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Abstract. Using kernels to embed non linear data into high dimen-
sional spaces where linear analysis is possible has become utterly classi-
cal. In the case of the Gaussian kernel however, data are distributed on
a hypersphere in the corresponding Reproducing Kernel Hilbert Space
(RKHS). Inspired by previous works in non-linear statistics, this article
investigates the use of dedicated tools to take into account this particu-
lar geometry. Within this geometrical interpretation of the kernel theory,
Riemannian distances are preferred over Euclidean distances. It is shown
that this amounts to consider a new kernel and its corresponding RKHS.
Experiments on real publicly available datasets show the possible bene-
fits of the method on clustering tasks, notably through the definition of
a new variant of kernel k-means on the hypersphere. Classification prob-
lems are also considered in a classwise setting. In both cases, the results
show improvements over standard techniques.

1 Introduction

Most of the well known methods using the kernel trick [T2] postulate that since
the data are embedded in a Kernel Reproducing Hilbert Space (RKHS) with high
dimensionality, non-linear data description is likely to become linear. As such,
most of the classical linear methods can be applied with benefits. However, in
the RKHS associated to numerous kernels (including the Gaussian kernel, on
which this work is focused), all vectors have a unitary norm: the dataset lies on
a hypersphere [3]|. Hence, should this particular geometry be explicitly exploited
by using non linear statistical tools in the RKHS? This work is a step in this
direction. We notably show on two different applications (classification and clus-
tering) that this idea can yield enhanced results over some real world datasets.
The key idea is to consider a geodesic distance on the hypersphere rather than
the Euclidean one to perform the data analysis. The geodesic distance corre-
sponds to the total length of the shortest path over the hypersphere between
two points, and it can be computed readily using trigonometric operators (Fig-
ure [Il). Interestingly enough, this leads us to the definition of a new kernel: It
appears that the geodesic distances in the original RKHS are equivalent to the
Euclidean distances in a new RKHS. Thus, when data are embedded in this
latter, it is indeed really justified to use linear methods. Our construction can
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Intrinsic mean

Extrinsic mean

Fig. 1. Whatever the distribution of X, ¢(X) lies within sphere quadrant. We propose
to consider geodesic distance between elements of ¢(X) rather than the Euclidean
one. The Karcher (intrinsic) mean of ¢(X) is represented as a red point, whereas the
extrinsic mean is depicted in green. Note the latter is inside the hypersphere, whereas
the Karcher mean lies on it.

be related to the work of Lafferty and Lebanon [4], who define a family of ker-
nels based on diffusion operators over a Riemannian manifold. In our case, the
geometric structure of the manifold is directly used to give a closed-form kernel
expression instead of using a Fischer information metric.

The article is organized as follows: In Section Pl we set notations, and we
provide background materials on geodesic distances and Riemannian manifolds.
In Section [B] we adapt the classical tools of geodesic analysis to the Gaussian
RKHS: To overcome the main drawback of kernelized space (the coordinates of
the vectors are unknown), we find a transformation of the Gram matrix induced
by the Gaussian kernel which takes into account geodesic distances. Next, in
Section[d], we derive from the Gaussian kernel and from its modified Gram matrix
a new data-dependent kernel. At this point, we remark that this derivation does
not stand only for the Gaussian kernel, but for numerous other Radial Basis
Function (RBF) kernels, leading to a whole family of data-dependent kernels.
These latter are proved to be interesting on real datasets in Section B} First,
a clustering task is achieved by considering a k-means algorithm with geodesic
distances on the Gaussian hypersphere. Second, we compare our new kernel to
the Gaussian one in a classification task.

2 Geodesic Analysis on the Hypersphere

This section introduces the basis of a geodesic analysis on the hypersphere in the
RKHS induced by the Gaussian Kernel. After stating the problem, basic facts
about Riemannian geometry are presented and the notion of geodesic analysis
is introduced.
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2.1 Problem Statement

Let X = {x1,...,2p}(2,ern) be a set of p separated training samples described
with n variables, and living in a space isomorphic to R™ and referred to as the
input space. It is endowed with the Euclidean inner product denoted (., .)g» in
the following. Let k(.,.) be a symmetric form measuring the similarity among
pairs of X, also called kernel. Let H be the associated RKHS, or feature space,
also equipped with a dedicated inner product noted (.,.), such that for any
pair (x;,z;) € X2, we have:

((xi), () n = k(zi,7;5) (1)

where ¢(.) is an implicit mapping from R™ onto . We use the shorthand no-
tation ¢(X) for the set {¢(x1),...,0(2p)}(pwi)en)- K is the Gram matrix of
¢(X), and as such K;; = k(x;, ;). We use the generic notation « for any vector
of R™. Similarly, any vector of H is noted ¢(z) (if its pre-image is assumed to
be ) or simply y (if there is no assumption on its pre-image).

A kernel of particular interest in this work is the Gaussian kernel, defined as:

k(wi, ;) = exp (—m_xj'z) (2)

202

with the variance parameter ¢? € R?. Remark that: (1) the norm of any
¢(z;) € H is the unity, i.e. (¢(x;),d(x:))n = 1, (2) the Gaussian RKHS is
of infinite dimension. As a consequence, whatever X, ¢(X) spans a subspace of
dimension exactly p, and as such ¢(X) lies on the unit hypersphere SP~ C H.
Moreover, as the inner product of two unit vectors corresponds to the cosine of
their angle, and as V(z;,2;), k(z;,z;) € [0,1], whatever X, ¢(X) lies in a re-
striction R of SP~1 which is embedded in a sphere quadrant (its maximum angle
is smaller than or equal to 7/2, such as illustrated on Figure [I)). Naturally, as
k(z;, x;) varies according to the value of the ¢ parameter, the surface of R varies
accordingly: When o increases, k(x;,z;) increases, (i.e. the cosine between z;
and z; increases), and thus the surface of R decreases. Conversely, when o — 0,
R tends to a sphere quadrant.

2.2 Analysis on Riemannian Manifolds

A Riemannian manifold M in a vector space V with inner product (., .)y is a real
differentiable manifold such that the tangent space 7,~ associated to each vector
z* is endowed with an inner product (.,.)7... In this work, (.,.)7.. reduces to
(.,.)v on T+, so for simplicity we assimilate (.,.)7.. to (., .)y.

Classically data analysis is performed in V = R" and not in M, as in the
former it is rather natural to formalize the intuitive geometric notions (distance,
mean, variance, direction, etc.) which are necessary to characterize the dataset.
On the other hand, the statistical analysis of a dataset within M requires the
non-trivial generalization of these notions to the setting of Riemmanian geom-
etry. One of the first statistical analysis tool designed for Riemannian manifold
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is the Principal Geodesic Analysis (or PGA), the goal of which is to find a set of
directions, called geodesic directions or principal geodesics, that best encode the
statistical variability of the data. PGA was first introduced by Fletcher et al. [5],
and received since then numerous addenda [6l7], which are beyond the scope of
this work. Here, we only focus on the tools of Riemannian geometry which are
involved in the definition of PGA. The crucial observation of Fletcher is that a
first order approximation of the distances among the samples of the dataset can
be obtained if one projects the dataset in 7,,, the tangent space at 1, the Karcher
mean of the dataset. We recall that the Karcher mean [8] p € M differs from
the traditional mean z € V (also called the extrinsic mean): It is the point of
M which minimizes the sum of squared geodesic distances to every input data.
As such, it constitutes an intrinsic mean (see Figure [l for an illustration). We
have:
P
[ = arg min Z dgeod(Ti, )2 (3)
zeM T

This approximation of the geodesic distances in M by the Euclidean distances in
7, seems particularly appealing, and it has been shown [9] that for a sphere the
induced error is rather low. However, as this manifold lies in ¥V = H (instead of
R™), the tractability of this approximation addresses several questions: First, how
to define geodesic distances on the manifold embedding ¢(X), and compute the
associated Karcher mean i of ¢(X)? Second, how to characterize 7,, and project
¢(X) onto 7,7 These two questions are addressed in two dedicated subsections
of the next section.

3 Data Analysis over the Hypersphere in the Gaussian
RKHS

Let us consider the unit hypersphere SP~!' € H, the surface of which is the
Riemannian manifold which embeds ¢(X).

3.1 Geodesic Distance and Karcher Mean

The Riemannian distance (or the geodesic distance) between ¢(z;) and ¢(z;)
on SP~! corresponds to the length of the portion of the great circle embedding
¢(z;) and ¢(z;). It is simply given by:

dgeoa(d(w:), ¢(x5)) = arccos({p(w:), P(x;))n)- (4)
Then Equation (B]) reads:
= aréger?riin ; arccos({p(x;), y)n ). (5)

The Karcher mean of X exists and is uniquely defined as long as X belongs to
a Riemannian ball of radius 7/4 [8I10] which is the case since two points can be
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at maximum distant from 7/2. Usually, non-linear optimization methods can be
used to compute this mean. However, finding the coordinates for y is impossible,
since we do not have access to the coordinates of ¢(X). Instead, we turn on the
search of the pre-image & € R™ of ;1 € H (such that p = ¢(&)). It is the solution
of the following (non-linear) minimization problem:

P
¥ = argeg}in Zarccos(((ﬁ(%% b(2))n)?, (6)
TeR™ Gy
= arg min T k(z;, . 7
axgew ;a ccos(k(x;, x)) (7)

To operate this minimization, let us consider

f:R" =R
P

T Z arccos(k(xz;, x))?

i=1

and compute its gradient:

Vi) = Z 8(1 arccos(k(z;, x))?, (8)

2 " arccos(k(zi, z))k(zi, x)
I V1= k(i )2

Setting this derivative to zero leads to a fixed point algorithm similar to the sem-
inal work on pre-image computation proposed by Mika et al. [TT]. This algorithm
amounts to refining in several iterations a solution #! such that:

FHL ZZ (i),
> anli) ®)

(z; — ).

with
arccos(k(x;, z))k(z;, 7t)
\/1 — k(x;, 2t)?

However, as stated in [11], this approach is prone to find local minima and its
output is strongly dependent on the choice of the initial guess. Therefore, we
propose a simple greedy algorithm (Alg. [[l), which simply consists in repeating
p times the previous optimization by setting the initial guess as the different
inputs x; (this latter is then omitted in the sum of equation []). The estima-
tion of the Karcher’s mean pre-image is achieved using Algorithm [ with an
O(k.n?) complexity, where k is the number of iteration and n the number of
samples. In practice k is small, namely less than 10 for the tested datasets
when an RBF kernel is used. However, a possible drawback of this approach
is that it only provides an approximation for the Karcher mean, since the true

th(?:) =
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Algorithm 1. Pre-image of the Karcher mean on the sphere in the RKHS
€ < small value, & < mean(X)
for i =1 to p do
mg:o — T
repeat
update Z:*! using equation [ with &
until || — #2 < e
if f(#!7') < f(Z) then
F 4+ 7t
end if
end for
Output &

one may not have an exact pre-image in the input space. Thus, it may be in-
teresting to consider other approaches to find the pre-image of the Karcher
mean, e.g. distance based [12] or local isomorphism [13]. Nevertheless, their di-
rect application is impossible since the Karcher mean is only defined through
a minimization procedure without a closed-form solution. Fig. 2] illustrates the
result of Alg. [Il to compute the pre-image of the Karcher mean on two toy
datasets (points randomly sampled over a square and a spiral in 2 dimensions).

Fig. 2. Illustration of Karcher mean on two datasets: The dataset is represented by
red points. The blue point is the data mean in input space, The green point is the pre-
image of the Karcher mean after mapping onto the RKHS (the grayscale represents
the function f values as described in Equation []).
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3.2 Projection on the Tangent Space

In the particular case of hypersperical manifolds, the mapping of any point onto
a tangent space (this mapping is usually referred to as the logarithmic map), and
the reverse mapping (the exponential map) are easy to define: The logarithmic
map at location p which projects any point ¢(z;) € R C SP~! onto 7, has the
following form:

Log, : R\ pu— T, (10)
y o Sif(@) (y — cos(0) - )

where 6 is the angle between p and y i.e. § = arccos({i,y)#). When 0 =0,
it is natural to consider that y = p. Conversely, the exponential ma , which
projects a vector y of T, onto SP~!, is defined as:
Exp,, : Ty — spt (11)
sin(6
T 0()~y+cos(9)~,u

where 6 is given by 6 = arccos (ﬁ;ﬁ)) = ||y||-

When using the kernel notation, and for ¢(z;) # p Equation [I0 reads:

, (@0(i) — (2, T)9(2))- (12)

arccos(k:(avZ7 5&))

\/1 — k(z;, 2

So far, the exact computation of this pro Jectlon cannot be conducted, as ¢ remains
unknown. However, it is possible to derive the Gram matrix of Logy;)(¢(X)):

KZ&; = <L0g¢(i)(¢( z;)), Logqb(ac)( ()35
_ arccos(k(x;, 7)) arccos( (x], ))

\/1 — k(z;,2) \/1 k(xj, &
(o(zi) — k(s $)¢(f?))T(¢(ij) — k(z;,2)¢(2)). (13)

Logy ) (#(z:)) =

Noting that:
(d(wi) — k(@i 2)0(2)T () — k(zj, T)(T))
= ¢(z:)" d(x;) — $(@)" d(wj)k(wi, &) — P(:)T H(T)k(25, T) + k(as, D)k (a;, )
= k(x;, x5) — 2k(x;, 2)k(z;, &) + k(x;, T)k(z;, &)
= k(x;, z;) — k(xi, @)k(z;, T), (14)
we finally have a simple form for the entries of K*:

z  arccos(k(x;, T)) arccos(k(xj,;i)) (b(wis 25) — k(zi, B)k(e;, 7). (15)

xr
" \/1—k:(xz, \/1— (x,
Finally, it is possible to consider the geodesm distances in H, by simply replacing
the Gram matrix K associated to the kernel k(.,.) by another Gram matrix K*.

1 It is important to note that points on R are presented as vectors from the center of
the hypersphere, while points on 7, are presented as vectors from pu.
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4 A New Kernel Accounting for Geodesics in
Hyperspherical RKHS

4.1 The Gaussian Case

However, it is possible to interpret K directly as the Gram matrix derived from
a new kernel &% such that:

arccos(k(z;, 7)) arccos(k (96]‘755))

)
V1= k(zi, 8)2\/1 — k(x;, &
(k(wi, x5) — k(2 ©)k (%w))

K (24, m5) =

with the assumption that if z; = & (resp. z;), then k%(x;, z;) = arccos k(z;, x;).
In such a perspective, we first need to establish the following result:

Proposition 1. k% is a kernel.

Proof:
First, let us prove that
k1:R"xR" - R
Tiy Tj k)(l‘z, .Z‘j) — k)(l‘z, i‘)k‘(l‘j, i‘)
is a kernel. To do so, let us simply consider
P:R*" > H
x> ¢(x) — k(z, T)p(T)
and remark that, obviously,
ko 1 R"xR"” - R
T, Tj > (P(xi)T@(xj)
is a kernel, as ks corresponds to the Euclidean inner product in an another
RKHS, onto which ¢ maps. As it appears in Equation [l that ki(z;,z;) =
ko(zi, x;), ki is also a kernel.
Second, remark that k% (z;,x;) can be re-written as the following conformal
transformation g(z;)k1(z;, z;)g(x;) with:
g:R*" >R

PN arccos(k(z, %))

V1=

1
which shows [3/T4] that k7 is a kernel and concludes the proof. O

Finally, we can consider a new vector space H® with Euclidean inner product
noted (., .)3+ such that for any pair z;, z; € X2, we have:

(@7 (), 8" (2))) e = k" (21, 2;5)
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with ¢® being the mapping from R™ onto H?. Then, the non-Euclidean distance
in R™ derived from k¥ can be interpreted in two different ways: First, as the
geodesic distances among ¢(X) on the Gaussian RKHS, and according to a
particular reference point #; Second, as the Euclidean distances among ¢*(X) on
a new parametric RKHS H? (with a data-dependent parameter & corresponding
to the pre-image of the Karcher mean of ¢(X)).

4.2 The General Case

Now, let us remark that these results stand not only for the Gaussian RKHS, on
which our work is based, but also for any kernel which maps the dataset onto a
hypersphere, and such as the angle between any pair of vectors is smaller than
or equal to 7/2.

This is notably the case for any "normalized" RBF kernel. Let us recall that
a RBF kernel is of the form k(z;,x;) = h(d(z;,x;)) where d is a metric on R"
and where h is a function from R onto RT. By "normalized", we mean that

— h(0) =1 (so that the vectors are of unit length in the RKHS, leading to a
hyperspherical manifold)
— h(z) €]0,1] Yz € R (so that the dataset remains in a sphere quadrant)

5 Experiments

In this section, we assess the interest of geodesic analysis on hypersperical man-
ifolds thanks to several experiments. First, we evaluate during a clustering task,
the well-grounded of the use of geodesic distances and of the pre-image of Karcher
mean. Then, during a second task involving supervised classification, we eval-
uate their interest through the kernel trick, as we compare our new kernel k%,
presented in Section 1] to the classical Gaussian kernel k. In both tests, we use
a series of UCI datasets [15].

5.1 Hyperspherical Kernel Clustering

In this experiment, we propose to modify the kernel k-means procedure: First,
the centroids of the clusters are computed as the pre-image of Karcher mean of
each class, instead of the extrinsic mean. Second, the Euclidean distances are
replaced by geodesic distances on the hypersphere of the Gaussian RKHS. Let
us note that the distances are always computed between a centroid m; and a
sample x; (i.e. between a pre-image in R™ and a vector in R™). Hence, even if
this algorithm (see Algorithm ) corresponds to a k-means in H?, there is no
need to use the kernel trick with our new kernel: The geodesic distance simply
reads dgeod (5, mi) = arccos(k(z;,m;)).

We compare this algorithm, that we call hyperspherical clustering to the
classical k-means algorithm, its kernelized version [16] and to the spectral clus-
tering algorithm described in [I7]. From a qualitative point of view, let us remark
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Algorithm 2. Hyperspherical clustering
Input: dataset X, number of clusters k
Output: £ clusters
for i =1to k do

Randomly initialize the m; centroid of cluster ¢
end for
repeat
for j =1topdo
fori=1to k do
Compute dgeod(x;, mi) = arccos(k(z;, m;))
end for
¢j = argmin, dgeoa(x;,mi)
end for
Assign to m; the Karcher mean of the set
{a)z S X/ cp = Z}
until no more changes in the partitioning

that while the k-means does not requires the tuning of any parameter, the three
other algorithms require the setting of o to the proper value. Moreover, the tra-
ditional k-means and our version in H?® exhibit comparable complexities. They
both are very light from a computational point of view with respect to the spec-
tral clustering algorithm, as this latter requires the computation of the spectrum
of a p x p matrix, which is O(p?)-complex.

The results are presented in Figure [B for various values of o, and in Table [T]
where the best accuracy rates over the o’s are given. For all evaluations, the
experiments are repeated 20 times to limit the effect of the random initializa-
tion, and only the mean accuracy and variance over the repetitions is displayed.
Apart from Ionosphere and Glass, on which we are slightly less efficient than
respectively the spectral clustering and the kernel k-means algorithms, our al-
gorithm appears to be the most accurate in peak performance. As suggested by
Figure 3] the performances of Hyperspectral clustering is also rather stable over
a range of sigma values. Of course these preliminary results call for a broader
comparison with more data and other clustering approaches.

5.2 Classification

The main restriction of the new kernel k% is that it relies on a data-dependent
parameter, . As the pre-image of the Karcher mean, & can be understood as
a representative of the dataset X. Thus, if X is separated into several classes,
there is little chances that Z fits as a good representative of all the classes (it may
fall between several classes). Hence, we think &% is more adapted to generative
(class-wise) algorithms, in which a dedicated Karcher mean is computed for each
class.

As a consequence, we do not use k% with the state-of-the-art SVM [I], as it
is a discriminative algorithm for which the computation of the Karcher mean is
likely to be unadapted. Instead, we consider the PerTurbo algorithm [18], which
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Fig. 3. Accuracy rates on the clustering task for different values of o (on a logarithmic
scale), and for the following algorithms: k-means, spectral clustering, kernel k-means
and hypserspherical clustering

appears to provide similar performances while being generative. Nevertheless,
let us note that our kernel would be adapted to one-class SVM for multi-class
classification problems, such as in [19].

PerTurbo is a classification algorithm inspired from recent advances in com-
puter graphics: Each class is characterized as a manifold in the input space (in a
manner similar to the cloud of points giving birth to the 3D surface of a virtual
object) thanks to an approximation of the Laplace-Beltrami operator [20/2T].
As this approximation happens to be the Gaussian kernel, its perturbation mea-
sure (when a test sample is added to the manifold) can be re-interpreted in the
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Table 1. Performances for the best o. The last column indicates if our method out-
performs the others.

kernel  spectral Hyperspherical

Datasets  k-means . . Best ?
k-means clustering clustering
Iris 65.1 (0.5) 66.7 (0.0) 84.9 (3.6) 89.1(0.3)
Ecoli 50.0 (2.4) 62.6 (4.9) 54.1 (5.9) 65.5(8.7)
Ionosphere 69.1 (6.5) 64.1 (1.4) 72.7(2.5) 71.2 (0.0) °
glass 35.6 (2.9) 54.3(0.9) 49.7 (1.9) 52.9 (1.6) °
vote 59.1 (0.0) 53.4 (0.0) 84.7 (7.3) 89.4(0.21)
wine 65.6 (2.5) 67.4 (0.0) 66.8 (1.4) 70.2(4.8)

kernel machine learning setting. Moreover, the perturbation measure appears
to correspond to the reconstruction error in Kernel-PCA. Hence, in a nutshell,
PerTurbo can be interpreted as the following algorithm: (1) For each class, learn
a set of eigenfunctions thanks to Kernel-PCA; (2) project any test sample onto
the subspace associated to each class; (3) classify the test sample into the class
for which the distance between the projection into the corresponding subspace
and the sample is the smallest. Thus, PerTurbo can be related to some particular
cases of subspace classifiers [22] in kernelized space.

This interpretation of PerTurbo in the kernel machines setting allows to use
other kernels than the Gaussian one, whereas this latter is the only one which is
proved to approximate the Laplace-Beltrami operator. Hence, we compare the
result of PerTurbo with (1) the Gaussian kernel, (2) our new kernel. In addition,
in order to remain comparable with more classical results of the state of the art,
we also compare the results with C-SVM (using the R package kernlab [23]) using
Gaussian kernel only. For the three algorithms, the experimental conditions are
identical: the training set is made of 50% of the dataset randomly picked up, the
process is repeated 30 times and the mean accuracy and its standard deviation
are considered. The optimal value for the o parameter is found with a logarith-
mic grid-search. For SVM, we did not use a grid-search for the C' parameter, in
order to make sure that the three algorithms have the same number of degrees of
freedom which are fixed through a grid-search. Hence, following [3], we automat-
ically tune C' such that it is 10 times the number of training samples involved.
In a multiclass setting, we consider the average number of training samples per
class, i.e.. C = (Total number of training samples x 5)/Number of labels. Al-
though this rule is very efficient, it only provides nearly optimal results, which
may explain why on some datasets, there are little differences with the state-
of-the-art accuracy. On the other hand, if one wants to fully optimize the value
of C so that the regularization of the separating hyperplane is completely con-
trolled, it is also possible to introduce an additional regularization parameter for
PerTurbo and to tune it similarly to C' [I8]. The results are given in Table [2
The performances of PerTurbo are slightly lower than the SVM. However, this
is advantageously balanced on more than half of the datasets by the use of a
kernel accounting for geodesic distances. As a consequence, it appears that the
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Table 2. Description of performances for classification. Mean classification accuracy
rates for Perturbo with Gaussian Kernel with Euclidean (second column) and with
geodesic distances (third column). The last column indicates whether the geodesic
distance leads to some improvements over the Euclidean distance. Results with SVM
are also given for references. The value between parenthesis is the standard deviation.

Datasets SVM PerTurbo = PerTurbo  Better

(Euclidean) (geodesic)

Tonosphere 94.0 (1.1) 92.5 (0.9) 94.2 (1.2)
Blood  76.2 (1.8) 76.9 (1.2) 77.5 (1.8)
Parkinsons 91.0 (2.5) 95.3 (3.3) 94.9 (1.0) =
s 96.4 (1.6) 96.3 (1.4) 96.8 (1.0) =~
Haberman 74.6 (2.4) 75.2 (4.2) 73.7 (0.7) o
Glasses  66.0 (3.9) 62.1 (0.9) 68.8 (3.0)
Wines  97.2 (1.5) 84.7 (2.2) 96.8 (1.0)
Diabetes  76.9 (1.3) 75.0 (1.8) 73.1 (1.9) o
Australian 86.5 (1.2) 86.2 (1.0) 84.5 (1.6) e
German 75.5 (1.5) 70.5 (1.8) 72.0 (1.5)

use of such a kernel on generative classifiers may enhance the results up to the
performances of SVM. On a more qualitative point of view, it is interesting to
recall that when o increases, the portion of the sphere embedding ¢(X) reduces,
so that both (1) the error due to the approximation of the geodesic distance
on the tangent space, and (2) the difference between the geodesic distance and
the Euclidean one, decrease. As a consequence, the difference of performances
between the two kernels should vanish for very high values of o, and the well-
grounded of the use of geodesic distance (in spite of the approximation in the
tangent space) appears when it induces better performances than the Gaussian
Kernel for small values of o. These two phenomena are displayed in Figure @
(for the Blood dataset).

6 Conclusion and Discussion

This work is motivated by a new idea: Some kernels have the interesting property
to map the data onto a portion of the unit hypersphere, and on such a Rieman-
nian manifold, non-linear data description techniques may be more adapted than
linear ones. Thus, we first show how to adapt tools from Riemannian geometry
(geodesic distances, Karcher mean) to RKHS, and we establish on clustering
experiments that this path of study is worthwhile, notably through a new adap-
tation of the k-means algorithm on the hypersphere. Moreover, we prove that
considering first order approximation of geodesic distances in the tangent space
of the manifold is equivalent to use another kernel derived from the original one:
when using this new kernel which directly embeds the geometry of the hyper-
sphere, it is natural to consider linear separability method. This is also assessed
by experiments on classification tasks.



312 N. Courty, T. Burger, and P.-F. Marteau

blood
100 T
90}
o 80F
&
c
S
® 70F
i
?‘é
©
o
60
50
— Gaussian kernel
— new kernel
0 15 -10 <—o0s 0.0 0.5 1.0 1.5 2.0

Log2(Sigma~2)

Fig.4. Classification accuracy as a function of o obtained on the Blood dataset. For
large values of o, accuracies of the two experimented kernels converge.

Although the proposed kernel that relies on the Karcher’s mean is indeed data
dependent, recent applications [19/24] seem to demonstrate that data dependent
kernels may outperform data independent ones, provided that sufficient training
data are available. This opens promising perspectives in multi-kernels learning,
including the boosting of one-class SVM classifiers to address multi-class prob-
lems. This constitutes the most probable follow-up of this work.
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