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Abstract. We present an original method for the online blind calibra-
tion of non-uniform photodetectors. The disparity of the detectors may
arise from both irregular spatial arrangement and distinct slowly
time-varying photometric transfer functions. As natural images aremostly
continuous, the signal collected by neighboring detectors is strongly corre-
lated over time. The core idea of our method is to translate the calibration
problem into relative pairwise calibrations between neighboring detectors
followed by the regularized inversion of a system akin to gradient-based
surface recovery. From our blind calibration procedure, we design an on-
line blind calibration pipeline compatible with clinical practice. Online
blind calibration is proved to be statistically better than standard offline
calibration for reconstructing endomicroscopy sequences.

1 The Need for Online Blind Calibration
in Endomicroscopy

In vivo endomicroscopy consists of imaging the tissue at microscopic level, by
inserting, through a standard endoscope, a probe made of tens of thousands of
optical fibers. A laser scanning unit sends along each fiber an excitation light
that is locally absorbed by fluorophores in the tissue and emitted back at a longer
wavelength along the same fiber to a photodetector. Raw images are produced
at a rate of 9 to 18 frames per second. The standard endomicroscopy image
reconstruction scheme proposed by Le Goualher et al. [1] is composed of three
steps: estimation of the signal collected by each fiber, compensation of calibration
coefficients, and interpolation. Alternative less physically motivated methods [2,
3] use image filtering to remove the fiber honeycomb pattern at the cost of
introducing some blur. As described in [1], each fiber i of the endomicroscopy
probe acts as a mono-pixel photodetector with an affine transfer function:

vi(t) = αiui(t) + βi (1)

where αi and βi are respectively the gain and offset of fiber i, ui(t) is the concen-
tration of fluorophore seen at time t by fiber i, and vi(t) is the signal collected
at time t by fiber detector i.

For the estimation of the calibration coefficients, Le Goualher et al. [1] pro-
posed a offline non-blind calibration method, assuming constant gain and offset
for each fiber. This method compensates for affine fiber transfer functions by

N. Ayache et al. (Eds.): MICCAI 2012, Part III, LNCS 7512, pp. 639–646, 2012.
� Springer-Verlag Berlin Heidelberg 2012



640 N. Savoire, B. André, and T. Vercauteren

previously acquiring two reference images, one in the air and one in a fluo-
rophore solution, and then deducing from these two images a static offset and a
static gain for each fiber. However, fiber coefficients are both slowly time-varying
and medium-dependent. Indeed, due to photo-bleaching, autofluorescence signal
slowly decreases with illumination time during the course of the procedure un-
less a long pre-illumination has been performed. In addition, fiber gains also
depend on refractive indices and dispersive properties of the observed medium.
For these reasons, image quality after the offline calibration may be affected by
the presence of a veil on the image, i.e. a static noise pattern, which can be seen
in all three images on the top of Fig. 3. Blindly recovering the parameters of non-
uniform photodetectors is an ill-posed problem that has been scarcely addressed
in the literature. In the field of astronomy, Kuhn et al. [4] proposed a blind cali-
bration method that requires shifted images of the exact same scene, which can
typically not be acquired on in vivo samples. The closest work is found in the
field of computer vision. Weiss [5] presented an algorithm for blindly recovering
intrinsic images from a sequence of natural scenes with different illumination, but
only considered detectors on regular grids and with a single gain coefficient. To
the best of our knowledge, this paper proposes the first online blind calibration
of non-uniform mono-pixel photodetectors.

Our first objective is to design a blind method for the calibration of pho-
todetectors having both irregular spatial arrangement and distinct photometric
transfer functions. We then show how our blind calibration can be applied in an
online manner to handle slowly time-varying transfer functions.

2 Solving an Inverse Problem on Temporal Windows

Let us first focus on static blind calibration. The core observation behind our
method is that, when looking at physical objects, neighbor fibers nearly see the
same object signal over time, so the collected signal from two neighbor fibers is
strongly temporally correlated. This property arises from the mostly continuous
nature of natural images, where edges form a set of zero measure and where
the noise can be measured for example using total variation as introduced by
Rudin et al. [6]. To translate this into mathematical terms, we capture the spatial
relationship of the irregularly arranged photodetectors with a Delaunay trian-
gulation applied to fiber locations, and express (1) in terms of a global function
Ut(p) which represents the concentration of fluorophore in the observed medium
at position p and time t. Let G = (V,E) the undirected graph associated with
the triangulation. In our endomicroscopy probes the fiber pattern is pseudo
hexagonal leading to |E| � 3|V |. In (1), we substitute for ui(t) the expression
Ut(φ(t) + pi), where pi is the spatial position of fiber i relative to the center of
probe distal end, and φ(t) is the spatial position of the probe center at time t.
We then have:

vj(t) =
αj

αi
(vi(t)− βi) + βj + εij(t) (2)

where εij(t) = (pj − pi) · ∇Ut(pi + φ(t)) + o(‖pj − pi‖) is a noise term whose
distribution is sparse, with the natural assumption, similar to [6], that spatial
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variations of the concentration Ut(.) are almost always smooth. The signals col-
lected by two neighboring fibers can thus be related by the affine relationship
vj(t) � aijvi(t) + bij , from which we derive two systems:

{aij = αj

αi
}(i,j)∈E (3)

{bij = βj − αj

αi
βi}(i,j)∈E (4)

Interestingly, the affine coefficients aij and bij may conceptually be seen as the
gradients of the fiber gain map and of the fiber offset map, respectively, except
that the fibers are distributed on a non regular grid. Thus, the problem of recov-
ering the calibration coefficients from the relative pairwise calibrations is akin
to recovering a surface from a gradient field [7, 8].

Our blind calibration method is designed in two steps. The first step performs
linear regressions on a buffer of collected images to estimate the relative cali-
bration coefficients (aij , bij) for all (i, j) ∈ E. Once all regressions have been
computed, the second step consists of solving the gain system (3) and the offset
system (4), in order to recover the gain αi and the offset βi of each fiber i.

2.1 Pairwise Relative Calibrations of Photodetectors

The first step of our blind calibration method consists of estimating relative cal-
ibration coefficients aij and bij between two observed signals vi(t) and vj(t) that
are collected by neighboring fibers (i, j) and sampled at times t ∈ {1, ..,m} with-
out loss of generality. From equation (2), we have: vj(t) = aijvi(t) + bij + εij(t).
Noticing that there is measurement error in both variables, an orthogonal linear
regression [9] is more appropriate than ordinary least squares regression to esti-
mate aij and bij . In order to account for outliers resulting from the non-normality
of εij(t), the most common example being when an edge occurs between two
neighbor fibers, we perform a robust orthogonal regression. For this purpose, we
use M-estimators because they are deterministic and computationally competi-
tive compared to other methods. We choose to perform an iteratively reweighted
least squares fitting algorithm, which is at iteration p:

θ̂
(p)

ij = argmin
{θij |θ2

1ij
+θ2

2ij
=1}

m∑

t=1

z(r
(p−1)
ij,t )(θ1ijvi(t) + θ2ijvj(t) + θ3ij )

2 (5)

where θ represents the regression coefficients, z(x) = ρ′(x)/x is the weight func-

tion and r
(p)
ij,t = θ

(p)
1ij

vi(t) + θ
(p)
2ij

vj(t) + θ
(p)
3ij

is the orthogonal residual at iteration
p associated with a sample at time t. By choosing the Tukey’s biweight function
for ρ(.), we ensure that the residuals larger than a cutoff value c are eliminated.
We set c = 4.6851σ̂, where σ̂ is the median absolute deviation of residuals. Our
robust algorithm initialization sets initial slope to sj/si and initial intercept to
μj − sjμi/si, where μi and si respectively denote the median and interquartile
range of {vi(t)}1≤t≤m.



642 N. Savoire, B. André, and T. Vercauteren

As the probe may contain dead fibers that do not transmit any light, any re-
gression between these fibers and their neighbors is sterile. To overcome this
issue, we decide to detect and reject regressions which are bad fits, based
on a robust goodness-of-fit measure gij for (i, j) ∈ E. We define gij as the
weighted squared Pearson correlation coefficient between vi and vj : gij =
(
∑m

t=1 zij,t(vi(t) − vi)(vj(t) − vj))
2 / (

∑m
t=1 zij,t(vi(t) − vi)

2
∑m

t=1 zij,t(vj(t) −
vj)

2), where {zij,t}1≤t≤m are the final weights of (5) after convergence, and
vi = (

∑m
t=1 zij,tvi(t))/(

∑m
t=1 zij,t). These {gij}(i,j)∈E will be used in the second

step of our blind calibration method, focusing on system inversion.

2.2 From Relative Calibrations to Global Calibration

Gain Estimation. The gain system (3) uses the results of an linear orthog-
onal regression. The symmetry of orthogonal regression implies that noise on
the estimates âij is better modeled as multiplicative. Therefore, (3) can be
advantageously transposed to the log domain: {α∗

j − α∗
i = â∗ij}(i,j)∈E with

α∗
i = logαi and â∗ij = log âij . This can be rewritten as Mα∗ = â∗, where M is

the |E| × |V | matrix such as Mlp = δp,jl − δp,il , with E = {(il, jl), 1 ≤ l ≤ |E|}.
In order to cope with noise and dead fibers, we introduce the weight function
w(x) = (1+e−(x−g0))−1δ(x ≥ g0), where δ is the Kronecker operator. This func-
tion puts more weight on the relations of (3) associated with higher goodness-
of-fit values, and ignores those associated with values below an arbitrary cutoff
value g0 = 0.6. To cope with the non-uniqueness of the solution and regularize
the system, we add the a priori that the gains are close to 1. We use the |E|×|E|
diagonal matrix W defined by Wll = w(giljl) to obtain the weighted system:

α̂∗ = argmin
α∗

‖W (Mα∗ − â∗)‖2 + λ‖α∗‖2 (6)

The overdetermined system (6) is solved using a conjugate gradient method
(LSQR) which has a good numerical stability for ill-conditioned systems. Finally,
we deduce the estimated gains α̂ = exp α̂∗.

Offset Estimation. In order to uncouple offset estimation from gain estimation,
weapproximateαj/αi by âij in the offset system(4).As (4)uses the estimates b̂ij re-
sulting from the symmetric orthogonal regression,we symmetrize the offset system
by introducing a normalization factor γij = (1 + âij

2)0.5: βj/γij − (âij/γij)βi =

b̂ij/γij . In order to regularize the system, we make the assumption A that fiber
background β(t) at time t > t0 can be approximated by qβ0 where β0 is an initial
offline background estimation and q is an unknown global factor only depending on
t [10]. Injecting βi = qβ0i in (4) gives: qβ0j − âijqβ0i � bij . A robust estimate of q

is then: q̂ = median(i,j)∈E{b̂ij/(β0j − âijβ0i)}. From this estimate q̂, we obtain an
approximation q̂β0 of β and use this value to regularize the system (4). Weighting
the system as described in 2.2, offset estimation is rewritten as:

β̂ = argmin
β

‖W (Aβ − 1

γ
b̂)‖2 + λ‖β − q̂β0‖2 (7)
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where A is the |E| × |V | matrix such as Alp = (δp,jl − δp,il âiljl)/γiljl . Being
similar to system (6), the system (7) is solved using LSQR.

2.3 Online Blind Calibration Pipeline

Our second objective is to integrate the blind calibration method described in
Section 2.2 into an online calibration pipeline, illustrated in Fig. 2. For this pur-
pose, we leverage the fact that the temporal variation of fiber transfer functions
are quite slow compared to the temporal variation of fluorescence signal which
is due to either motion within the tissue, or motion of the probe along the tissue
during endomicroscopy procedure. We thus decide to apply our blind calibra-
tion method on temporal windows where transfer functions do not significantly
change, and to perform successive calibration updates as soon as possible. At
startup of the imaging system, the probe is in the air and laser illumination allows
to record the non-fluorescent background signal β0. Standard offline calibration
can be used as initial calibration. When the physician starts the acquisition at
time T0, successive frames are accumulated in a buffer until there is sufficient
data to make system inversion possible. Our intuition is that the more moving
fluorescent signal there is, the better linear regression results are, and so the
more chance there is to solve the system. We consider that there is sufficient
data if the following criterion C is satisfied: |{(i, j) ∈ E, gij ≥ g0}| ≥ 0.9|E|.
Regressions are performed until time T1 when C is satisfied, then we perform
system inversion and proceed to the first calibration update. At kth calibration
update, buffer is flushed at t = Tk + 1 and new frames are accumulated in the
buffer from t = Tk + 1 to t = Tk+1 when (k + 1)th calibration is possible. From

the gains α̂Tk and the offsets β̂
Tk

estimated at time Tk, we construct the new

calibrated signal as follows: ∀t ∈]Tk, Tk+1], ûi(t) = (vi(t)− β̂i
Tk
)/α̂i

Tk . This pro-
vides an estimate of the fluorophore concentration ui(t) seen by fiber i at time
t. Finally, interpolation of û is performed.

3 Evaluation and Results

Before method evaluation, we aim at validating the assumption A : β = qβ0.
For this purpose, we tested 4 probes having different numbers of fibers and
different optical properties. Each probe was used to acquire every minute a 10-
frame average image in the air. Laser illumination was continuously on during
the first 14 minutes in order to measure autofluorescence decrease. After 14
minutes, to highlight the phenomenon of autofluorescence recovery, illumination
was off except during acquisition of the images. We then calculated the Pearson
correlation between the background signal of all fibers at time t and those at
time t0 = 0. The results presented in Fig. 1 on the right, reveal that, for all 4
probe models the Pearson correlation coefficient is quite high, being superior to
0.98, therefore validating A.

Our database used for method evaluation is composed of 89 endomicroscopy
sequences acquired during clinical procedures in 6 different medical centers. Each
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Fig. 1. Left: Autofluorescence decrease (t ≤ 14min) and recovery (t > 14min), mea-
sured for 4 different probe models. Right: Corresponding Pearson correlation values
between fiber signal at time t and at time t0.

of these 89 sequences is complete in the sense that every single image from
startup to shutdown was recorded. We propose to evaluate first the ability of
our calibration method to recover the model parameters, then the impact of
the calibration on image reconstruction. Since it is impossible to get an uniform
medium with the same physical properties as a given observed living tissue,
validation cannot rely on flat-field images.

Our online pipeline implies that calibration applied on current data is only com-
puted from past data. This ensures unbiased performance evaluation on recon-
structed data. Given a temporal window ]Tk, Tk+1] where the calibration is static,
we define a static calibration quality CQk which measures the ability to align the
calibrated gains of two neighboring fibers from the model parameters estimated

on ]Tk−1, Tk]: CQk = |{(i, j) ∈ E, 1 − η < â
Tk+1

ij · α̂Tk

i /α̂Tk

j < (1 + η)−1}|/|E|,
where â

Tk+1

ij is the relative calibration estimated between fiber i and fiber j on
the temporal window ]Tk, Tk+1], and η is an arbitrary threshold set to 0.1. The

expression â
Tk+1

ij · α̂Tk
i /α̂Tk

j is basically an unbiased estimation of the residuals of
(6). CQk therefore provides an unbiased measure of how good we would be at re-
constructing a flat image from a flat signal with the same physical properties as
the observed medium. We then define the global calibration quality CQ of the
whole video sequence as the average of static calibration quality values.

According to the results presented in Fig. 2 on the left, online blind calibra-
tion yields statistically higher calibration quality than offline calibration (95%
confidence interval of [0.13, 0.19] using paired difference t-test). Visual inspection
of worst cases revealed that the sequences for which offline calibration performs
similarly or slightly better contains either mostly noise, static fluorescence sig-
nal, non-sufficient moving fluorescent signal or only thin fluorescent structures.
For all 89 sequences, the first online calibration succeeded after less than 30
seconds of moving fluorescent signal, a delay which is clearly compatible with
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clinical practice. Regarding the sequences acquired with a probe of n = 10, 000
fibers for example, computation time was less than 4 ms per frame in the buffer
for performing all regressions, and less than 300 ms for system inversion.

We then propose to evaluate the impact of the calibration on image recon-
struction by measuring the noise (static and dynamic) in a calibrated sequence.
For this purpose, we compute the average of the (Delaunay-based) total varia-

tion [6] on all T frames of the sequence:
∑T

t=1

∑
(i,j)∈E |ûi(t) − ûj(t)|/(|E|T ).

Results show that the measured noise is statistically lower after online blind
calibration than after offline calibration (95% confidence interval of [−55,−33]
using paired difference t-test). The improvement of image quality, from offline

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CQ with offline calibration

C
Q

 w
it

h 
on

lin
e 

ca
lib

ra
ti

on

Fig. 2. Left: Calibration Quality (CQ) of 89 sequences processed by online versus
offline calibration. Right: Pipeline of online blind calibration, highlighted in gray boxes.
Dotted arrows show source input (top) and calibration update (bottom).

Fig. 3. Endomicroscopy image portions of Barrett’s Esophagus, from 3 sequences pro-
cessed by offline calibration (top) or online calibration (bottom). Bottom images ap-
pear much less noisy although no spatial smoothing is performed by online calibration.
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to online calibration, can be qualitatively appreciated on still images presented
in Fig. 3, and on two video sequences acquired on the bile duct and on the colon,
available as Supplemental Material (http://youtu.be/1WYEQysDBqQ).

4 Conclusion

We have presented an original method for online blind calibration of non-uniform
photodetectors, where only past signal is used to calibrate current signal in a
transparent way to the user. By performing robust linear regressions and regular-
izing an ill-posed inverse problem, our method is able to handle photodetectors
having both irregular spatial arrangement and individual slowly time-varying
photometric transfer functions. Using a relatively large database of complete
sequences acquired during clinical endomicroscopy procedures, we have demon-
strated that online blind calibration statistically outperforms standard offline
calibration. For future work, we plan to evaluate whether online blind calibra-
tion leads to higher perceived image quality and better diagnostic performance
for the physicians.
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