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Abstract. The tasks of extracting (top-K) Frequent Itemsets (FI’s) and Associa-
tion Rules (AR’s) are fundamental primitives in data mining and database appli-
cations. Exact algorithms for these problems exist and are widely used, but their
running time is hindered by the need of scanning the entire dataset, possibly mul-
tiple times. High quality approximations of FI’s and AR’s are sufficient for most
practical uses, and a number of recent works explored the application of sam-
pling for fast discovery of approximate solutions to the problems. However, these
works do not provide satisfactory performance guarantees on the quality of the
approximation, due to the difficulty of bounding the probability of under- or over-
sampling any one of an unknown number of frequent itemsets. In this work we
circumvent this issue by applying the statistical concept of Vapnik-Chervonenkis
(VC) dimension to develop a novel technique for providing tight bounds on the
sample size that guarantees approximation within user-specified parameters. Our
technique applies both to absolute and to relative approximations of (top-K) FI’s
and AR’s. The resulting sample size is linearly dependent on the VC-dimension
of a range space associated with the dataset to be mined. The main theoretical
contribution of this work is a characterization of the VC-dimension of this range
space and a proof that it is upper bounded by an easy-to-compute characteris-
tic quantity of the dataset which we call d-index, namely the maximum integer
d such that the dataset contains at least d transactions of length at least d. We
show that this bound is strict for a large class of datasets. The resulting sam-
ple size for an absolute (resp. relative) (ε, δ)-approximation of the collection of
FI’s is O( 1

ε2
(d+log 1

δ
)) (resp. O( 2+ε

ε2(2−ε)θ
(d log 2+ε

(2−ε)θ
+log 1

δ
))) transactions,

which is a significant improvement over previous known results. We present an
extensive experimental evaluation of our technique on real and artificial datasets,
demonstrating the practicality of our methods, and showing that they achieve even
higher quality approximations than what is guaranteed by the analysis.

1 Introduction

Discovery of frequent itemsets and association rules is a fundamental computational
primitive with application in data mining (market basket analysis), databases (histogram
construction), networking (heavy hitters) and more [15, Sect. 5]. Depending on the par-
ticular application, one is interested in finding all itemsets with frequency greater or
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equal to a user defined threshold (FIs), identifying the K most frequent itemsets (top-
K), or computing all association rules (ARs) with user defined minimum support and
confidence level. Exact solutions to these problems require scanning the entire dataset,
possibly multiple times. For large datasets that do not fit in main memory, this can
be prohibitively expensive. Furthermore, such extensive computation is often unnec-
essary, since high quality approximation are sufficient for most practical applications.
Indeed, a number of recent papers [4, 6, 7, 9, 10, 12, 13, 17–22, 25, 27–30, 32, 33, 36–
41] explored the application of sampling for approximate solutions to these problems.
However, the efficiency and practicality of the sampling approach depends on a tight
relation between the size of the sample and the quality of the resulting approximation.
Previous works do not provide satisfactory solutions to this problem.

The technical difficulty in analyzing any sampling technique for frequent itemsets
discovery problems is that a-priori any subset of items can be among the most frequent
ones, and the number of subsets is exponential in the number of distinct items appearing
in the dataset. A standard analysis begins with a bound on the probability that a given
itemset is either over or under represented in the sample. Such bound is easy to obtain
using a Chernoff-like bound or the Central Limit theorem. The difficulty is in combin-
ing the bounds for individual itemsets into a global bound that holds simultaneously for
all the itemsets. A simple application of the union bound vastly overestimates the error
probability because of the large number of possible itemsets, a large fraction of which
may not be present in the dataset and therefore should not be considered. More sophis-
ticated techniques, developed in recent works [6, 12, 29], give better bounds only in
limited cases. A loose bound on the required sample size for achieving the user defined
performance guarantees, decreases the gain obtained from the use of sampling.

In this work we circumvent this problem through a novel application of the Vapnik-
Chervonenkis (VC) dimension concept, a fundamental tool in statistical learning theory.
Roughly speaking, the VC-dimension of a collection of indicator functions (a range
space) is a measure of its complexity or expressiveness (see Sect. 2.2 for formal defini-
tions). A major result [35] relates the VC-dimension of a range space to the sufficient
size for a random sample to simultaneously approximate all the indicator functions
within predefined parameters. The main obstacle in applying the VC-dimension theory
to particular computation problems is computing the VC-dimension of the range spaces
associated with these problems.

We apply the VC-dimension theory to frequent itemsets problems by viewing the
presence of an itemset in a transaction as the outcome of an indicator function associ-
ated with the itemset. The major theoretical contributions of our work are a complete
caractherization of the VC-dimension of the range space associated with a dataset, and
a tight bound to this quantity. We prove that the VC-dimension is upper bounded by an
easy-to-compute characteristic quantity of the dataset which we call d-index, namely,
the maximum integer d such that the dataset contains at least d transactions of length at
least d. We show that this bound is tight by demonstrating a large class of datasets with
a VC-dimension that matches the bound.

The VC-dimension approach provides a unified tool for analyzing the various fre-
quent itemsets and association rules problems (i.e., the market basket analysis tasks).
We use it to prove tight bounds on the required sample size for extracting FI’s with a
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minimum frequency threshold, for mining the top-K FI’s, and for computing the col-
lection of AR’s with minimum frequency and confidence thresholds. Furthermore, we
compute bounds for both absolute and relative approximations (see Sec 2.1 for defi-
nitions). We show that high quality approximations can be obtained by mining a very
small random sample of the dataset. For example, the required sample size for an ab-
solute (ε, δ)-approximation of the collection of FI’s is O( 1

ε2 (d + log 1
δ )) transactions,

which is a significant improvement over previous known results, as it is smaller and,
more importantly, less dependent on parameters such as the minimum frequency thresh-
old and the dataset size. Similar results are proven for the top-K FI’s and AR’s tasks.

We present an extensive experimental evaluation of our method using real and artifi-
cial datasets, to assess the practicality of our approach. The experimental results show
that indeed our method achieves, and even exceeds, the analytically proven guarantees
for the quality of the approximations.

1.1 Previous Work

Agrawal et al. [1] introduced the problem of mining association rules in the basket
data model, formalizing a fundamental task of information extraction in large datasets.
Almost any known algorithm for the problem starts by solving a FI’s problem and
then generate the association rules implied by these frequent itemsets. Agrawal and
Srikant [2] presented Apriori, the most well-known algorithm for mining FI’s, and Fast-
GenRules for computing association rules from a set of itemsets. Various ideas for im-
proving the efficiency of FI’s and AR’s algorithms have been studied, and we refer the
reader to the survey by Ceglar and Roddick [5] for a good presentation of recent con-
tributions. However, the running times of all known algorithms heavily depend on the
size of the dataset.

Mannila et al. [27] first suggested the idea that sampling can be used to efficiently
obtain the collection of FI’s, presenting some empirical results to validate the intuition.
Toivonen [33] presents an algorithm that, by mining a random sample of the dataset,
builds a candidate set of frequent itemsets which contains all the frequent itemsets with
a probability that depends on the sample size. There are no guarantees that that all item-
sets in the candidate set are frequent, but the set of candidates can be used to efficiently
identify the set of frequent itemsets with at most two passes over the entire dataset. The
work also suggests a bound on the sample size sufficient to ensure that the frequencies
of itemsets in the sample are close to their real one. The analysis uses Chernoff bounds
and the union bound. The major drawback of this sample size is that it depends linearly
on the number of individual items appearing in the dataset.

Zaki et al. [39] show that static sampling is an efficient way to mine a dataset, but
choosing the sample size using Chernoff bounds is too conservative, in the sense that
it is possible to obtain the same accuracy and confidence in the approximate results at
smaller sizes than what the theoretical analysis suggested.

Other works tried to improve the bound to the sample size by using different tech-
niques from statistic and probability theory like the central limit theorem [19, 22, 40]
or hybrid Chernoff bounds [41].

Since theoretically-derived bounds to the sample size where too loose to be useful, a
corpus of works applied progressive sampling to extract FI’s [4, 7, 9, 10, 12, 17, 18, 20,
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21, 25, 28, 38]. Progressive sampling algorithms work by selecting a random sample
and then trimming or enriching it by removing or adding new sampled transactions ac-
cording to a heuristic or a self-similarity measure that is fast to evaluate, until a suitable
stopping condition is satisfied. The major downside of this approach is that it offers no
guarantees on the quality of the obtained results.

Another approach to estimating the required sample size is presented in [13]. The
authors give an algorithm that studies the distribution of frequencies of the itemsets
and uses this information to fix a sample size for mining frequent itemsets, but without
offering any theoretical guarantee.

A recent work by Chakaravarthy et al. [6] gives the first analytical bound on a sample
size that is linear in the length of the longest transaction, rather than in the number of
items in the dataset. This work is also the first to present an algorithm that uses a random
sample of the dataset to mine approximated solutions to the AR’s problem with quality
guarantees. No experimental evaluation of their methods is presented, and they do not
address the top-K FI’s problem. Our approach gives better bounds for the problems
studied in [6] and applies to related problems such as the discovery of top-K FI’s and
absolute approximations.

Extracting the collection of top-K frequent itemsets is a more difficult task since the
corresponding minimum frequency threshold is not known in advance [11, 14]. Some
works solved the problem by looking at closed top-K frequent itemsets, a concise repre-
sentation of the collection [30, 37], but they suffers from the same scalability problems
as the algorithms for exactly mining FI’s with a fixed minimum frequency threshold.

Previous works that used sampling to approximation the collection of top-K FI’s [29,
32] used progressive sampling. Both works provide (similar) theoretical guarantees on
the quality of the approximation. What is more interesting to us, both works present a
theoretical upper bound to the sample size needed to compute such an approximation.
The size depended linearly on the number of items. In contrast, our results give a sample
size that only in the worst case is linear in the number of items but can be (and is, in
practical cases) much less than that, depending on the dataset, a flexibility not provided
by previous contributions. Sampling is used by Vasudevan and Vojonović [36] to extract
an approximation of the top-K frequent individual items from a sequence of items,
which contains no item whose actual frequency is less than fK−ε for a fixed 0 < ε < 1,
where fK is the actual frequency of the K-th most frequent item. They derive a sample
size sufficient to achieve this result, but they assume the knowledge of fK , which is
rarely the case. An empirical sequential method can be used to estimate the right sample
size. Moreover, the results cannot be directly extended to the mining of top-K frequent
item(set)s from datasets of transactions with length greater than one.

1.2 Our Contributions

By applying tools from statistical learning theory, we develop a general technique
for bounding the sample size required for generating high quality approximations to
frequent itemsets and association rules tasks. Table 1 compares our technique to the
best previously known results for the various problems (see Sect. 2.1 for definitions).
Our bounds, which are linear in the VC-dimension associated with the dataset, are
consistently smaller and less dependent on other parameters of the problem than
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Table 1. Required sample sizes (as number of transactions) as a function of the VC-dimension d,
the maximum transaction size Δ, the number of items |I|, the accuracy ε, the failure probability
δ, the minimum frequency θ, and the minimum confidence γ. Note that d ≤ Δ ≤ |I|.

Task Approx. This work Best previous work

FI’s
absolute 4c

ε2

(
d+ log 1

δ

)
O
(

1
ε2

(|I| + log 1
δ

))
[19, 22, 33, 40]

relative 4(2+ε)c

ε2(2−ε)θ

(
d log 2+ε

θ(2−ε)
+ log 1

δ

)
24

ε2(1−ε)θ

(
Δ+ 5 + log 4

(1−ε)θδ

)
[6]

top-K
absolute 16c

ε2

(
d+ log 1

δ

)
O
(

1
ε2

(|I|+ log 1
δ

))
[29, 32]

relative 4(2+ε)c
ε2(2−ε)θ

(
d log 2+ε

θ(2−ε)
+ log 1

δ

)
not available

AR’s
absolute O

(
(1+ε)

ε2(1−ε)θ

(
d log 1+ε

θ(1−ε)
+ log 1

δ

))
not available

relative 16c(4+ε)

ε2(4−ε)θ

(
d log 4+ε

θ(4−ε)
+ log 1

δ

)
48

ε2(1−ε)θ

(
Δ+ 5 + log 4

(1−ε)θδ

)
[6]

previous results. An extensive experimental evaluation demonstrates the advantage of
our technique in practice.

To the best of our knowledge, our work is the first to provide a caractherization
and an explicit bound for the VC-dimension of the range space associated to a dataset
and to apply the result to the extraction of FI’s and AR’s from random sample of the
dataset. We believe that this connection with statistical learning theory can be furtherly
exploited in other data mining problems.

We also believe that our approach can be applied not just to mining collections of
frequent itemsets and association rules, which can be massive, but also to the mining of
small collections of itemsets/association rules that describe the dataset with the minimal
number of itemsets/association rules possible, as presented in [26].

Outline. In Sect. 2 we formally define the problem and our goals, and introduce defini-
tions and lemmas used in the analysis. The main part of the analysis with derivation of a
strict bound to the VC-dimension of association rules is presented in Sect. 3, while our
algorithms and sample sizes for mining FI’s, top-K FI’s, and association rules through
sampling are in Sect. 4. Section 5 contains an extensive experimental evaluation of our
techniques. Due to space constraints, the proofs of our theorems and lemmas are not
presented in this paper. We refer the interested reader to the full version [31].

2 Preliminaries

2.1 Datasets, Itemsets, and Association Rules

A dataset D is a collection of transactions, where each transaction τ is a subset of
a ground set I. There can be multiple identical transactions in D. Members of I are
called items and members of 2I are called itemsets. Let |τ | denote the number of items
in transaction τ . Given an itemset A ∈ 2I , let TD(A) denote the set of transactions in
D that contain A. The support of A, σD(A) = |TD(A)|, is the number of transaction
in D that contains A, and the frequency of A, fD(A) = |TD(A)|

|D| , is the fraction of
transactions in D that contain A.
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Definition 1. Given a minimum frequency threshold θ, 0 < θ ≤ 1, the FI’s mining
task with respect to θ is finding all itemsets with frequency ≥ θ, i.e., the set

FI(D, I, θ) = {(A, fD(A)) : A ∈ 2I and fD(A) ≥ θ}.
To define the collection of top-K FI’s, we assume a fixed canonical ordering of the
itemsets in 2I by decreasing frequency in D, with ties broken arbitrarily, and label the
itemsets A1, A2, . . . , Am according to this ordering. For a given K , with 1 ≤ K ≤ m,
we denote with f

(K)
D the frequency fD(AK) of the K-th most frequent itemset AK ,

and define the set of top-K FI’s (with their respective frequencies) as

TOPK(D, I,K) = FI(D, I, f (K)
D ).

One of the main uses of frequent itemsets is in the discovery of association rules.

Definition 2. An association rule W is an expression “A ⇒ B” where A and B are
itemsets such that A ∩ B = ∅. The support σD(W ) (resp. frequency fD(W )) of the
association rule W is the support (resp. frequency) of the itemset A∪B. The confidence
cD(W ) of W is the ratio fD(A∪B)

fD(A) of the frequency of A ∪B to the frequency of A.

Intuitively, an association rule “A ⇒ B” expresses, throught its support and confidence,
how likely it is for the itemset B to appear in the same transactions as itemset A, so that
when A is found in a transaction it is then possible to infer that B will be present in the
same transaction with a probability equal to the confidence of the association rule.

Definition 3. Given a dataset D with transactions built on a ground set I, and given a
minimum frequency threshold θ and a minimum confidence threshold γ, the AR’s task
with respect to θ and γ consist in finding the set

AR(D, I, θ, γ) = {(W, fD(W ), cD(W )) | Assoc. Rule W, fD(W ) ≥ θ, cD(W ) ≥ γ}.
Often, with an abuse of the notation, we will say that an itemset A (resp. an association
rule W ) is in FI(D, I, θ) or in TOPK(D, I,K) (resp. in AR(D, I, θ, γ)) and denote
this fact with A ∈ FI(D, I, θ) or A ∈ TOPK(D, I,K) (resp. W ∈ AR(D, I, θ, γ)),
meaning that there is a pair (A, f) ∈ FI(D, I, θ) or (A, f) ∈ TOPK(D, I,K) (resp. a
triplet (W, fw, cw) ∈ AR(D, I, θ, γ)).

In this work we are interested in extracting absolute and relative approximations of
the sets FI(D, I, θ), TOPK(D, I,K) and AR(D, I, θ, γ).
Definition 4. Given a parameter εabs (resp. εrel), an absolute εabs-close approximation
(resp. a relative εrel-close approximation) of FI(D, I, θ) is a set C = {(A, fA) : A ∈
2I , fA ∈ [0, 1]} of pairs (A, fA) where fA approximates fD(A). C is such that:

1. C contains all itemsets appearing in FI(D, I, θ);
2. C contains no itemset A with frequency fD(A) < θ − εabs (resp. fD(A) < (1 −

εrel)θ);
3. For every pair (A, fA) ∈ C, it holds |fD(A) − fA| ≤ εabs (resp. |fD(A) − fA| ≤

εrelfD(A)).
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This definition extends easily to the case of top-K frequent itemsets mining using the

equivalence TOPK(D, I,K) = FI
(
D, I, f (K)

D
)

: an absolute (resp. relative) ε-close

approximation to FI
(
D, I, f (K)

D
)

is an absolute (resp. relative) ε-close approximation

to TOPK(D, I,K).
For the case of association rules, we have the following definition.

Definition 5. Given a parameter εabs (resp. εrel), an absolute εabs-close approximation
(resp. a relative εrel-close approximation) of AR(D, I, θ, γ) is a set

C = {(W, fW , cW ) : association rule W, fW ∈ [0, 1], cW ∈ [0, 1]}
of triplets (W, fW , cW ) where fW and cW approximate fD(W ) and cD(W ) respec-
tively. C is such that:

1. C contains all association rules appearing in AR(D, I, θ, γ);
2. C contains no association rule W with frequency fD(W ) < θ−εabs (resp. fD(W )

< (1− εrel)θ);
3. For every triplet (W, fW , cW ) ∈ C, it holds |fD(W )−fW | ≤ εabs (resp. |fD(W )−

fW | ≤ εrelθ).
4. C contains no association rule W with confidence cD(W ) < γ − εabs (resp.

cD(W ) < (1− εrel)γ);
5. For every triplet (W, fW , cW ) ∈ C, it holds |cD(W )−cW | ≤ εabs (resp. |cD(W )−

cW | ≤ εrelcD(W )).

Note that the definition of relative ε-close approximation to FI(D, I, θ) (resp. to AR
(D, I, θ, γ)) is more stringent than the definition of ε-close solution to frequent itemset
mining (resp. association rule mining) in [6, Sect. 3]. Specifically, we require an ap-
proximation of the frequencies (and confidences) in addition to the approximation of
the collection of itemsets or association rules (property 3 in Def. 4 and properties 3 and
5 in Def. 5).

2.2 VC-Dimension

The Vapnik-Chernovenkis (VC) Dimension of a space of points is a measure of the
complexity or expressiveness of a family of indicator functions (or equivalently a family
of subsets) defined on that space [35]. A finite bound on the VC-dimension of a structure
implies a bound on the number of random samples required for approximately learning
that structure. We outline here some basic definitions and results and refer the reader to
the works of Alon and Spencer [3, Sect. 14.4], Chazelle [8, Chap. 4], and Vapnik [34]
for more details on VC-dimension.

VC-dimension is defined on range spaces:

Definition 6. A range space is a pair (X,R) where X is a (finite or infinite) set and R
is a (finite or infinite) family of subsets of X . The members of X are called points and
those of R are called ranges.

To define the VC-dimension of a range space we consider the projection of the ranges
into a set of points:
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Definition 7. Let (X,R) be a range space and A ⊂ X . The projection of R on A is
defined as PR(A) = {r ∩ A : r ∈ R}.

The definition of shattered set will be heavily used in our proofs:

Definition 8. Let (X,R) be a range space and A ⊂ X . If PR(A) = 2A, then A is said
to be shattered by R.

The VC-dimension of a range space is the cardinality of the largest set shattered by the
space:

Definition 9. Let S = (X,R) be a range space. The Vapnik-Chervonenkis dimension
(or VC-dimension) of S, denoted as VC(S) is the maximum cardinality of a shattered
subset of X . If there are arbitrary large shattered subsets, then VC(S) = ∞.

The main application of VC-dimension in statistics and learning theory is its relation
to the size of the sample needed to approximate learning the ranges, in the following
sense.

Definition 10. Let (X,R) be a range space and let A be a finite subset of X .

1. For 0 < ε < 1, a subset B ⊂ A is an ε-approximation for A if ∀r ∈ R, we have
∣∣∣∣
|A ∩ r|
|A| − |B ∩ r|

|B|
∣∣∣∣ ≤ ε. (1)

2. For 0 < p, ε < 1, a subset B ⊂ A is a relative (p, ε)-approximation for A if for

any range r ∈ R such that |A∩r|
|A| ≥ p we have

∣∣∣ |A∩r|
|A| − |B∩r|

|B|
∣∣∣ ≤ ε |A∩r|

|A| and for

any range r ∈ R such that |A∩r|
|A| < p we have |B∩r|

|B| ≤ (1 + ε)p.

An ε-approximation (resp. a relative (p, ε)-approximation) can be constructed by ran-
dom sampling points of the point space [16, Thm. 2.12 (resp. 2.11)].

Theorem 1. There is an absolute positive constant c (resp. c′) such that if (X,R) is a
range-space of VC-dimension at most d, A ⊂ X is a finite subset and 0 < ε, δ < 1
(resp. and 0 < p < 1), then a random subset B ⊂ A of cardinality m, where

m ≥ min

{
|A|, c

ε2

(
d+ log

1

δ

)}
, (2)

(resp. m ≥ min
{
|A|, c′

ε2p

(
d log 1

p + log 1
δ

)}
) is an ε-approximation (resp. a relative

(p, ε)-approximation) for A with probability at least 1− δ.

Note that throughout the work we assume the sample to be drawn with replacement if
m < |A| (othewise the sample is exactly the set A). Löffler and Phillips [24] showed
experimentally that the absolute constant c is approximately 0.5. It is also interesting to
note that an ε-approximation of size O( d

ε2 log
d
ε ) can be built deterministically in time

O(d3d( 1
ε2 log

d
ε )

d|X |) [8].
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3 The Dataset’s Range Space and Its VC-Dimension

We define one range space that is used in the derivation of the sample sizes needed to
approximate the solutions to the tasks of market basket analysis.

Definition 11. Let D be a dataset of transactions that are subsets of a ground set I. We
define S = (X,R) to be a range space associated with D such that:

1. X = D is the set of transactions in the dataset.
2. R = {TD(W ) | W ⊆ I} is a family of sets of transactions such that for each

itemset W ⊆ I, the set TD(W ) = {τ ∈ D |W ⊆ τ} of all transactions containing
W is an element of R.

Theorem 2. Let D be a dataset and let S = (X,R) be the associated range space. Let
d ∈ N. Then VC(S) ≥ d if and only if there exists a set A ⊆ D of d transactions from
D such that for each subset B ⊆ A of A, there exists an itemset IB such that 1) all
transactions in B contain IB and 2) no transaction ρ ∈ A \ B contains IB .

Corollary 1. Let D be a dataset and S = (D, R) be the corresponding range space.
Then, the VC-Dimension VC(S) of S, is the maximum integer d such that there is a set
A ⊆ D of d transactions from D such that for each subset B ⊆ A of A, there exists an
itemset IB such that 1) all transactions in B contain IB and 2) no transaction ρ ∈ A\B
contains IB .

Computing the exact VC-dimension of a dataset is extremely expensive from a compu-
tational point of view. This does not come as a suprise, as it is known that computing the
VC-dimension of a range space (X,R) can take time O(|R||X |log |R|) [23, Thm. 4.1].
It is instead possible to give an upper bound to the VC-dimension of a dataset, and a
procedure to efficiently compute the bound.

Definition 12. Let D be a dataset. The d-index of a dataset is defined as the maximum
integer d such that D contains at least d transactions of length at least d.

A note of folklore: if the dataset represents the scientific publications of a given scien-
tist, with transactions corresponding to articles and items in a transaction corresponding
to the citations received by the paper, then the d-index of the dataset corresponds to the
h-index of the scientist.

The d-index d of a dataset D can be computed in one scan of the dataset and with
total memoryO(d). The scan starts with d∗ = 1 and it stores the length of the first trans-
action. At any given step the procedure stores d∗, the current estimate of d, computed
as the maximum d′ such that the the scan up to this step found at least d′ transactions
with length at least d′, and keeps a list of the sizes of the transactions longer than d′

found so far. There can be no more than d′ such transactions. As the scan proceeds, the
procedure updates d∗ and the list of transactions sizes greater than d∗.

The d-index is an upper bound to the VC-dimension of a dataset.

Theorem 3. Let D be a dataset with d-index d. Then the range space S = (X,R)
corresponding to D has VC-dimension at most d.
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This bound is strict, i.e., there are indeed datasets with VC-dimension exactly d, as
formalized by the following Theorem.

Theorem 4. There exists a dataset D with d-index d and such the corresponding range
space has VC-dimension exactly d.

The datasets built in the proof of Thm. 4 are extremely artificial. Our experiments sug-
gest that the VC-dimension of real datasets is usually much smaller than the upper
bound presented in Thm. 3.

4 Mining (top-K) Frequent Itemsets and Association Rules

We apply the VC-dimension results to constructing efficient sampling algorithms with
performance guarantees for approximating the collections of FI’s, top-K FI’s and AR’s.

4.1 Mining Frequent Itemsets

We construct bounds for the sample size needed to obtain relative/absolute ε-close ap-
proximations to the collection of FI’s. The algorithms to compute the approximations
use a standard exact FI’s mining algorithm on the sample, with an appropriately ad-
justed minimum frequency threshold, as formalized in the following lemma.

Lemma 1. Let D be a dataset with transactions built on a ground set I, and let d be
the d-index of D. Let 0 < ε, δ < 1. Let S be a random sample of D with size |S| =
min{|D|, 4c

ε2

(
d+ log 1

δ

)}, for some constant c. Then FI(S, I, θ − ε
2 ) is an absolute

ε-close approximation to FI(D, I, θ) with probability at least 1− δ.

One very interesting consequence of this result is that we do not need to know the
minimum frequency threshold θ in advance to build the sample: the properties of the
ε-approximation allow to use the same sample for any threshold and for different thresh-
olds, i.e., the sample does not need to be rebuilt if we want to mine it with a threshold θ
first and with another threshold θ′ later.

It is important to note that the VC-dimension of a dataset, and therefore the sample
size from (2) needed to probabilistically obtain an ε-approximation, is independent from
the size (number of transactions) in D and also of the size of FI(S, I, θ). It only depends
on the quantity d, which is always less or equal to the length of the longest transaction
in the dataset, which in turn is less or equal to the number of different items |I|.

To obtain a relative ε-close approximation, we need to add a dependency on θ as
shown in the following Lemma.

Lemma 2. Let D, d, ε, and δ as in Lemma 1. Let S be a random sample of D with size

|S| = min{|D|, 4(2+ε)c
ε2θ(2−ε)

(
d log 2+ε

θ(2−ε) + log 1
δ

)
}, for some constant c. Then FI(S, I,

(1 − ε
2 )θ) is a relative ε-close approximation to FI(D, I, θ) with probability at least

1− δ.
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4.2 Mining Top-K Frequent Itemsets

Given the equivalence TOPK(D, I,K) = FI(D, I, f (K)
D ), we could use the above FI’s

sampling algorithms if we had a good approximation of f (K)
D , the threshold frequency

of the top-K FI’s.
For the absolute ε-close approximation we first execute a standard top-K FI’s mining

algorithm on the sample to estimate f (K)
D and then run a standard FI’s mining algorithm

on the same sample using a minimum frequency threshold depending on our estimate
of f (K)

S . Lemma 3 formalizes this intuition.

Lemma 3. Let D, d, ε, and δ be as in Lemma 1. Let K be a positive integer. Let S be
a random sample of D with size |S| = min{|D|, 16c

ε2

(
d+ log 1

δ

)}, for some constant c,

then FI(S, I, f (K)
S − ε

2 ) is an absolute ε-close approximation to TOPK(D, I,K) with
probability at least 1− δ.

Note that as in the case of the sample size required for an absolute ε-close approxima-
tion to FI(D, I, θ), we do not need to know K in advance to compute the sample size
for obtaining an absolute ε-close approximation to TOPK(D, I,K).

Two different samples are needed for computing a relative ε-close approximation to
TOPK(D, I,K), the first one to compute a lower bound to f

(K)
D , the second to extract

the approximation. Details for this case are presented in Lemma 4.

Lemma 4. Let D, d, ε, and δ be as in Lemma 1. Let K be a positive integer. Let δ1, δ2
be two reals such that (1 − δ1)(1 − δ2) ≥ (1 − δ). Let S1 be a random sample of

D with some size |S1| = φc
ε2

(
d+ log 1

δ1

)
for some φ > 2

√
2/ε and some constant

c. If f (K)
S1

≥ 2
√
2

εφ , then let p = 2−ε
2+εθ and let S2 be a random sample of D of size

min{|D|, 4c
ε2p (d log

1
p + log 1

δ )} for some constant c. Then FI(S2, I, (1− ε/2)(f
(K)
S1

−
ε/
√
2φ)) is a relative ε-close approximation to TOPK(D, I,K) with probability at

least 1− δ.

4.3 Mining Association Rules

Our final theoretical contribution concerns the discovery of relative/absolute approxi-
mations to AR(D, I, θ, η) from a sample. Lemma 5 builds on a result from [6, Sect. 5]
and covers the relative case, while Lemma 6 deals with the absolute one.

Lemma 5. Let 0 < δ, ε, θ, γ < 1, φ = max{3, 2 − ε + 2
√
1− ε}, η = ε

φ , and

p = 1−η
1+η θ. Let D be a dataset with d-index d. Let S be a random sample of D of size

min{|D|, c
η2p (d log

1
p + log 1

δ )} for some constant c. Then AR(S, I, (1− η)θ, 1−η
1+ηγ) is

a relative ε-close approximation to AR(D, I, θ, γ) with probability at least 1− δ.

Lemma 6. Let D, d, θ, γ, ε, and δ be as in Lemma 5 and let εrel = ε
max{θ,γ} .

Fix φ = max{3, 2 − εrel + 2
√
1− εrel}, η = εrel

φ , and p = 1−η
1+η θ. Let S be a

random sample of D of size min{|D|, c
η2p (d log

1
p + log 1

δ )} for some constant c. Then

AR(S, I, (1 − η)θ, 1−η
1+ηγ) is an absolute ε-close approximation to AR(D, I, θ, γ).
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Note that the sample size needed for absolute ε-close approximations to AR(D, I, θ, γ)
depends on θ and γ, which was not the case for absolute ε-close approximations to
FI(D, I, θ) and TOPK(D, I,K).

5 Experimental Evaluation

In this section we present an extensive experimental evaluation of our methods to ex-
tract approximations of FI(D, I, θ), TOPK(D, I,K), and AR(D, I, θ, γ). Due to space
constraints, we focus on a subset of the results.

Our first goal is to evaluate the quality of the approximations obtained using our
methods, by comparing the experimental results to the analytical bounds. We also eval-
uate how strict the bounds are by testing whether the same quality of results can be
achieved at sample sizes smaller than those suggested by the theoretical analysis. We
then show that our methods can significantly speed-up the mining process, fulfilling the
motivating promises of the use of sampling in the market basket analysis tasks. Lastly,
we compare the sample sizes from our results to the best previous work [6].

We tested our methods on both real and artificial datasets. The real datasets come
from the FIMI’04 repository (http://fimi.ua.ac.be/data/). Since most of
them have a moderately small size, we replicated their transactions a number of times,
with the only effect of increasing the size of the dataset but no change in the distri-
bution of the frequencies of the itemsets. The artificial datasets were built such that
their corresponding range spaces have VC-dimension equal to the maximum transac-
tion length d, which is the maximum possible as shown in Thm. 3. To create these
datasets, we followed the proof of Thm. 4 and used the generator included in ARtool
(http://www.cs.umb.edu/~laur/ARtool/), which is similar to the one pre-
sented in [2]. We used the the FP-Growth and Apriori implementations in ARtool to
extract frequent itemsets and association rules. In all our experiments we fixed δ = 0.1.
In the experiments involving absolute (resp. relative) ε-close approximations we set
ε = 0.01 (resp. ε = 0.05). The constant c was fixed to 0.5 as suggested by [24]. For
each dataset we selected a range of minimum frequency thresholds and a set of values
for K when extracting the top-K frequent itemsets. For association rules discovery we
set the minimum confidence threshold γ ∈ {0.5, 0.75, 0.9}. For each dataset and each
combination of parameters we created random samples with size as suggested by our
theorems and with smaller sizes to evaluate the strictness of the bounds. We measured,
for each set of parameters, the absolute frequency error and the absolute confidence
error, defined as the error |fD(X) − fS(X)| (resp. |cD(Y ) − cS(Y )|) for an itemset
X (resp. an association rule Y ) in the approximate collection extracted from sample
S. When dealing with the problem of extracting relative ε-close approximations, we
defined the relative frequency error to be the absolute frequency error divided by the
real frequency of the itemset and analogously for the relative confidence error (divid-
ing by the real confidence). In the figures we plot the maximum and the average for
these quantities, taken over all itemsets or association rules in the output collection. In
order to limit the influence of a single sample, we computed and plot in the figures the
maximum (resp. the average) of these quantities in three runs of our methods on three
different samples for each size.

http://fimi.ua.ac.be/data/
http://www.cs.umb.edu/~laur/ARtool/
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(a) Absolute Frequency Error (b) Relative Frequency Error

Fig. 1. Absolute / Relative ε-close Approximation to FI(D, I, θ)

The first important result of our experiments is that, for all problems, for every com-
bination of parameters and every run, the collection of itemsets or of association rules
obtained using our methods always satisfied the requirements to be an absolute or rel-
ative ε-close approximation to the real collection. Thus in practice our methods in-
deed achieve or exceed the theoretical guarantees for approximations of the collections
FI(D, I, θ), TOPK(D, I, θ), and AR(D, I, θ, γ).

Evaluating the strictness of the bounds to the sample size was the second goal of
our experiments. In Figure 1a we show the behaviour of the maximum frequency error
as function of the sample size in the itemsets obtained from samples using the method
presented in Lemma 1 (i.e., we are looking for an absolute ε-close approximation to
FI(D, I, θ)). The rightmost plotted point corresponds to the sample size suggested by
the theoretical analysis. We are showing the results for the dataset BMS-POS repli-
cated 40 times (d-index d = 134), mined with θ = 0.02. It is clear from the picture
that the guaranteed error bounds are achieved even at sample sizes smaller than what
suggested by the analysis and that the error at the sample size derived from the theory
(rightmost plotted point for each line) is one to two orders of magnitude smaller than
the maximum tolerable error ε = 0.01. This fact seems to suggest that there is still
room for improvement in the bounds to the sample size needed to achieve an absolute
ε-close approximation to FI(D, I, θ). In Fig. 1b we report similar results for the prob-
lem of computing a relative ε-close approximation to FI(D, I, θ) for an artificial dataset
whose range space has VC-dimension d equal to the length of the longest transaction in
the dataset, in this case 33. The dataset contained 100 million transactions. The sample
size, suggested by Lemma 2, was computed using θ = 0.01, ε = 0.05, and δ = 0.1. The
conclusions we can draw from the results for the behaviour of the relative frequency er-
ror are similar to those we got for the absolute case. For the case of absolute and relative
ε-close approximation to TOPK(D, I,K), we observed similar results, which we do
not report here because of space constraints.

The results of the experiments to evaluate our method to extract a relative ε-close
approximation to AR(D, I, θ, γ) are presented in Fig. 2a and 2b. The same observations
as before hold for the relative frequency error, while it is interesting to note that the
relative confidence error is even smaller than the frequency error, most possibly because
the confidence of an association rule is the ratio between the frequencies of two itemsets
that appear in the same transactions and their sample frequencies will therefore have
similar errors that cancel out when the ratio is computed. Similar conclusions can be
made for the absolute ε-close case (not reported due to space constraints).
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(a) Relative Frequency Error (b) Relative Confidence Error

Fig. 2. Relative ε-close approximation to AR(D, I, θ, γ)

The major motivating intuition for the use of sampling in market basket analysis
tasks is that mining a sample of the dataset is faster than mining the entire dataset. Nev-
ertheless, the mining time does not only depend on the number of transactions, but also
on the number of frequent itemsets. Given that our methods suggest to mine the sample
at a lowered minimum frequency threshold, this may cause an increase in running time
that would make our method not useful in practice, because there may be many more
frequent itemsets than at the original frequency threshold. We performed a number of
experiments to evaluate whether this was the case and present the results in Fig. 3.
We mined the artificial dataset introduced before for different values of θ, and created
samples of size sufficient to obtain a relative ε-close approximation to FI(D, I, θ), for
ε = 0.05 and δ = 0.1. Figure 3 shows the time needed to mine the large dataset and the
time needed to create and mine the samples. It is possible to appreciate that, even con-
sidering the sampling time, the speed up achieved by our method is relevant, proving
the usefulness of sampling.

Comparing our results to previous work we note that the bounds generated by our
technique are always linear in the VC-dimension d associated with the dataset. As re-
ported in Table 1, the best previous work [6] presented bounds that are linear in the max-
imum transaction size Δ for two of the six problems studied here. Figures 4a and 4b
shows a comparison of the actual sample sizes for relative ε-close approximations to
FI(D, I, θ) for as function of θ and ε. To compute the points for these figures, we set
Δ = d = 50, corresponding to the worst possible case for our method, i.e., when the
VC-dimension of the range space associated to the dataset is exactly equal to the maxi-
mum transaction length. We also fixed δ = 0.05 (the two methods behave equally as δ
changes). For Fig. 4a, we fixed ε = 0.05, while for Fig. 4b we fixed θ = 0.05. From the

Fig. 3. Runtime Comparison. The sample line includes the sampling time.
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(a) Sample size as function of θ (b) Sample size as function of ε

Fig. 4. Sample sizes for relative ε-close approximations to FI(D, I, θ)

Table 2. Values for maximum transaction length Δ and d-index d for real datasets

accidents BMS-POS BMS-Webview-1 kosarak mushroom pumsb* retail webdocs

Δ 51 164 267 2497 23 63 76 71472
d 46 81 57 443 23 59 58 2452

Figures we can appreciate that both bounds have similar, but not equal, dependencies
on θ and ε. More precisely the bound presented in this work is less dependent on ε and
only slightly more dependent on θ. It also evident that the sample sizes suggested by
the bound presented in this work are always much smaller than those presented in [6]
(the vertical axis has logarithmic scale). In this comparison we used Δ = d, but almost
all real datasets we encountered have d � Δ as shown in Table 2 which would result
in a larger gap between the sample sizes provided by the two methods.
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