu, and

Σ′
d ⊆ Σd. Then the next lemma, which can be shown by an easy adaptation of

the well-known Cartesian product construction for pushdown automata, reads
as follows:

Lemma 9. Let M = 〈Q,Σ, Γ,⊥, q0, F, δc, δr, δi, δu, δd〉 be a 1wDVSA (1sDVSA)
and R ⊆ Σ∗ be a regular language. Then the language L(M) ∩R is accepted by
a 1wDVSA (1sDVSA) with a compatible partitioning of the alphabet Σ. ��

Now we are ready to show that there exists a language that belongs to the
class induced by the most restricted form of nondeterministic input-driven au-
tomata, namely 1sNENVSA, but is not a member of the larger deterministic
class 1wDVSA.

Lemma 10. L5 ∈ L (1sNENVSA) \ L (1wDVSA).

Proof. The idea for a 1sNENVSA accepting L5 is first to guess whether the
input belongs to T1, T2, T

′
1, T

′
2, T3, or T4. The construction to accept inputs

from T1, T2, T
′
1, T

′
2, and T3 is similar to the construction in Lemma 4. In the

constructions for T ′
1 and T ′

2 we observe that u1 and u2 belong to Σu. Since the
stack pointer is on the top after reading an, the processing of u1 and u2 only
affects the current state, but not the stack or the position of the stack pointer.
The construction to accept T4 is as follows. While reading a’s some symbol A
is pushed onto the stack up to some moment in which it is nondeterministically
decided to push some different symbol B onto the stack for every remaining input
symbol a. Then, while reading d1’s and seeing B’s the stack pointer moves down
and continues moving down while reading d2’s and seeing A’s. If the bottom of
the stack is reached, the stack pointer moves up while reading u2’s and seeing
A’s and continues moving up, while reading u1’s and seeing B’s on the stack.
If the top of the stack is reached, the processing of the infix wŵR is done in a
similar way as in the proof of Lemma 6. The only difference is that symbols from
{0̂, 1̂} now ensure that the stack pointer moves down instead of popping off the
topmost symbol. If the first B of the stack is again reached, the stack pointer
continues moving down while reading d1’s and seeing B’s and continues to move
down while reading d2’s and seeing A’s. The input is accepted if the bottom
of the stack is eventually reached and rejected otherwise. We observe from the

40 S. Bensch et al.

constructions that a, 0, 1 ∈ Σc, d1, d2, 0̂, 1̂ ∈ Σd, and u1, u2 ∈ Σu. Thus, the
automaton constructed is non-erasing and works in the strong mode.

Next, we show by way of contradiction that L5
∈ L (1wDVSA). Assume
that L5 is accepted by a 1wDVSA M = 〈Q,Σ, Γ,⊥, q0, F, δc, δr, δi, δu, δd〉. Simi-
lar as in the proof of Lemma 3, we conclude that a ∈ Σc. Now, we assume that
d1 ∈ Σc∪Σr. Due to Lemma 9 with R = a+d+1 u

+
1 we obtain that T1 is accepted

by some 1wDVSA having d1 ∈ Σc ∪ Σr. This is a contradiction to Lemma 8.
Thus, d1
∈ Σc ∪ Σr. Similarly, it can be shown that also d2, u1, u2
∈ Σc ∪ Σr.
Finally, we claim that d1 ∈ Σd. Otherwise, due to Lemma 9 with R = a+d+1 ,
language T3 would be accepted by some 1wDVSA having d1 ∈ Σi ∪Σu which is
a contradiction.

The rest of the proof is similar to the proof of Lemma 6 and we leave out
some details here. We consider an accepting computation K on an input of the
form z = an+mdm1 dn2u

n+1
2 um

1 wŵRdm1 dn2 , for w ∈ {0, 1}+, n ≥ 2, k = �log(n))�,
and m = 22

k − n. Due to the above considerations, we know that nothing is
pushed onto or popped off the stack while reading the infix dm1 dn2u

n+1
2 um

1 . We
distinguish now two cases.

1. First, we assume that nothing is pushed onto or popped off the stack while
reading the infix w, and consider the configuration c = (q, ŵRdm1 dn2 , s, p)
with s ∈ Γ ′Γ ∗⊥ and 1 ≤ p ≤ |s| after reading an+mdm1 dn2u

n+1
2 um

1 w. Then,
the knowledge of M,n,m, |w|, q, and p is sufficient to write a program that
outputs w. The size of this program is bounded by O(log(n) + log(m) +
log(n + m) + log(|w|)). Hence, C(w||w|) ∈ o(|w|) which is a contradiction
for |w| large enough.

2. Second, we assume that something is pushed onto or popped off the stack
while reading the infix w. We consider the configuration c = (q, x, s, |s|)
with s ∈ Γ ′Γ ∗⊥ and x ∈ {0, 1}∗{0̂, 1̂}+d+1 d+2 being the remaining input
when the first symbol has been pushed onto or popped off the stack while
reading w. Again, the knowledge of M , k, |w|, the length � of the prefix
w′ of w which has been already read, q, and the last pushed or popped
symbol B ∈ Γ ′ is sufficient to write a program that outputs n. The size of
this program is bounded by O(log(k)+log(|w|)) = O(log(log(n))+log(|w|)).
Thus, C(n) ∈ o(log(n)) which is a contradiction since there are infinitely
natural numbers n such that C(n) ≥ log(n).

Hence, there cannot be any 1wDVSA that accepts the language L5. ��
As an immediate corollary of the previous lemma we obtain the following strict
inclusions.

Corollary 11. 1. L (1sNEDVSA) ⊂ L (1sNENVSA).
2. L (1sDVSA) ⊂ L (1sNVSA).
3. L (1wNEDVSA) ⊂ L (1wNENVSA).
4. L (1wDVSA) ⊂ L (1wNVSA). ��
These strict inclusions show a large difference between input-driven pushdown
automata languages or equivalently visibly pushdown languages, where deter-
minism coincides with nondeterminism on the underlying automaton model. For

Input-Driven Stack Automata 41

input-driven stack automata, even for the most restrictive version, the strong
machines, nondeterminism is more powerful than determinism. These strictness
results are also reflected in the forthcoming result on the complexity of the
fixed membership problem. Since the family of languages accepted by ordinary
deterministic stack automata belongs to deterministic polynomial time P [13]
it follows that this is also true for every language family induced by a deter-
ministic input-driven stack automaton, regardless whether we have a strong or
weak machine, or whether the device is non-erasing or not. On the other hand,
when changing from ordinary deterministic stack automata to nondeterministic
ones, we obtain an NP-complete language family [11,19]. This is also the case for
the nondeterministic versions of input-driven stack automata, even for strong
non-erasing machines, which is shown next.

Theorem 12. Each of the language families L (1sNENVSA), L (1sNVSA),
L (1wNENVSA), and L (1wNVSA) has an NP-complete fixed membership
problem.

Proof. The containment in NP follows immediately from the fact that ordinary
nondeterministic stack automata have an NP-complete fixed membership prob-
lem [11,19]. It remains to show NP-hardness. To this end, it suffices to show
that the (with respect to set inclusion) smallest language family L (1sNENVSA)
has an NP-hard membership problem. We reduce the well-known NP-complete
3SAT problem [7] to the problem under consideration. We encode a Boolean
formula F = c1 ∧ c2 ∧ · · · ∧ cm with variables X = {x1, x2, . . . , xn}, where
each clause ci with 1 ≤ i ≤ m is a disjunction of three literals, by a word
〈F 〉 ∈ 1n({0,+,−}∗#∗$)∗. The prefix encodes the number of input variables.
Then each clause ci, for 1 ≤ i ≤ m, of the formula F is encoded by a word wci

in {0,+,−}n#n, where at position j, for 1 ≤ j ≤ n, there is a 0 (+, −), if the
variable xj does not appear (positively appears, negatively appears) in ci. These
words are separated by $-symbols and are placed in sequence. Then the language

L = { 〈F 〉 | F is a Boolean formula that evaluates to 1 }

is NP-hard. We informally describe how a 1wNENVSA automaton M accepts L.
Set Σc = {1}, Σr = ∅, Σi = {$}, Σu = {#}, and Σd = {0,+,−}. On prefix 1n

the automaton pushes either the symbol 0 or 1. In this way, the automaton
guesses an assignment to the n variables of the formula. Then the sequence
that encodes a clause is used to read into the stack in order to determine the
assignments of the involved variables. In passing the automaton checks whether
this clause evaluates to 1. Then the block of # symbols is used to reset the stack
pointer to the top of the stack, and after reading $ the checking procedure for
the next clause is restarted. If all clauses evaluate to 1, the whole encoding is
accepted, otherwise it is rejected. It is easy to see that the automaton is non-
erasing. This shows that already the language family L (1sNENVSA) contains
an NP-hard language. ��

42 S. Bensch et al.

References

1. Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56, Article
16 (2009)

2. von Braunmühl, B., Verbeek, R.: Input-driven Languages are Recognized in log n
Space. In: Karpinski, M. (ed.) FCT 1983. LNCS, vol. 158, pp. 40–51. Springer,
Heidelberg (1983)

3. Chervet, P., Walukiewicz, I.: Minimizing Variants of Visibly Pushdown Automata.
In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 135–146.
Springer, Heidelberg (2007)

4. Chomsky, N.: Formal Properties of Grammars. In: Handbook of Mathematic Psy-
chology, vol. 2, pp. 323–418. Wiley & Sons (1962)

5. Crespi Reghizzi, S., Mandrioli, D.: Operator Precedence and the Visibly Pushdown
Property. In: Dediu, A.-H., Fernau, H., Mart́ın-Vide, C. (eds.) LATA 2010. LNCS,
vol. 6031, pp. 214–226. Springer, Heidelberg (2010)

6. Dymond, P.W.: Input-driven languages are in log n depth. Inform. Process.
Lett. 26, 247–250 (1988)

7. Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory
of NP-Completeness. Freeman (1979)

8. Ginsburg, S.: Algebraic and Automata-Theoretic Properties of Formal Languages.
North-Holland (1975)

9. Ginsburg, S., Greibach, S.A., Harrison, M.A.: One-way stack automata. J. ACM 14,
389–418 (1967)

10. Han, Y.S., Salomaa, K.: Nondeterministic state complexity of nested word au-
tomata. Theoret. Comput. Sci. 410, 2961–2971 (2009)

11. Hunt, H.: On the complexity of finite, pushdown and stack automata. Math. Sys-
tems Theory 10, 33–52 (1976)

12. Kutrib, M., Malcher, A.: Reversible Pushdown Automata. In: Dediu, A.-H., Fernau,
H., Mart́ın-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 368–379. Springer,
Heidelberg (2010)

13. Lange, K.J.: A note on the P-completeness of deterministic one-way stack lan-
guages. J. Univ. Comput. Sci. 16, 795–799 (2010)

14. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and its Applica-
tions. Springer (1993)

15. Mehlhorn, K.: Pebbling Mountain Ranges and Its Application of DCFL-
recongnition. In: de Bakker, J.W., van Leeuwen, J. (eds.) ICALP 1980. LNCS,
vol. 85, pp. 422–435. Springer, Heidelberg (1980)

16. Okhotin, A., Salomaa, K.: State Complexity of Operations on Input-Driven Push-
down Automata. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907,
pp. 485–496. Springer, Heidelberg (2011)

17. Piao, X., Salomaa, K.: Operational state complexity of nested word automata.
Theoret. Comput. Sci. 410, 3290–3302 (2009)

18. Salomaa, A.: Formal Languages. ACM Monograph Series. Academic Press (1973)
19. Shamir, E., Beeri, C.: Checking Stacks and Context-free Programmed Grammars

Accept P-complete Languages. In: Loeckx, J. (ed.) ICALP 1974. LNCS, vol. 14,
pp. 27–33. Springer, Heidelberg (1974)

20. Sudborough, I.H.: On the tape complexity of deterministic context-free languages.
J. ACM 25, 405–414 (1978)

	Input-Driven Stack Automata
	Introduction
	Preliminaries and Definitions
	Computational Capacity
	References

