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Abstract. A wealth of graph data, from email and telephone graphs to
Twitter networks, falls into the category of dynamic “event” networks.
Edges in these networks represent brief events, and their analysis leads
to multiple interesting and important topics, such as the prediction of
road traffic or modeling of communication flow. In this paper, we analyze
a novel new dynamic event graph property, the “Dynamic Reachability
Set” (DRS), which characterizes reachability within graphs across time.
We discover that DRS histograms of multiple real world dynamic event
networks follow novel distribution patterns. From these patterns, we in-
troduce a new generative dynamic graph model, DRS-Gen. DRS-Gen
captures the dynamic graph properties of connectivity and reachabil-
ity, as well as generates time values for its edges. To the best of our
knowledge, DRS-Gen is the first such model which produces exact time
values on edges, allowing us to understand simultaneity across multiple
information flows.
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1 Introduction

Vast amounts of graph datasets are generated each day by applications such as
social networks, communication networks (like email graphs or Twitter), bioin-
formatics, and the Internet. The analysis and mining of these networks has been
an active and important area of research, leading to both newly discovered fun-
damental network properties, as well as interesting and useful new knowledge
and applications, from graph clustering for gene function discovery to network
modeling for link or structure prediction [24I25126].

Previous work on the analysis of graphs and their properties have analyzed
degree distribution, number of triangles, relationships between the eigenvalues
of the graph, etc [14U33J3T]. These discovered properties have led to novel gen-
erative graph models, capable of producing new graph structures which capture
and mimic such properties. Generative graph models have many interesting and
important uses, including generation of synthetic datasets for analysis, graph
anonymization, graph compression, prediction of graph and link evolution. While
useful for many purposes, these graph models still mimic only the static network
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graph structure. The addition of dynamic components to these static networks
has been an active topic of research in the last few years, with much research con-
centrated on dynamic “state” networks (where links have a tendency to endure)
such as in social or collaboration networks.

In contrast to dynamic state networks, links represent brief events in dynamic
“event” networks. Examples of such graphs include communication networks
like email or telephone call graphs. Dynamic event networks form a large and
important category for graph datasets. However, their structure and dynamics
do not fit well with many of the current dynamic network models. In dynamic
event networks, timestamps associated with each link may convey the dynamics,
allowing for both evenly spaced flows as well as arbitrarily long pauses or bursts
of activity. This timed dynamic behavior is an integral part of a time-evolving
network, and can be difficult to capture in models.

In this paper, we focus on dynamic event networks, looking especially at a new
property, the “Dynamic Reachability Set” (DRS), which characterizes reachabil-
ity within graphs across time. Reachability in general, along with concepts such
as graph density or planarity, is a fundamental network property. In an evolv-
ing graph, reachability can convey latency of information flow between pairs
of nodes in dynamically changing networks (e.g. mobile ad hoc or sensor net-
works); or latency along logistic/supply chain networks under dynamics; or even
gossiping latency in dynamic social networks. Specifically, the DRS of a starting
node consists of the set of all nodes reachable from the starting node, across a
fixed time interval A. In this paper, we analyze the DRS properties, at a series
of time intervals, for nodes within multiple real world dynamic event networks.
From this analysis, we discover that DRS sizes follow a DGX distribution [6] for
low values of A, but that this relation breaks as A increases. Additionally, we
find that the rate in which the relation changes is specific to each network, but
generally follow a log-normal-like curve.

The dynamic behaviors discovered from our analysis open the door for the
learning and creation of new, novel generative modeling techniques which can
now link time together with changes in network structure. Using this discovery,
we focus on the generation of network dynamics, and propose a new generative
modeling algorithm, DRS-Gen, able to produce dynamic graph structures that
mimic the DRS properties of real world dynamic event networks across time. To
the best of our knowledge, DRS-Gen is the first generative graph model able to
assign and fit timestamps to edges, such that the rates of flow and reachability
across a dynamic network are preserved. We introduce methods to learn the
model parameters, and from there implement DRS-Gen, fitting this model to
multiple real world dynamic event networks. From our results, we find that our
generated graphs fit well and capture the flow and reachability distributions of
real world graphs, across time, making it both a novel and potentially useful tool
for generative graph modeling and analysis.

Overall, our main contributions come in three parts. First, we introduce and
analyze a novel, relevant, and interesting new dynamic event graph property: the
Dynamic Reachability Set. Second, we propose a new generative dynamic event
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Fig. 1. An example dynamic event graph. The numbers on edges represent timestamps
for the links. A time threshold of A = [1,2) would give node A a DRS of {A,B}; for
A =11,3), DRS = {A,B,C,D}; for A =[1,4), DRS = {A,B,C,D,F}.

graph model, DRS-Gen, that allows for the generation of time-aware edges and
flows. And third, we demonstrate not only how DRS-Gen may produce graphs,
but also how it can be fit, naturally and easily, to real-world communication
graphs, such that it may capture the reachability and dynamics of these graphs.

The rest of this paper is organized as follows. Section 2 introduces the con-
cept of Dynamic Reachability Sets, as well as contains the analysis and results
obtained from studying these sets on real world graphs. Section 3 introduces the
DRS-Gen model, outlining the algorithm and theory behind it, then presenting
and analyzing the results of our model when fit to multiple real world dynamic
networks. Section 4 consists of a short survey of related work and previously
introduced techniques on graph analysis and generation. Finally, in Section 5,
we summarize our work, overviewing our contributions and conclusions.

2 Dynamic Reachability Sets

For this work, we focus our attention on the property of reachability within
dynamic event networks. Specifically, let G = {V, E, T} be a directed, dynamic
graph where V are the set of vertices and F = [e1,ea, - ,ey] are the list
of edges, where edge e; = (vj,v;) represents a link between nodes v; and vy.
Additionally, the edges in E are ordered by the time function 7', where T'(e;) gives
the timestamp for edge e;. We can then define the DRS starting from node v;
and timestamp tg;q7¢, Tecursively over time interval A, as shown in Algorithm [Tl

Algorithm 1. Calculate the DRS
Require: DRS := {v,}, tstart; tend = tstart + A

1: procedure CALCDRS(DRS, tstart, tend)

2: for all v; where (ex = (vs,v;),vs € DRS, e € E, tstart < T(er) < tend)
3: DRS :=DRS U {v;}

4: CalcDRS(DRS, T(er) + 1, tend)

5: end procedure

Figure 1 illustrates an example. In this graph, directed edges are associated
with timestamps, and node A sends a message at timestamp 1 to node B. Node
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Fig. 2. Histograms of DRS size for the Facebook wall posts dataset, at increasing
values for A. The decreasing slope of the approximately fit power law curve shows the
movement of “mass” to the right as A increases.
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Fig. 5. Histogram of DRS
size for the Facebook Wall
post dataset at A = 30
minutes, along with the a
generated DGX distribu-
tion (o =0.013, u = 1.88)

B sends two messages, one to node C' and one to node D at timestamp 2, etc.
To find the DRS of node A, given the time interval A, we collect the set of all
nodes that may be reached by recursively traveling edges within the time frame,
starting from node A, without going backwards in time. This means that an
interval starting at 1, with a A of 2, will include nodes A, B, C, D,and F, but
not node F because to reach node C' from node A takes until timestamp 2, and
the edge from C' to E occurred previously at timestamp 1.

The reachability set of a node, n,, represents the nodes it is possible for n
to reach across a specific time interval. Furthermore, the sequence of nodes and
links followed to obtain the DRS can be thought of as a small “flow” within the
graph. Overall, the set of DRS values for all nodes in a graph provides a window
into the graph’s dynamic connectivity and flow between all of its nodes. As the
DRS time interval grows, we would expect the average DRS sizes to increase as
well, since the number of links contained within the interval, and therefore the
chances of reaching additional nodes, grows as well.

We collected and analyzed the actual DRS sets for multiple real world net-
works, and found that this intuition does indeed hold. Figure 2 shows the log-log
plot of DRS size versus count, for a network consisting of Facebook wall posts
and replies [34] containing 47K nodes (users) and 877K directed edges (wall posts
from one user to the other). For each time interval, a series of non-overlapping
time windows (for different values of t;, the initial timestamp mentioned in
Equation (l)) was used to discover DRS counts for each node in the graph.
From the plots, we can see that as A increases from 10 minutes to 6 hours, more
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Fig. 6. Comparison of slope (for fit log-log curve) against A (logarithmic). It can be
seen that various graphs each have their own rate of change. However, each follows a
reversed log-normal form.

nodes gather on the right of the plot. Similar curves were found for other dy-
namic networks, as well (Figures 9 and 11 display additional histogram results
for the Enron Email dataset [15] consisting of 87K unique email users and 360K
directed email edges, as well as a crawled Twitter dataset [26] containing 8K
Twitter users and 663K directed “reply to” and “retweet” edges). Again, this
shift across time is largely reflected in the plots, and is echoed in the decreasing
slope of the power-law curve loosely fit to the data. As the time interval increases,
more nodes are able to reach larger amounts of the graph. Additionally, we can
see that the shape of the curve undergoes an extreme change across time, as
well. Additionally, it is apparent that the rate of change in the slope and curves
varies, depending upon the graph. Figure 6 shows a plot of the slopes for the
various networks, as they change across time, confirming that each network has
its own properties related to reachability and flow, producing different network
behavior.

Overall, the DRS histograms have points that cluster tightly along a curve
for smaller values of A, but eventually “pile” to the right as the maximum, or
near maximum, number of nodes they may add is reached.

It has previously been discovered that Discrete Gaussian Exponential (DGX)
distributions match well to many real world datasets [6], and fitting a DGX
distribution to the curves obtained at small A values for the DRS, it can be seen
from Figures 3, 4, and 5, that this distribution matches the DRS histogram at
low A threshold values, as well.

An interesting insight can be discovered by plotting the negative of the log-log
slopes from the power law distributions for each DRS histogram, such as those
in Figure 2. The resulting curve for the Enron Email network can be seen in
Figure 7. The negative of this log-log slope fits well to a log-normal curve, a
property echoed in each of the other dynamic event networks analyzed, as well.
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Fig. 7. Fitting a log-normal curve for the value of (-b), the negative exponent in the
power law curve

3 The DRS-Gen Model

As a model, DRS-Gen focuses upon the generation and modeling of network
dynamics and flow. A wealth of work in previous literature has focused upon
the creation of static graph generators [4I7/TOT7II820/28], and so, rather than
repeat their work, DRS-Gen instead assumes that a base (static) graph structure
is available. This structure could be the original network itself, without the
dynamics and multi-edges, or it could be generated using any one of the many
existing static network graph generators. For the experiments in this work, we
use the original networks as a base, and generate dynamic behavior upon it.

The basis behind DRS-Gen is the shift in “weight” that occurs as the time
interval A is increased. This shift can be seen for example in the DRS histogram
plots of Figure 2, where a much larger number of points have collected to the
right for the last graph in Figure 2, as compared to the preceding graph. This
shift represents the fact that, as the time interval increases, more nodes are able
to reach a larger section of the graph, giving them an increased DRS size. This
property allows us to relate graph structure together with time. For any given
time interval A, the associated DRS histogram essentially counts multiple small
flows, separated by either time or graph structure. As the time interval increases,
these smaller flows may join together to become a single larger flow, contributing
toward the shift in mass, as two smaller flows are replaced by a new larger flow
in the histogram.

To model this shift, DRS-Gen takes 5 parameters as input: a min and max time
resolution A, and A,,qz, a starting number of flows ¢, and two parameters,
and o which model the change in slope of a log-log power-law distribution fitted
to the normalized DRS histogram, across time. It then proceeds in four basic
steps.

1. First, we generate a series of ¢ number of integers, representing the DRS
sizes for a set of initial “base flows.”

2. Next, we transform this series of integers into a series of small subgraph
structures representing the flows.



448 K. Macropol and A. Singh

3. We then search through the subgraphs, finding and combining subgraphs
which overlap by choosing a time, J;, that represents the time differences
between the occurrences of the flows.

4. Finally, we output the final generated graph. Initial flows are given ran-
dom timestamps, and the §; values are used to calculate the timestamps for
overlapping flows.

We describe these four steps in more detail in the following subsections.

3.1 Generating Flow Sizes

Given our minimum time resolution A,,;,, we want to generate a series of ¢
integers. These integers represent the DRS size of our ¢ initial “base flows”.
The series of DRS sizes should fit the appropriate normalized DRS histogram
distribution, which we model using a power law curve, following the form:

pr[DRS] = a(DRS)~* (1)

Where DRS stands for a particular DRS size. In this case, the exponent b
represents the slope of the line arising within the log-log plot, as can be seen by
taking the logarithm of both sides of Equation ().

In(pr[DRS]) = In(a) — bIn(DRS) (2)

As the time interval (A) is increased, the amount of mass in the curve shifts to
the right, resulting in a variation for b across time. Figures 6 and 8 showed that b
varies across A and fits well to a log-normal distribution, which is represented by:

1 _(na—p?

- Ac/27m ‘ 20 ®)

where p and o are the location and scale parameters of the fit log-normal curve.

Equation (), together with Equation (B]), can be used to relate the probability
of seeing a DRS / flow size, against a particular time interval.

Since we wish to obtain a series of DRS sizes, fSizes, at base time resolution
Apin, we substitute A,,;, for A into these equations, to obtain the probability
distribution we wish to achieve. We find and sample from the inverse of the
CDF of this probability distribution to obtain a similar distribution. The CDF

becomes:
T
Fx:/ azr™?
2

We invert it and obtain:
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Fig. 8. Example of flows in F' combining. Here, Flow 3 (of size 3 nodes) overlaps with
Flow 2 (of size 2 nodes), and will therefore be combined, using a time difference ¢
between them, into a flow with 4 unique nodes.

Additionally, by assuming an approximate bound on the maximum DRS size,
taken from the x intercept of the log-log plot shown in Equation (@) (at ¥a), we
can obtain a relationship for a using the pdf from Equation ().

Ya
1= / ax™?
2

_ Va— 21-bgq
- 1-b (©)

We can calculate the value for a from Equation (@) using Newton’s method.
After sampling from Equation (Bl), we then obtain our series of DRS flow sizes,
fSizes.

3.2 Obtaining Subgraph Flow Structures

In order to obtain the subgraph flow structures, the series of integers found
in the previous section must be transformed into a series of small subgraph
structures, F' = [F, Fy, - - -, F.] of corresponding size. Drawn from the given base
network, each subgraph will represent a single flow. There are multiple methods
which can be used to create these small, static initial subgraph structures. We
choose to use a simple variation (simply enforcing connected subgraphs) on the
“Winners Don’t Take All” method [29], which grows subgraphs by repeatedly
choosing connected nodes either through random chance or through preferential
attachment. The method used (random or preferential attachment) is randomly
chosen at each step, as well.
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3.3 Combining Overlapping Flows

With the series of base graph flows discovered, the next step is to combine
overlapping flows. To do this, we assume a tentative ordering in time on F', and
systematically search through the flows in F'. For each flow, F;, in F', we find all
preceding flows, starting from F; and working our way up, which also overlap in
graph structure. For every discovered overlapping pair of flows, we choose a time
difference §, using a probability function, that represents the amount of time that
passes between their occurrence. These two flows are then combined (the time
difference § between them is noted) and the process continues. Figure 8 contains
an example of this process, where Flows 2 and 3 overlap. A time difference o
is chosen between them, and they are combined. Pseudocode for this process is
contained in Algorithm 21

Given that we have found two overlapping simple flows of sizes S; and Sy,
they will combine at some point in time, producing a single flow (of size Ss,
where maz(S1, S2) < S3 < S; + So — 1). The time difference between them is
represented by . The two possibilities (whether the flows are combined or not)
can be represented as two separate distributions: R, a distribution representing
the combined state and having a probability of 1 for flow size S35 and 0 for
every other flow size, and U, a distribution representing the uncombined state
and having a probability U; for flow size S1, Us for Sz, and Us for Ss (with
Ui, Uy, and Us being discrete values of either 0, 0.5, or 1). As an example, in
Figure 8, Flow 2 has a size of S; = 2 and Flow 3 has a size of So = 3. When they
combine, they produce a flow with size S3 = 4. The probability distribution for
the combined state, R, has probability 1 for size 4, and a probability of 0 for
every other size. The distribution for the uncombined state, U, has probabilities
0.5 for size 2, 0.5 for size 3, 0 for size 4, as well as 0 for every other size.

The distance between these two possible distributions, and the modeled “true”
distribution, T', of Equation (Il) may be calculated. The likelihood of the flows
combining may be found by comparing the distance between R and T with
the distance between U and T'. For distance comparison, we choose to use the
Kullback-Leibler divergence (KL divergence).

P(i)
Dgr(PllQ) = ZP

€S

=" P@i)(n P(i) - nQ(3)) (7)

€S

Z

From Equation (), it can be seen that the KL divergence calculates a weighted
distance between corresponding points on the log-log curve. This means that a
distribution with a closer distance is more likely.

The probability values for the modeled distribution 7" can be found by using
Equation (), and are normalized.

P(S;)

B 5o P(sy)

(®)
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Algorithm 2. DRS-Gen

1: procedure GENERATE(F')
Initialize fSizes] |

3 for i < 1,c do

4 r < random number from Eq. 6
5 fSizes[i] « r

6: Initilize F ]
7.

8

for i + 1,c do
: Initialize K| |
9: for j « 1,fSizes[i] do

10: K[j] < new node using

11: “Winners Don't Take All”

12: Fli] +« K

13: Initilize Deltas| ][ ]

14: for i <+ 1,c do

15: for j <+ i—1,1do

16: if F[i] N F[j] >0 then

17: if Deltas[i][j] isn't set then

18: 6 < random number from Eq. 13
19: Deltas[i|[j] = ¢

20: for £+ 1,c do

21: if Deltas[j][k] ezists then

22: Deltas[i][k] = 6 + Deltas[j][k]

23: end procedure

Substituting using Equation (), we obtain

T, = ‘ b
Zjes as;
S0
= ? 9
> jes S5 )

nA—p)2
<where b= 1 e*(l 20" >
Ao/2m

When b is found using the parameters p and o, we obtain an equation relating
the probability of certain sized flow occurring, to the time interval A.
To find the likelihood of combining, we calculate the relative closeness:

Dy r(R||T)

Prlcombining] =1 —
[ A= DL (RIT) + Dier (UIIT)

(10)

Substituting using Equation (), we obtain Pr[combining] as:

ZiES Rz(ln RZ - IHTZ)

1—
Yoics Riln Ry —InTy) 4 32, Ui(InU; — InT;)

(11)
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Given that Ry = 1, all other R; = 0, and at least one of Sy, S3, or S3 = 0, we
may simplify and combine with Equation (), obtaining Pr[combining] as:

L bIn Sy + In(S;° + 857 + 5570)
bin(S; V1 8Y280%) 4+ 2In(S70 + S5° + S57)

where b is the log-normal curve shown in Equation (3], and all other values are
constant. This probability varies across time, as A varies between A,,;, and
Amaz- A value, weighted by this distribution, can be picked using a series of
approximations. The overall function and its integral can be approximated using
Taylor series. Additionally, the area under the curve is calculated using the given
value for A, 4. Next, a random fraction of this AUC is chosen, and finally the
appropriate ¢ for this AUC can be solved for numerically using Newton’s method.

From this process, values for § between overlapping flows are generated, with
¢ values fitting the dynamic distribution behavior discovered in Section 2.

(12)

3.4 Producing the Generated Graph

With the flow and timing information generated, these structures can be output
to produce the final graph. Starting with the first flow Fi, a timestamp of 0 is
assigned and output. Next, all other flows combined with F; are output, using
their assigned time differences to produce their timestamps. If any flows remain,
they are assigned a random timestamp, output, and their connected flows output
as before. This process repeats until all flows have been output.

3.5 Parameter Fitting

From the steps in the overall algorithm, it is a simple extension to fit this gen-
erator to a known graph. First, a series of DRS histograms, at varying A, are
calculated. Next, the ¢ values for each histogram are normalized, producing a
probability distribution. A power curve is fit to each distribution and the values
for the power, b, extracted. From this series of b values, the appropriate values
of ;4 and o can be estimated by fitting a log-normal curve, and the generator
may now be fit to the graph, using these parameter values.

Overall, this process allows a dynamic event graph to be generated, with
dynamic reachability behavior fit to parameters learned from real world data.

3.6 Implementation and Analysis

Using this method, we implemented DRS-Gen and used the the captured DRS
histograms for the Enron Email, Facebook wall post, and Twitter networks men-
tioned earlier and shown in Figures 2 and 3, to train (using the parameter fitting
methods described in Section B.5) a generative model capable of producing flows
which imitate the properties of the original, real world graphs.

Figures 9, 10, and 11 show the resulting DRS histograms obtained through
generation by the model, as compared to the original distribution. As can be seen,
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Fig. 9. Comparison of the DRS size histograms for both a graph generated using DRS-
Gen, as well as the original Enron Email dataset, at increasing values for A. Both the
tight fit of points, as well as the similarity in shape and dynamics emphasize the
strength and quality of DRS-Gen’s dynamic modeling results.
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Fig. 10. Comparison of the DRS size histograms for both a graph generated using
DRS-Gen, as well as the original Facebook dataset, at increasing values for A. Again,
the strong similarity between both the original histogram and the generated, across
time, helps to confirm the effectiveness of DRS-Gen’s model.
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Fig.11. Comparison of the DRS size histograms for both a graph generated using
DRS-Gen, as well as the original Twitter dataset, at increasing values for A

both the distribution shapes, slopes, as well as the rates of change across time
match extremely well to the original dynamic network distributions. Though
each of the three original networks evolve at different rates, the graphs generated
from our model manage to capture this evolution and fit the generated flows
together in time such that the flow distribution and reachability match closely
to the original curve.

A series of Quantile-Quantile plots are shown in Figure 12, comparing the
original and generated distributions for the Enron Email, Facebook wall post,
and Twitter graphs (at A =5 minutes, 10 minutes, and 1 hour respectively). The
close fit to a straight y = x line further emphasizes the closeness of the generated
vs. original distributions, and helps to confirm that our generative model is truly
capturing the distribution and reachability of the original network.
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Quantile-Quantile Plots

................ Enron
Facebook
Twitter
y=x Line

Generated Graph

0 1 2 3 4 5 6 7
Original Graph

Fig. 12. Quantile-Quantile plots of the Enron Email, Facebook wall post, and Twitter

graphs. The close fit to the y=x line emphasizes the closeness of the generated vs.
original distributions.

These results help to confirm the effectiveness of our model, emphasizing its
strength and ability to generating dynamic event network data, while capturing
the dynamic reachability and flow properties of the original graph.

4 Related Work

Decades of research on graph theory has concentrated on studying fundamental
properties of graphs and been successfully applied to the analysis and modeling of
graph data and real world networks; however, researchers have mainly looked at
static graph properties, leading to generative models that mimic static network
structure [BIITI20]. In contrast, temporal graphs have been an active topic of
research in only the last few years and the research has largely concentrated on
dynamic “state” networks and ignored dynamic “event” networks [2126]32].

A major focus of current research is on generative models that allow for the
prediction of the slow evolution (long-term dynamics) of graph structure [T2/16].
Previously introduced models for dynamic graphs include the Markovian Dy-
namic Graph models, which are random models where the graph structure at
every time step t is dependent only on the structure at time ¢t — 1, and cre-
ated according to random transition probabilities. In Edge-Markovian Dynamic
Graphs [9], each edge at time step ¢ is dependent only on its presence (or not) at
t—1. There are fixed global birth and death rate functions, giving the probability
of a new edge arising and an old edge dying. A variation on this model, where
nodes are initially assigned a fixed position, and node distances affect birth and
death rate values, was introduced in [13].

Despite their elegant formulation and ease of analysis, the Markovian Dynamic
Graph models fail to capture many real-world network properties. For example,
two general dynamic graph properties that have been observed are densification
power laws, relating the number of nodes and edges of a graph over time to a
power law distribution, as well as shrinking diameters across time [21]. To cap-
ture these discovered properties, new generative graph models were introduced.
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On example is the Forest Fire model, where new links are formed by randomly
choosing “ambassador” nodes and recursively following their links, linking to dis-
covered nodes with a certain probability [2I]. Other dynamic network properties
recently discovered include the bursty-weight law, where edge weight additions
were found to be bursty over time [27/19], and the relation between age of a node
and its likelihood to attract new edges [20]. From these observations, new gen-
erative models such as the Butterfly graph model and Triangle-closing models
were introduced [I9127]. Another recent graph generative model which accounts
for numerous static as well as dynamic graph properties is RT'G [I], based on the
concept of random typing. In RTG, a set of keys have a probability distribution
representing their likelihood to be typed. Every word randomly typed is a node
label, and the stream of nodes typed are divided into source and destination
pairs to create edges.

Dynamic processes on complex networks such as information diffusion and
epidemiological processes have also been studied [5]. Epidemic models, such as
the Susceptible-Infected-Susceptible (SIS) model [3], have been applied to the
modeling of link cascades within blogs in [22/23]. Interestingly, even though the
process is time-varying, the network in these models are usually considered static
or changing very slowly. In contrast, recent work by Prakash et. al [30] analyzes
virus propagation graphs by formulating them as an approximate nonlinear dy-
namical system. In [8], the authors utilize the spectral radius of the adjacency
matrix for predicting the virulence of epidemics on static graphs.

Additionally, most current dynamic network generative models use the con-
cept of abstract “timesteps” for their dynamics, which do not fit well with real
world event graphs. Typically, for many models, each timestep label corresponds
to a single event rather than a precise measure of time. This sequence of labels
conveys the network dynamics. However, many real world networks instead have
actual time values associated with each link, allowing for both evenly spaced
flows as well as arbitrarily long pauses or bursts of activity. This timed behavior
is an integral part of a dynamic network, and its oversight leaves a large area
of important graph data and knowledge largely unexplored. The lack of time
values upon edges also renders it difficult to calculate and compare DRS values
from graphs generated by these algorithms to the original graphs, as A intervals
cannot be easily mapped onto timesteps.

5 Summary

In this paper, we have introduced and analyzed a novel new property of dynamic
event networks, their Dynamic Reachability Sets (DRS), across time. The DRS
characterizes reachability within a graph across time, and connects to many
important graph relationships such as network flow and latency, in addition
to reachability. From this analysis, we have discovered several important new
properties of dynamic networks, including a novel distribution pattern for the
DRS histograms, related to a DGX distribution at small time intervals.
Additionally, we have made use of this newly discovered pattern by introduc-
ing a new generative graph model, DRS-Gen, based upon the DRS distribution
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dynamics. DRS-Gen is capable of generating event network dynamics upon graphs,
and particularly able to fit naturally to real world event networks, learning pa-
rameters that can capture and model dynamic flow and reachability across time.
Dynamic graph models such as DRS-Gen can have many possible practical appli-
cations, including prediction of future graph evolution or behavior (such as in link
or email thread prediction), and graph compression.

Implementing DRS-Gen and testing it on multiple networks, we find that the
generated graphs closely matched the distributions and dynamics of the original
networks they modeled, helping to emphasize DRS-Gen’s use and effectiveness
as a new dynamic event network graph generator, and a novel and potentially
useful new tool for generative graph modeling and analysis.
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