Smoothing Categorical Data

Arno Siebes and René Kersten

Universiteit Utrecht, The Netherlands
arno@cs.uu.nl, renegaa®hotmail.com

Abstract. Global models of a dataset reflect not only the large scale
structure of the data distribution, they also reflect small(er) scale struc-
ture. Hence, if one wants to see the large scale structure, one should
somehow subtract this smaller scale structure from the model.

While for some kinds of model — such as boosted classifiers — it is
easy to see the “important” components, for many kind of models this
is far harder, if at all possible. In such cases one might try an implicit
approach: simplify the data distribution without changing the large scale
structure. That is, one might first smooth the local structure out of the
dataset. Then induce a new model from this smoothed dataset. This new
model should now reflect the large scale structure of the original dataset.
In this paper we propose such a smoothing for categorical data and for
one particular type of models, viz., code tables.

By experiments we show that our approach preserves the large scale
structure of a dataset well. That is, the smoothed dataset is simpler while
the original and smoothed datasets share the same large scale structure.

1 Introduction

Most often data has structure across multiple scales. It is relatively easy to see
fine-grained structure, e.g., through pattern mining. The lower the ”support” of
a pattern the more detailed structure it conveys. Since the large scale structure
of data is convoluted with small scale structure it is, unfortunately, less easy to
see its large scale structure. Simply focussing on "high support” patterns might
miss large scale structure; we will show examples of this later.

Global models of the data, on the other hand, attempt to capture all, relevant,
aspects of the data distribution. This often encompasses both global structure
as well as local structure. If the type of model used is additive, such as a boosted
classifier [5], the large scale structure may be approximated by disregarding small
weight components. For non-additive types of models, syntactic operations that
reveal the large scale structure are far less obvious.

This is unfortunate, since this large scale structure conveys important insight
both in the data distribution and in the model. Hence, the problem we research
in this paper: how to get insight in the large scale structure of a dataset?

If manipulating the model is difficult, manipulating the data might be easier.
That is, smoothing the local structure — as described by the model — from the data
while retaining the global structure — as described by the model. Inducing a new

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, pp. 42-F7] 2012.
(© Springer-Verlag Berlin Heidelberg 2012

Smoothing Categorical Data 43

model from the smoothed dataset should then reveal the large scale structure of
the data distribution as described by the original model. This is our approach.

Note that we should consistently write “structure of the data as described by
the model”, as we did above, but we simplify this to “structure of the data”.

Smoothing is a well-known statistical technique [14] mostly for numerical data
and to a lesser extend for ordered data. In this paper we focus on categorical
data, for which as far as we are aware, no previous smoothing methods exist.
Succinctly, our goal is to smooth out local structure from standard categorical
data tables, while preserving large scale structure.

The structure of a categorical dataset is given by item sets [I]; in the context
of categorical data, an item is defined as an attribute-value pair. The large scale
structure is mostly — but not exclusively, as noted above — given by more frequent
item sets. The small scale structure is given by less frequent item sets.

Informally, two equally sized datasets are indistinguishable if the support of
all item sets is the same on both datasets. In the same vein, two equally sized
datasets are similar if the support of most item sets is more or less the same on
the two datasets. Again informally, we say that two equally sized datasets have
the same large scale structure if they are similar as far as frequent item sets are
concerned. This is made precise in Section [3

To smooth the data while retaining the large scale structure, we need to use
a model. For it is this model that describes the large scale structure we want to
preserve. Hence, the way to smooth depends on the type of model. In this paper
we focus on one particular class of models that consists of itemsets, viz. code
tables as introduced in [11].

A code table consists of item sets associated with codes and can be used to
encode a database; see Section[2l What is important here is that a code table im-
plicitly encodes a probability distribution on all possible tuples in the database.
By replacing less likely tuples with more likely tuples, the small scale structure
is smoothed from the dataset while the large scale structure is maintained. That
is, the support of most frequent item sets is not changed too much by these
replacements; see Section [l

Note that the reason why we don’t simply use the set of all frequent item
sets to do the smoothing is not only that this set is far too large. It also doesn’t
imply a straight forward distribution on all possible tuples; if only because of
the interdependencies between the supports of different item sets.

In Figure[the effect of this smoothing is illustrated on the mammals dataset.
This dataset consists of presence/absence records of European mammald] within
geographical areas of 50x50 kilometres. In the left map, we depict the occurrence of
the “item set” {European Hare, European Polecat, European Mole, Wild Boar},
with dark blue dots. The other dots denote the occurrence of variants of this set;
variants that differ in one mammal. No dot means that neither the item set, nor
any of these variants occur in that place.

! The full version of the mammal dataset is available for research purposes upon request
from the Societas Europaeca Mammalogica. http://www.european-mammals.org

http://www.european-mammals.org

44 A. Siebes and R. Kersten

Fig. 1. The smoothed mammals dataset depicted on the right is far more homogeneous
than the original mammals dataset depicted on the left

The right map shows the effect of smoothing. The map looks far more ho-
mogeneous: the Balkans changed from a variety of colours to almost uniformly
dark blue. This does not happen in England and Sweden, but not because the
map of the latter two looks more homogeneous than the map of the Balkans.
Rather, this happens because the total set of mammals that occur in the Balkans
resemble the set of mammals that occur in the rest of mainland Europe far more
than the sets of mammals that occur in England and south Sweden do.

2 Preliminaries

2.1 Data and Patterns

We assume that the dataset is a standard rectangular table, well known from
relational databases.That is we have a finite set of attributes A = {A1,..., Ap}.
Moreover, we assume that each attribute A; has a finite, categorical, domain
Dom;. A tuple t over A is an element of Dom = H;’il Dom;. A database D over
A is a bag of tuples over A.

Since our work is rooted in item set mining [I], we will also use the terminology
from that area. This means firstly that we will talk about transactions rather
than tuples. Secondly we have a set of items Z = {Iy,...I,}. Each item I,
corresponds to an attribute-value pair (A;,v¥), where v¥ € Dom,. Note that
this implies that all transactions have the same number of items.

A transaction ¢ supports an item I = (A;,vF) iff t.A; = vF. As usual, the
support of an item set J C Z in D, denoted by supp(J), is defined as the
number of transactions in D that support all items in J. Given a user defined
threshold for support, denoted by min-sup or 6, an item set J is called fre-
quent on D iff supp(J) > 0. All frequent item sets can be found relatively
efficiently [1].

Smoothing Categorical Data 45

2.2 Introducing KRrRIMP

The key idea of the KRIMP algorithm is the code table. A code table is a two-
column table that has item sets on the left-hand side and a code for each item
set on its right-hand side. The item sets in the code table are ordered descending
on 1) item set length, 2) support size and 3) lexicographically. The actual codes
on the right-hand side are of no importance but their lengths are. To explain
how these lengths are computed, the coding algorithm needs to be introduced.

A transaction ¢ is encoded by KRIMP by searching for the first item set I in
the code table for which I C ¢. The code for I becomes part of the encoding of
t. If t\ I # (), the algorithm continues to encode ¢\ I. Since it is insisted that
each code table contains at least all singleton item sets, this algorithm gives a
unique encoding to each (possible) transaction over Z. The set of item sets used
to encode a transaction is called its cover.

The length of the code of an item in a code table C'T" depends on the database
we want to compress; the more often a code is used, the shorter it should be. To
compute this code length, we encode each transaction in the database D. The
usage of an item set I € CT, denoted by usage(I) is the number of transactions
t € D which have I in their cover. That is, usage(I) = |{t € D | I € cover(t)}|.

For an I € CT, the probability that I is used to encode an arbitrary ¢t € D,
is simply the fraction of its usage, i.e.,

usage(I)

P(I'| D)= > secr usage(J)

For optimal compression of D, the higher P(I), the shorter its code should be.
Given that a prefix code is necessary for unambiguous decoding, the well-known
optimal Shannon code [4] is used. We now have the length of an item set I
encoded with CT defined as L(I | CT) = —log(P(I | D)).

The length of the encoding of a transaction is now simply the sum of the code
lengths of the item sets in its cover:

Lt|cT)y= > L(I|CT)

Ie€cover(t,CT)

The size of the encoded database is the sum of the sizes of the encoded transac-
tions:

I
L(D|CT) ZL (t|CT) Z usage(I)log (usage(l))

teD IECT > secr usage(J)

To find the best code table for a dataset, the Minimum Description Length
(MDL) principle [6] is used. Which can be roughly described as follows.

Given a set of models H, the best model H € H is the one that minimises
L(H)+ L(D | H), in which L(H) is the length, in bits, of the description of H,
and L(D | H) is the length, in bits, of D encoded with H. One can paraphrase
this by: the smaller L(H) + L(D|H), the better H models D.

46 A. Siebes and R. Kersten

To apply MDL to code tables, we still need to define the size of a code table,
as we previously did in [II]. We only count those item sets that have a non-zero
usage. The size of the right-hand side column is obvious; it is the sum of all
the different code lengths. For the size of the left-hand side column, note that
the simplest valid code table consists only of the singleton item sets. This is the
standard encoding (ST), which we use to compute the size of the item sets in
the left-hand side column. Hence, the size of code table C'T is given by:

L(CT | D) = > L(I|ST)+ L(I|CT)
I1€CT:usage(I)#0

An optimal code table is a code table which minimises:
L(D,CT)=L(CT | D)+ L(D|CT)

Finally, £(D) = L(D,CT) for an optimal code table CT for D.

Unfortunately, computing an optimal code table is intractable [II], hence
we introduced the heuristic algorithm KriMP. KRIMP starts with a valid code
table (only the collection of singletons) and a sorted list of candidates (frequent
item sets). These candidates are assumed to be sorted descending on 1) support
size, 2) item set length and 3) lexicographically. Each candidate item set is
considered by inserting it at the right position in CT and calculating the new
total compressed size. A candidate is only kept in the code table iff the resulting
total size is smaller than it was before adding the candidate. If it is kept, all
other elements of CT' are reconsidered to see if they still positively contribute
to compression; see [11].

3 The Problem

As stated in the Introduction, our goal is to make the large scale structure of a
data distribution more visible by smoothing out small(er) scale structure. The
formalisation of that goal rests on four considerations.

Consideration 1: A code table models the structure in the data by a very
small subset of all (frequent) item sets, chosen because together they compress
the database well. The usages of these item sets say something about their
importance with respect to large scale structure, but not everything. High usage
clearly means large scale structure, but low usage does not necessarily mean
small scale structure. The reason for this is the order of the code table which is
used to compute covers. In other words, to “see” the large scale structure of the
dataset, it is not enough to simply focus on item sets with a high usage. We’ll
return to this observation later in this paper when we discuss our experiments.

Consideration 2: We claim that the structure of a categorical dataset is given
by the support of all item sets; independent from the type of model used. The
motivation for this claim is based on two observations.

The first is that if two equally sized datasets D1 and D5 over Z have the same
support for all item sets over Z, they are row permutations of each other. That is,

Smoothing Categorical Data 47

there exists a permutation 7 of the rows such that m(D;) = Dy. This is obvious
from the fact that the transactions in D; and Do are item sets themselves.
The second observation is that D; and Dy will be indistinguishable by any
type of statistical analysis [2]. For, all such analysis boils down to comput-
ing aggregates computed on subtables of a dataset. Given that these subtables
correspond to item sets, equal support means equal results of the analysis.

Consideration 3: Statistical computations are, in general, robust. That is,
small changes in the input yield small changes in the output. One reason for
this is that two samples from the same distribution will invariably be subtly
different; to be useful, statistical analysis should “smooth out” such differences.

In other words, if Dy and D5 have almost the same support for all item sets,
statistical analysis will mostly imply that D; and D are indistinguishable. For
our purposes we can be even more tolerant, for we are willing — indeed aiming —
to lose some (local) structure. That is, we are satisfied if for most item sets the
support is almost the same. We can loosely formalise this by requiring that the
support of a random item set is almost the same on both data sets.

Consideration 4: There are two weak points in this formulation. Firstly, that
it is a statement about all item sets. Surely, if it is large scale structure we are
interested in, item sets with (very) low support are unimportant. Secondly, what
is almost the same?

Fortunately, these two weak points can be resolved in one step. The fact
that we are not interested in low support item sets simply means that we are
interested in frequent item sets. That is, item sets whose support is at least 0. If
structure that is described by item sets with a support smaller than 6 is deemed
not interesting, we should also not worry too much about differences in support
smaller than 6.

3.1 Formalising the Problem
Given all the previous, we have the following definition.

Definition 1. Let Dy and D2 be two datasets over I and let €,0 € R>q. Dy is
(e,9)-similar to Dy if for a random item set I with supp,(I) > §

P(‘SUle(I) - SupDz(I)| 2 6) Se

If Dy is to be a smoothed version of Dy, then we want it to be (¢, §)-similar to
D, for some €,6 € R>(. But we also want Dy to be simpler than Dy, i.e., we
want Ds to have a simpler code table than D;.

In our MDL approach, it is easy to formalise what it means that D; is simpler
than Ds. If D and D, have the same size (the same number of transactions and,
thus, the same number of items) and £(D3) < £(D1), then D5 is simpler than
D1. The reason is that, in this case, Dy has less local structure that D;. Local
structure next to global structure makes a dataset harder to compress. Hence,
we have the following definition.

48 A. Siebes and R. Kersten

Definition 2. Let Dy and Dy be two equal sized (categorical) datasets over T.
Dy is simpler than Dy iff
L(D3) < L(Dy)

That a dataset Dy which is both simpler than D; in this sense and (e, ¢)-similar
to D1, also has a simpler code table than D is something only experiments can
show.

Data Smoothing Problem

Let D be a dataset over Z and let €, € R>¢. Moreover, let Dg’é) be the set
of all datasets over Z that have the same number of transactions as D and are
(e,9)-similar to D. Find a D’ € D(De’é) that minimises £(D’).

4 Introducing SMOOTH

Given that both the set of datasets with the same number of transactions as D
and the set of code tables are finite, our problem is clearly decidable. However,
given that finding an optimal code table for a dataset is already intractable [I1],
our current problem is also intractable. Hence we have to resort to heuristics.

For this heuristic we use an observation first made in [§]: a code table CT
on a database D implicitly defines a probability distribution on the set of all
possible tuples in the domain Dom of D. Let ¢ be such an arbitrary tuple, then
we can compress it with CT:

Lit|cTy= Y LI|CcT)= Y —log(P(I|D))

Iccover(t) Iccover(t)

=g JI PUID)|=-los(P(t| D))" ~log(P(t| CT))
I€cover(t)

The one but last equation rests on the Naive Bayes like assumption that the
item sets in a cover are independent. They are not(!), but in previous work
this distribution has shown to characterise the data distribution on D very well
[813]. Hence, we decided to use it here as well.

The main idea of the SMOOTH algorithm is to replace less likely tuples in
D with more likely tuples, both according to this probability distribution. This
strategy is based on the following observation: if D is changed into D’ by re-
placing one t € D by a t' € Dom such that L(t' | CT) < L(t | CT), then
L(D',CT) < L(D,CT). That is D’ is simpler than D, according to CT.

However, if we replace an arbitrary ¢ € D by an equally arbitrary ¢ € Dom
which compresses better, there is no guarantee that D’ will be (e, §)-similar to D
for the given parameters € and §. Drastic changes could influence the support of
many (frequent) item sets drastically, effectively disturbing the data distribution
captured by the code table, not only on small scales, but also on large scales. To
maintain the large scale balance we take two precautions:

Smoothing Categorical Data 49

Algorithm 1. SMOOTH(D, CT\¢,0)

D =D

F := frequent item sets, min-sup is ¢

while D' is (e, §)-similar to D for F' do
choose t € D’ according to Psei(t | CT)
choose t' € Var(t) according to Pyar(t' | CT)
D' = (D'\{t}) U {t'}

end while

return D’

— In one step we only consider modifications with edit distance one. That is,
only one attribute-value is changed in one tuple. This set of variants of ¢ is
denoted by Var(t).

— Both the selection of tuples to modify and their modification is random,

where the choice is guided by the code table.
e For the tuple selection, the probability of selecting ¢ € D, denoted by
Psei(t | CT), is defined by

_(Pet|CT)?
Palt1CT) = & pe | o))t

e The probability of selecting an alternative ¢ € Var(t), denoted by
Pyar(t'), is defined by

/!

Pt |CT) = . PE1ET)

Zt”EVar(t) P(t/ | CT)
We choose the tuple to replace at random using P, for two reasons. First,
because in this way we “disturb” the data distribution as little as possible.
Second, if we only attempt to replace tuples with a large encoded size, we more
easily get stuck at a local optimum. We use P,,, to select a variant at random,
again because this disturbs the original data distribution as little as possible.

Neither of these two precautions guarantees that D’ will be (e, §)-similar to D.
They only heighten the probability that one replacement will result in a (e, d)-
similar dataset. If we would let this replacement scheme run long enough, the
resulting database would in most cases not be (¢, §)-similar to D. For example, if
t € D is unique in having the shortest encoded length, the replacement scheme,
if left to run unbounded, would converge on a dataset that only contains copies
of t. Therefore SMOOTH also checks whether D’ is still (¢, §)-similar to D.

SMOOTH is listed in algorithm [Il Apart from a dataset D and parameters €
and J, it also takes a code table CT as input.

5 Experiments

In this section we report on two sets of experiments. The first set of experiments,
on some well-known UCI dataset$d (transformed using [3]), shows that SMOOTH

2 http://archive.ics.uci.edu/ml/

http://archive.ics.uci.edu/ml/

50 A. Siebes and R. Kersten

achieves its goal. That is, it results in simpler datasets and, more importantly,
simpler models that are still good models of the original dataset.

While these experiments shed some light on how SMOOTH achieves these goals,
the second set of experiments is especially designed to do that. We take an
artificial dataset which we corrupt by noise, and by examining how SMOOTH
alters the noisy dataset we gain a deeper understanding of its doing.

In all experiments, we use KRIMP to approximate the optimal code table for
dataset D and use that as input for SMOOTH.

5.1 UCI Data

For all experiments on the UCI datasets Iris, Pageblocks, Pima, Wine, Led?7,
and TicTacToe we used € = 0.01 and a minimal support, and thus §, of 5. The
experiments were also performed with § = 1 and § = 10, but given that the
results are very similar we do not report on them here. For all experiments -
except for the classification experiments - we report the averages of 50 repeats.

The results in Table [I show

P .
Table 1. Compressed sizes for ¢ = 0.01, averaged that D" is indeed simpler than

over 50 repeats; standard deviation < 2% D. In all cases L(D',CT’)
is significantly smaller than

Dfataset L(D, CT) L(D’, CT") L(D’, CT) L(D,CT), Moreover, C'T is still
Iris 1685 1500 1572 a good code table for D', which
Pageblocks 11404 10883 11031 can be seen from the fact that
Pima 9331 8652 8864 L(D'.CT) < LID.CT) <
Wine 11038 10090 9980 L(D,CT).

Led7 30867 30664 30085 Table shows how many
TicTacToe 29004 28575 27956

changes SMOOTH made to the

original dataset before ¢ (the

measured value for €) exceeded 0.01 for the first time. Also, it shows the value of

¢ at that time. Only few changes lead to the simpler datasets shown in Table [Tl
The effects of these changes is

shown in Table Bl In that table we Table 2. The number of changes made and

compare the number of non-singleton
patterns in the code tables, the length
of these patterns, and the percentage

€ when it first exceeded 0.01, averaged over
50 repeats

of the datasets covered by these pat- D.ataset # changes ¢

terns. In all cases, the number of non- Iris 9.7+ 1.1 0.014 + 0.002

singleton item sets in C'T” is smaller P.ageblocks 81.2 & 13.7 0.016 & 0.005

than the number of of non-singleton Pupa 348 £5.0 00144 0.003

item sets in CT. At the same time, Wine 162.9 + 17.70.011 + 0.001
Led7 52.8 + 7.0 0.012 £+ 0.001

the average size of these patterns goes
up. That is, the code table has become
simpler. The database has also become

TicTacToe 279.0 + 23.8 0.011 £ 0.000

simpler, as the number of unique rows goes down. The joint effect of these two
simplifications can be seen in the last two columns: the percentage of items in

Smoothing Categorical Data 51

Table 3. Comparing the number of non-singleton patterns in the code tables, the length
of these patterns, the number of unique rows in the data sets, and the percentage of
the datasets covered by these patterns; averaged over 50 repeats

of patterns avg pattern length unique rows % of covered items

Dataset CT CT’ CT CT’ D D’ CT on D CT’ on D’
Iris 14 1334+ 06 3.4 3.7+0.1 42 356 +£0.9 91 95
Pageblocks 43 32.1 £ 1.4 83 10.3 + 0.2 72 50.5 &£ 2.4 100 100

Pima 56 48.9 =22 4.9 5.7 £ 0.2 170 157.7 + 2.1 96 97

Wine 60 53.8 3.0 3.5 3.8 +0.2 177 176.9 + 0.2 67 72

Led7 153 148.3 = 5.8 6.6 6.9 £ 0.1 326 298.8 £+ 4.2 98 99
TicTacToe 159 155.0 & 6.7 4.0 4.1 = 0.1 958 905.2 £ 6.3 90 91

the database that is covered by non-singleton item sets from the code table goes
up, although not by very much.

Both the compression results in Table [[l and the measured € value for § = 5
in Table P] indicate that D’ has a data distribution very similar to D. For an
independent verification of this claim we also performed classification experi-
ments with these code tables. The basic set-up is the same as in [§], with 25-fold
cross-validation. Each class-database was individually smoothed with SMOOTH
(e = 0.01); the test data was, of course, not smoothed. The results are in Table [l

The first observation is that for PageBlocks, Pima, Led7, and TicTacToe,
the classification results of the simplified code table are on par with those of the
original code table. Moreover, for all but Pima, these results are way above the
baseline scores (assign the tuple to the largest class). The somewhat disappoint-
ing result on Pima is caused by the fact that it has small classes that are too
small to learn well using MDL.

The second observation is
that the degradation in classifi-
cation performance is far larger
for Iris and Wine. Again this is

Table 4. Classification accuracy on independent
original data, 25-fold cross-validation.

Classification accuracy

caused by dataset size, both Iris Dataset Baseline CT T’

and Wine are small datasets. Iris 333 94.7+9.3 90.0 & 15.2

Moreover, even the degraded Pageblocks 69.8 925+ 1.5 923+ 14

scores are way above baseline. Pima 65.1 69.5+ 6.9 69.5+ 9.1
Note that these results by no Wine 39.3 91.6 4 12.0 79.9 + 21.0

means imply that SmooTH in- Led7 11.0 738 +35 741+ 3.2

duces a state-of-the-art classi- TicTacToe 65.3 87.8 £7.3 804 +384

fier. Rather, the results recon-
firm that SMOOTH yields characteristic code tables of the original dataset, i.e.,
structure is preserved.

A classification scheme based on code tables might be biased towards SMOOTH.
After all, one of the design goals of SMOOTH was not to change code tables too
much. To verify that the original data distribution is not changed too much,
we also performed these classification experiments with some well-known algo-
rithms as implemented in Weka [7]. The set-up is the same as with the SMOOTH

52

A. Siebes and R. Kersten

Table 5. Classification accuracy before and after smoothing. In all cases, ¢ = 0.01,
6 € {1,5,10}, and ‘orig’ denotes the original (non-smoothed) dataset

Dataset - ¢ C4.5
Iris-orig 92.67 £ 9.66

Iris-1 92.67 £ 9.66

Iris-5 98.00 £ 6.32

Iris-10 95.33 &+ 7.06
LedT7-orig 75.19 £ 2.90
Led7-1 75.16 + 2.83
Led7-5 75.28 £+ 4.07
Led7-10 74.94 + 3.66
Pageblocks-orig 92.64 + 1.42
Pageblocks-1 92.66 + 1.40
Pageblocks-5 92.64 + 2.14
Pageblocks-10 92.68 + 1.58
Pima-orig 74.58 + 3.76
Pima-1 74.58 + 3.76
Pima-5 74.32 £+ 6.00
Pima-10 74.84 + 7.57
TicTacToe-orig 85.21 £ 3.92
TicTacToe-1 85.00 + 6.04
TicTacToe-5 84.17 + 3.64
TicTacToe-10 81.15 + 3.91
Wine-orig 90.56 £ 6.44
Wine-1 85.56 + 9.15

Ripper

LR NB

SVM

92.67 £ 9.66 90.00 £ 13.05 94.00 £ 7.98 92.00 & 10.80
92.00 £ 9.84 94.67 £+ 6.89 92.00 £+ 10.80

94.00 £ 9.66
98.00 + 6.32
95.33 £ 7.06
72.09 £ 3.82
71.88 £ 3.14
72.31 £ 3.56
72.78 £ 4.06
92.57 £ 1.36
92.51 + 1.32
92.51 + 2.17
92.57 £ 1.64
73.29 £ 5.14
73.81 + 4.69
74.06 £ 6.42
74.06 £ 6.81
97.92 + 1.96
97.92 + 1.70
98.33 £ 1.22
97.08 + 2.29
88.89 £ 6.93
87.22 + 5.89

Wine-5 86.11 + 5.40 88.89 £ 11.11

Wine-10 82.22 £ 9.37

84.44 + 8.61

96.00 + 6.44 94.67 £ 6.89
94.67 £ 6.13 94.67 £ 6.13
75.63 £ 3.31 75.59 £+ 2.81
75.63 £ 3.32 75.50 £+ 2.90
75.59 £ 3.92 75.47 £+ 3.83
74.78 £ 4.11 75.28 £+ 4.05
92.75 £ 1.49 92.68 + 1.45
92.75 + 1.43 92.66 £ 1.47
92.69 + 2.14 92.60 £ 2.14
92.60 £ 1.65 92.66 + 1.66
72.52 £ 4.85 74.32 £ 4.70
72.39 £+ 4.93 74.19 £ 4.66
72.77 £ 6.97 74.32 £+ 6.68
73.55 £ 8.43 74.58 £ 7.17
98.02 + 2.11 70.21 £ 4.23
98.12 + 1.61 70.21 £ 4.00
97.50 £ 1.32 70.94 + 3.31
96.88 + 1.90 71.04 +£ 3.50
92.78 £ 6.95 95.00 & 4.86
93.89 £ 8.47 95.00 £ 4.86
91.11 £+ 7.94 93.89 £ 4.10

94.67 £ 7.57
94.67 + 6.13
75.91 £ 2.94
75.91 £ 2.96
75.75 £ 4.01
75.38 £ 4.11
91.91 £ 1.67
91.91 + 1.68
91.80 £+ 2.30
91.82 £ 1.60
73.55 £ 5.82
73.68 £ 5.79
73.68 £ 6.22
73.16 £ 7.32
87.71 + 4.39
87.08 £ 3.78
84.90 £ 4.34
82.92 + 3.71
87.78 £ 5.74
91.11 £ 5.97
88.33 £ 7.15

91.67 £ 6.00 93.89 £ 8.05 87.78 £ 10.08

based classification, that is we did 25-fold cross-validation, running SMOOTH on
each train set, while, again, the test set was not smoothed. Table [6l shows the
results for C4.5, Ripper, Logistic Regression, Naive Bayes, and Support Vector
Machines, each with their default settings in Weka.

The important observation is that the accuracy doesn’t change significantly
when the dataset is smoothed. Whether § is set to 1, 5, or 10, the difference in
accuracy is not significantly different from the baseline; where the baseline is the
accuracy of the algorithm on the original (non-smoothed) dataset. This is true
for the rule-based classifiers C4.5 and Ripper, for the instance-based classifier
NB, for the traditional statistical classifier Logistic Regression, and for the SVM
classifier. None of these classifiers detects a significant difference between the
original data distribution and the smoothed data distribution.

There is one notable exception to this observation: C4.5 on Wine. There we
see a notable, significant, drop in accuracy. While inspecting the resulting trees,
we noticed serious overfitting. Using the default settings only takes you so far.

A natural question with these results is: do the other classifiers also become
simpler on the smoothed datasets? While this was not a design goal for SMOOTH -
after all, it is a model-driven approach - we inspected this for the Ripper results.

Smoothing Categorical Data 53

The average number of rules goes down while the average length of the rules
goes up slightly. This is very similar to the changes we encountered earlier for
the code table elements, which also became fewer and longer.

5.2 Artificial Data

The results of the previous subsection already show some of SMOOTH’s effects,
but even more insight can be gained when we know the ideal result beforehand.

For this, we created an artificial dataset as follows. We generated 50 unique
tuples randomly (over 7 attributes, each with a domain from 4 to 18 values).
Each of these 50 tuples was duplicated between 10 and 30 times randomly, such
that the end result was a dataset with 1000 tuples. This is the Clean dataset. We
then ran KRIMP on Clean (with min-sup=1), and the result was - unsurprisingly
- a code table with 50 item sets, one for each unique tuple in Clean.

For the experiments, we randomly replace items in the dataset with others (of
course, while still adhering to the attributes’ domains). The items to be replaced
are chosen uniformly. We vary the amount of error to investigate the smoothing
capability of SMOOTH in comparison to the amount of noise in the data.

Note that we do not perform this

0 experiment to show that SMOOTH
S is good at removing noise. After

—— DE(db, clean(db, epsilon = 0.01)) : 1
oxt ot et 01 all, data points that are consid-

ered noise in one setting may be

considered perfectly valid data in

another setting. However, in our
o ~/ artificial setting mnoise and local
structure happen to coincide and
we know exactly what the noise is.
Hence, we here use SMOOTH as a
noise remover, because it allows us
to investigate how it removes local
structure.

With this proviso, SMOOTH is
run to try to “clean up” the data.
The parameters are: 6 = 1, and
€ = 0.01 and 0.1 respectively. The
algorithm is automatically stopped
after 1000 iterations, because for low amounts of error added, epsilon can never
even attain 0.01; for larger amounts of noise it can, of course. Performance is
measured by comparing the noisy and smoothed datasets to the original Clean
dataset in three different ways.

The first measure is simply the measured epsilon, i.e. €, for 6 = 1. This to
make sure we can see the ‘noise’ being added and subsequently removed. The
obtained measurements are graphed in Figure Bl Results are depicted for three
more or less noisy datasets, the first being the noisy dataset itself. Obviously,
this has consistently the highest é. The other two datasets are smoothed versions

0 5 10 15 20 25 30 35 40 45 S0 55 60 65 70 75 8 8 90 95

Fig. 2. The x-axis depicts the number of er-
rors made on Clean, the y-axis gives €, i.e, the
probability of an error larger than ¢

54 A. Siebes and R. Kersten

49

a8

a7

5 0
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 8 90 95 0 5 10 15 20 25 30 35 40 45 S0 55 60 65 70 75 80 8 90 95

Fig. 3. In the figure on the left |CT' NCT]| is graphed for various datasets. In the figure
on the right |CT’ — CT| is graphed for the same datasets. In both, the x-axis depicts
the number of errors made on Clean.

of the noisy dataset, with € set to 0.01 resp. 0.1. Note that the e parameter is
set with regard to the noisy dataset and thus determines how far SMOOTH can
go away from the noisy dataset. The two graphs show that SMOOTH uses this
extra wriggle-room to get closer to the Clean dataset: the graph for e = 0.1 is
consistently better than the graph for e = 0.01.

Note, however, that the algorithm is not able to drop € on the cleaned dataset
to 0, even if é between the clean and the cluttered dataset is less than the €
parameter. This is because there is always a chance that the algorithm will
select and adjust a row with no noise on it. However, the difference between
the low chance of adjusting a clean row in a bad way and the high chance of
adjusting a noisy row in a good way ensures that € will still drop significantly;
in Figure 2 the error is halved!

In Figure B] the other two measures are graphed, both versus the number of
errors on Clean across different datasets. The left figure depicts the number of
the original patterns left (50 is ideal). This is the part of the original structure
that can still be seen in CT” and we denote this by |CT' N CT|. The right figure
depicts the number of wrongfully added patterns in C'T’. These patterns are
present in CT’ but not in CT; they clutter up the code table and therefore
obscure the true structure in the data. We denote this measure by |CT" — CT).

Firstly note that adding more noise to the data will cause more of the good
patterns to be ‘broken up’ into smaller patterns. Therefore |CT' N CT| drops
and |CT' — CT)| rises. Secondly note that increasing the minimal support, i.e,
6, will filter those smaller patterns out. These patterns are simply not frequent
enough and thus they cannot end-up in the code table. But for this reason, we
also cannot recover the patterns in the Clean dataset that were lost, as can be
seen in the left figure. As in Figure Bl ¢ = 0.1 outperforms ¢ = 0.01 for both
measures and for the same reason: SMOOTH needs some leeway to remove the
unwanted, local structure.

Smoothing Categorical Data 55

6 Discussion

The reason to introduce the SMOOTH algorithm was to smooth the local structure
from the data while retaining the global structure, such that a simpler, but still
characteristic, code table could be mined from this smoothed dataset. The results
from the previous section show that that goal has been reached.

Firstly, both the code table and the database get simpler when SMOOTH is
applied. This is, e.g., clear from Table Bl The new code table has fewer, larger,
item sets and the dataset has fewer unique tuples. Moreover, the new code table
describes the structure of the new database better for a larger number of items is
covered by non-singleton item sets. This latter fact is also witnessed by Table[I]
as C'T’ compresses D’ better than CT compresses D.

Secondly, D’ - and thus CT’ - retains important structure from D. This is,
again, witnessed by Table[Ilt CT compresses D’ better than D. Moreover, Table[2]
shows that SMOOTH achieves these goals for a modest epsilon, implying that D
and D’ are almost indistinguishable. Further witness that D and CT’ retain
the important structure in D and CT is given by Table @ and Table Bl Both
show that training on D and D’ leads to classifiers statistically indistinguishable
on an independent test from D, for a wide variety of classification algorithms!
Moreover, Table @l shows that CT” retains the important structure in D, for CT"
is almost as good as CT in classifying tuples from the original distribution D.

Finally, SMOOTH achieves these results by removing local structure. Figure
shows this very well. For a dataset with 10% noise, SMOOTH with ¢ = 0.1 (mea-
sured against the noisy dataset) achieves ¢ = 0.1 with regard to the Clean
dataset. The number of errors with regard to the Clean dataset is halved!

An even stronger witness for the claim that large scale structure is retained
while local structure is removed is given by Figure Bl These two graphs show
firstly that SMOOTH not only retains global structure, it even recovers structure
that is present in the original dataset, but not visible in the corrupted dataset.
Secondly, these graphs show that local structure is indeed removed, as the num-
ber of wrongfully added patterns goes down.

So, SMOOTH achieves its results very well. The reader might, however, wonder
if these results couldn’t be achieved easier. One easier way is to simply mine with
a larger minimal support, after all the large scale structure is mostly given by
(very) frequent item sets. Unfortunately, this doesn’t work. Figure Bl shows that
a higher minimal support means that fewer original patterns are recovered; we
may miss large scale structure that is obfuscated by local structure.

If concentrating on (very) frequent item sets doesn’t work, a second simpler
strategy might seem to concentrate on item sets with a high usage. That is,
simply smooth out the low usage patterns from the code table by modifying
only tuples with a large code size. In fact, this strategy suffers from the same
problem as the first alternative; Figure Bl shows that original large scale structure
may be obfuscated by low usage item sets.

Note that the latter observations also illustrate the importance of the problem
solved in this paper: if we do not smooth the data, there may be large scale
structure in the data that is simply not apparent from the code table.

56 A. Siebes and R. Kersten
7 Related Work

Data smoothing is a research area with a rich history in areas such as statistics
and image processing, but also in e.g. signal processing where it is known as
filtering. Giving an overview of this vast field is far outside the scope of this
paper. A good introductory book from the viewpoint of Statistics is [14].

Smoothing usually refers to continues operations. If the data is real valued,
smoothing is often performed by convoluting the data with some distribution.
Even if the data is discrete (but still numerical), convolution is often the weapon
of choice. For ordered categorical data, a Poisson regression model with log-
likelihood may be used [12]. We are not aware of any papers that address general
categorical data and/or take an approach similar to ours. The big difference is
that convolution — and regression — always involve all data, where there may be
many transactions in a dataset that SMOOTH doesn’t even touch.

Within the field of pattern mining, our approach is related to fault tolerant
patterns [9]. Roughly speaking, these are patterns which with some small mod-
ifications to the data would get a larger support. We do discover such patterns,
that is what the modifications that SMOOTH makes to the database imply. There
is, however, a large difference in aim. Fault tolerant pattern miners want to find
all fault tolerant patterns. We want to discover the global structure of the data
and discover some fault tolerant patterns as a by product.

In our own research, our paper on missing data [I3] is related to this paper.
In there we design three algorithms that complete a database with missing data.
Like SMOOTH, these algorithms use a probability distribution on variants. There
is one major difference, though. With missing data, one knows exactly where
the problem is. Thus, the imputation algorithms introduced in [13] do not have
to select ”which tuples to modify where” and can run until convergence. In the
current case, unfortunately, we do not know where the problem is. Only by slowly
massaging the data do we discover its, sometimes hidden, large scale structure.

Related in goal, but not algorithmically is our introduction of a structure
function in [10]. In that paper we introduce a series of models that capture ever
finer details of the data distribution. The first model looks at a very coarse
scale, while the final model looks at a very fine scale. The major difference with
SMOOTH is that in [I0] the dataset is not changed. This means that the structure
function approach will not uncover structure which is hidden by noise. That is,
while SMOOTH is — to a certain level — able to reconstruct the original dataset
from a corrupted variant, the structure function of [I0] is not able to do that.

8 Conclusions

The observation that triggered the research reported on in this paper is that it
is often hard to understand the large scale structure of the data from a model.
The approach we take is that we smooth the local structure from the dataset —
guided by the model — while retaining the large scale structure. A model induced
from this smoothed dataset reflects the large scale structure of the original data.

Smoothing Categorical Data 57

While smoothing is a well known for numerical and ordered data, this paper
introduces a smoothing algorithm, called SMOOTH, for categorical data.

SMOOTH uses code tables such as, e.g., generated by KRIMP to smooth the
data. It smoothes the data by gradually modifying tuples in the database. While
smoothing it ensures that the large scale structure is maintained, i.e., that the
support of most frequent item sets remains the same. At the same time it ensures
that the data set becomes simpler, i.e., that it compresses better.

The experiments show that SMOOTH works well. Both the smoothed data set
and its code table are simpler than the originals. Moreover, both datasets give
more or less the same support to most item sets. Hence, both datasets have
more or less the same structure. This is further corroborated by the fact that
the original dataset and the smoothed dataset lead to equally good classifiers for
an independent test set of the original(!) dataset. This observation was shown
to hold for a large variety of classification algorithms.

Finally, experiments on artificial data, for which we know the ideal outcome,
show that SMOOTH does what it is supposed to do. The large scale structure
is retained while local structure is removed. Even if the large scale structure is
hidden by local structure it may be recovered by SMOOTH.

References

1. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery
of association rules. In: Advances in Knowledge Discovery and Data Mining, pp.
307-328. AAAT (1996)

Agresti, A.: Categorical Data Analysis, 2nd edn. Wiley (2002)

Coenen, F.: The LUCS-KDD discretised /normalised (C)ARM data library (2003)

Cover, T., Thomas, J.: Elements of Information Theory, 2nd edn. Wiley (2006)

Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning

and an application to boosting. Journal of Computer and System Sciences 55(1),

119-139 (1997)

6. Griinwald, P.D.: Minimum description length tutorial. In: Griinwald, P., Myung,
I. (eds.) Advances in Minimum Description Length. MIT Press (2005)

7. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: Weka
data mining software: An update. SIGKDD Explorations 11 (2009)

8. van Leeuwen, M., Vreeken, J., Siebes, A.: Compression Picks Item Sets That Mat-
ter. In: Fiirnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS
(LNAI), vol. 4213, pp. 585-592. Springer, Heidelberg (2006)

9. Pei, J., Tung, A.K.H., Han, J.: Fault tolerant pattern mining: Problems and chal-
lenges. In: DMKD (2001)

10. Siebes, A., Kersten, R.: A structure function for transaction data. In: Proc. STAM
Conf. on Data Mining (2011)

11. Siebes, A., Vreeken, J., van Leeuwen, M.: Ttem sets that compress. In: Proc. STAM
Conf. Data Mining, pp. 393-404 (2006)

12. Simonoff, J.S.: Three sides of smoothing: Categorical data smoothing, nonpara-
metric regression, and density estimation. International Statistical Reviews /Revue
Internationale de Statistique 66(2), 137-156 (1998)

13. Vreeken, J., Siebes, A.: Filling in the blanks - krimp minimization for missing data.
In: Proceedings of the IEEE International Conference on Data Mining (2008)

14. Wand, M., Jones, M.: Kernel Smoothing. Chapman & Hall (1994)

Al

	Smoothing Categorical Data

	Introduction
	Preliminaries
	Data and Patterns
	Introducing Krimp

	The Problem
	Formalising the Problem

	Introducing Smooth
	Experiments
	UCI Data
	Artificial Data

	Discussion
	Related Work
	Conclusions
	References

