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Abstract. We cast segmentation of 3D tubular structures in a bundle as parti-
tioning of structural-flow trajectories. Traditional 3D segmentation algorithms
aggregate local pixel correlations incrementally along a 3D stack. In contrast,
structural-flow trajectories establish long range pixel correspondences and their
affinities propagate grouping cues across the entire volume simultaneously, from
informative to non-informative places. Segmentation by trajectory clustring re-
covers from persistent ambiguities caused by faint boundaries or low contrast,
common in medical images. Trajectories are computed by linking successive reg-
istration fields, each one registering pairs of consecutive slices of the 3D stack.
We show our method effectively unravels densely packed tubular structures, with-
out any supervision or 3D shape priors, outperforming previous 2D and 3D seg-
mentation algorithms.

Keywords: 3D tubular structures, trajectory clustering, morphological segmen-
tation.

1 Introduction

Automatic segmentation of tubular structures is of vital importance for various fields
of medical research. An example of such tubular structures are the organ-pipe-like
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Fig. 1. Method overview. (a) A stack of 2D images of a tubular bundle. Image is courtesy of
Medha Pathak and David Corey, Harvard. (b1) Structural-flow trajectories traversing the stack.
(b2) 2D convexity cues. (c) Trajectory attractions and repulsions. (d) Resulting 3D segmentation.
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stereocilia bundles of the inner ear, depicted in Fig.1(a). Automatic segmentation of
stereocilia in their fluorescent image stacks contributes to medical research on hearing
[1].

There are two main lines of work that tackle segmentation of tubular forms: 1) Meth-
ods that compute a series of independent 2D segmentations [2–5] and then correspond
them along the third dimension [6]. 2) Methods that segment directly in 3D, such as
level sets, 3D watershed [4, 3, 7], region growing [8], or methods that employ 3D
shape priors, often initialized via some type of user interaction [9–11]. In the former
approaches, segmentation and correspondence do not interact with or benefit from each
other, hence 2D segmentation mistakes often propagate to erroneous 3D correspon-
dences. In the latter, local correlations along the third dimension are often aggregated
in an incremental, feed-forward fashion. Consequently, close configurations between
adjacent tubular structures that cause segmentation ambiguity to persist across multiple
slices in the 3D image stack are hard to deal with.

Our main insight is that the topology of tubular structures, each with a correspond-
ing one dimensional medial axis and a deforming continuum of 2D cross-sections along
the axis direction, allows reliable registration of consecutive cross-sections. A condition
for this is the medial axes directions to be non-parallel to the slicing direction. Linking
of successive registration fields results in long range pixel correspondences in the 3D
volume, which we call structural-flow trajectories. We segment densely packed tubu-
lar structures by partitioning structural-flow trajectories, as shown in Fig.1. Trajectory
affinities are computed by marginalizing corresponding convexity-driven pixel affini-
ties across trajectory lifespans (Fig.1(c)). They propagate grouping information along
the 3D image stack, from informative to non-informative places and are robust to lo-
cally ambiguous grouping cues, often caused by closely attached tubular structures in a
bundle. In this way, trajectory partitioning effectively unravels tubular structures auto-
matically (Fig.1(d)), without 3D shape priors or user interactions.

We test our algorithm on segmenting stereocilia bundles of the inner ear in their fluo-
rescent images. We significantly outperform various baseline segmentation algorithms
that do not exploit long range structural information. To the best of our knowledge,
we are the first to utilize structural trajectories for capturing long range structural cor-
respondences between pixels at different depths of a 3D volume rather than temporal
correspondences between pixels of consecutive frames in a video sequence [12].

2 Long Range Structural Correspondence

Consider two consecutive slices, Iz(x, y) and Iz+1(x, y), where z ∈ Z
+ denotes the

slice index from bottom to top of a 3D stack. We define (u, v) to be the deformation
field that registers the two slices as the one minimizing intensity and gradient pixel
matching scores:

minimize
u,v

|Iz+1(x+ u, y + v)− Iz(x, y)|
+ |∇Iz+1(x + u, y + v)−∇Iz(x, y)|+ |∇u|+ |∇v|. (1)

The last two robust penalization terms on gradients of the deformation field u, v encour-
age smoothness in registration [13]. Such smoothness constraints allow registration to
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be reliably computed even in places of ambiguous grouping cues (e.g. faint boundaries),
by propagating registration information from reliable (gradient rich) pixel neighbours
with peaked unary matching terms. We solve for (u, v) through a coarse to fine es-
timation scheme with successive linearisation of the intensity and gradient constancy
constraints under the assumption of small displacements, as proposed in [13]. Dense
slice sampling with respect to deformation along the medial axis of the tubular struc-
tures guarantees displacements to be small from slice to slice.

We define a structure-flow trajectory to be a sequence of (x, y, z) points:

tri = {(xz
i , y

z
i , z), z ∈ Zi}, (2)

where Zi is the set of slice indices in which trajectory tri is “alive”. Trajectories are
dense in space and capture slice-to-slice pixel correspondences, despite illumination
changes or density variations of the 2D shapes between slices across the stack. We
compute structural trajectories by following per slice registration fields computed from
Eq. 2 between pairs of consecutive slices. A forward-backward check determines termi-
nation of a trajectory [14]. Thus, structural trajectories can have various lifespans and
adapt to the varying lengths of the 3D tubular structures (e.g. stereocilia). We visualize
structural trajectories in Fig.1(b1).

The notion of a pixel trajectory has been traditionally used to describe 2D projections
of a single physical point in a video sequence [14]. In our case, the notion of a struc-
tural trajectory refers to a series of physical points geometrically related via successive
registrations.

3 Constrained Segmentation with Structural Flow Trajectories

In 3D segmentation, local cues are often faint and unreliable. Such ambiguities appear
in batches rather than randomly scattered along a 3D stack, since the configuration of
2D cross-sections of the tubular bundle cannot change drastically from one slice to
another. We address persistency of cue ambiguity by formulating 3D segmentation as
spectral partitioning of structural-flow trajectories. We estimate pixel pairwise relation-
ships at each image slice based on local convexity cues proposed in [5]. Trajectory
affinities marginalize corresponding pixel relationships. Thus, grouping cues are prop-
agated from informative to non-informative slices and provide a consistent and well-
informed segmentation throughout the whole 3D volume.

3.1 Per Image Grouping Cues

Consider pixel pi and its neighbourhood Nd(pi) of radius rd, as shown in Fig.2. We
define a peak neighbour pa of pi to be a pixel in Nd(pi) that can be connected to
pi by a straight line of non-decreasing image intensities, of total intensity difference
S(pi, pa) = I(pa) − I(pi). Let f(pi) be the weighted average direction from pi to its
peak neighbours:

f(pi) ∝
∑

pa∈P(pi)

S(pi, pa)(pa − pi), ||f(pi)||2 = 1, (3)
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a: convexity estimation b: peak direction vector f(p) c: degree Df
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Fig. 2. 2D convexity cues. (a) Estimation of the peak vector f(pi). (b) The peak vector field f(p)
points at each pixel to the closest highest intensity peak. (c) Degree image Df . Valleys and peaks
correspond to convex and non-convex regions in the original intensity image. Closely attached
tubular structures in this slice, cause double valleys in Df and confuse the corresponding pixel
relationships.

where pi denotes the 2D pixel coordinate of pi and P(pi) the set of peak neighbors.
We visualize the vector field f in Fig.2(b).

The inner product of f(pi) and f(pa) within the neighbourhood Nd(pi), measures
how much pa’s convexity center agrees with pi’s. We define Df (pi) to be the sum of
such inner products, indicating degree of agreement of a pixel with its surroundings:

Df (pi) =
∑

pa∈Nd(pi)

f(pi)
�f(pa). (4)

We visualize Df in Fig.2(c). Df is rotationally invariant and effectively captures the
rough convex shapes of the 2D cross-sections of a tubular structure. Sinks of f (dot
centers) are characterized by negative values and sources of f by positive ones. In con-
trast to morphological charts computed straight from image intensities, Df is robust to
variations of relative intensities of the peaks and valleys in the original image [5].

Given a degree image Df , we define repulsion Rp(pi, pj) and attraction Ap(pi, pj)
between pixels pi and pj according to the difference of degrees Df (pi), Df (pj) to the
minimal degree mij = min

pt∈line(pi,pj)
Df (pt) encountered on their connecting line:

Rp(pi, pj) = 1− exp(−min(|Df (pi)−mij |,|Df (pj)−mij |)
σr

)

Ap(pi, pj) = (1−Rp(pi, pj)) · δ(||pi − pj ||2 < ra),
(5)

where δ is the delta function. Attractions are short range, acting on pixels within ra
distance. Parameter ra is chosen as a lower bound of the distance between adjacent
structure centers. We set ra = 4 pixels in all our experiments for stereocilia segmenta-
tion.

3.2 Trajectory Partitioning

We compute trajectory pairwise relationships by marginalizing pixel relationships across
trajectory lifespans. We define repulsion RT (tri, trj) between trajectories tri and trj
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to be the maximum of corresponding pixel repulsions and attraction AT (tri, trj) to be
the minimum of corresponding pixel attractions as follows:

RT (tri, trj) = max
z∈Zi∩Zj

Rp(p
z
i , p

z
j ) · δ(|Zi ∩ Zj | > 0)

AT (tri, trj) = min
z∈Zi∩Zj

Ap(p
z
i , p

z
j ) · δ(|Zi ∩ Zj | > 0),

(6)

where superscript z indicates the slice index of a pixel. The above cue marginaliza-
tion reflects the nature of tubular structure bundles: in some slices, tubular structures
attached to each other confuse corresponding degree fields as shown in Fig.2(c), caus-
ing leakage in segmentation. On the contrary, over-segmentation of 2D cross sections
is highly unlikely under our convexity cues. As such, trajectory affinities essentially try
to detect the informative slice where attached structures separate.

We classify trajectories as foreground or background by thresholding their average
degrees Df (tri) = mean

z∈Zi

Df (pzi ) at 0. Let X ∈ {0, 1}|T |×K be the matrix whose

columns are the indicator vectors of K clusters. We cluster foreground trajectories by
maximizing intra-cluster attractions AT and inter-cluster repulsions RT [15]:

maximize ε(X) =

K∑

k=1

X�
k (AT −RT +DR)Xk

X�
k (DA +DR)Xk

(7)

subject to X1|T | = 1|T |,

where DA = Diag(AT1|T |), DR = Diag(RT1|T |) are degree matrices and 1|T | is
the |T | × 1 vector of 1. We choose K to be a rough upper-bound of the total number
of tubular structures present in the stack, estimated from the per frame degree fields.
We obtain the near-global optimal continuous solution of Eq.7 from the top K gener-
alized eigenvectors of (AT − RT + DR,DA + DR). We discretize the eigenvectors
by rotation [16] and obtain K clusters. We repeatedly merge clusters with no repulsion
between their trajectories. Structure bifurcation can be accommodated by a hierarchical
segmentation scheme, where cluster merging probabilities depend on ratios of cluster
attractions versus repulsions. We summarize our method in Algorithm 1.

Algorithm 1. Unraveling Tubular Structures
1: Let {Iz, z = 1 · · ·T} denote an ordered sequence of T images in a 3D stack.
2: for all Iz, z = 1 · · ·T do
3: Compute peak vector field fz(pi) and degree field Df

z (pi) using Eq. 3 and Eq. 4.
4: Compute pixel attractions Ap and repulsions Rp using Eq. 5.
5: end for
6: Compute structural trajectories tri, i = 1 · · · |T | using method of [14].
7: Compute trajectory degrees Df (tri), i = 1 · · · |T |.
8: Classify trajectories as foreground T F = {tri|Df (tri) > 0}.
9: Compute foreground trajectory attractions AT and repulsions RT using Eq. 6.

10: Compute the top K generalised eigenvectors V of (AT −RT +DR,DA +DR).
11: Discretize eigenvectors V by rotation [16] to obtain K trajectory clusters Gi, i = 1 · · ·K.
12: while ∃ Gi, Gj ,RT (Gi, Gj) = 0 do
13: Merge Gi, Gj

14: end while
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4 Experiments

We test our method on segmenting stereocilia of the hair cells in the inner ear from
their fluorescent image stacks. Each stack is 7 to 20 slices long and contains 50 to
70 stereocilia. 3D ground-truth stereocilia centers are marked in each image stack.
Ground-truth samples are illustrated in the first column of Fig. 3. We compare our
method against three baseline approaches: 1) 3D k-means on pixel intensities. Number
of centers k is chosen to achieve best performance. The resulting clusters are pruned
based on their size and aspect ratio. 2) 3D watershed (MATLAB built-in implementa-
tion) 3) Dot finding [5] using code provided by the authors. Given the 2D output dots of
[5], we produce the 3D segmentation by linking segmented dots between consecutive
slices via Hungarian matching. We evaluate performance with the following metrics:

Input Stack 3D K-means 3D Watershed Dots Finding Our Method

Fig. 3. Segmenting a stereocilia stack (best viewed in color). First column shows 4 (out of 22)
images of a stereocilia stack with corresponding 3D ground-truth tubular structure centers. Depth
decreases from top to bottom. Column 2-5 show 3D segmentation using 3D k-means, 3D water-
shed, dot finding [5] and our method respectively. Numbers and colours indicate tubular structure
identities. In 3D watershed, tubular structures leak across faint boundaries and break arbitrarily
between slices. In dot finding, notice the leaking segments of numbers 9, 20, 38, 43, etc. Our
method provides consistent 3D segmentations, correcting leakages and miss-detections.
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Fig. 4. Left: Precision-recall for 2D slice segmentation. We histogram (precz, recz) values for all
slices z in our stacks. Right: Precision-recall for 3D tubular structure identification. We histogram
(track-reci, track-preci) of all labelled tubular structures in our stacks. Best performance is
achieved when the histogram is concentrated at the right top corner (precision=1, recall=1). Our
method (in green) has significantly higher precision and recall in both tasks.

1) Goodness of 2D segmentation. For each slice z, given mz ground-truth structure
centers and nz segment centers hypotheses, let dzij be the Euclidean distance between
structure center i and segment center j in slice z. We use the following measures:

precz =
#{j: minmz

i=1 dz
ij≤τ}

nz
, recz =

#{j: minmz
i=1 dz

ij≤τ}
mz

. (8)

We visualize the histogram of (precz , recz) over all slices in Fig.4 left. Same evaluation
metrics were used in [5].

2) Goodness of 3D identification. Given m 3D ground-truth tubular structures and
n 3D tubular structures hypotheses, let �gi denote the length of ground-truth structure
i and �dj denote the length of segment structure hypothesis j. We use the following
measures:

track-reci = maxnj=1
#{z: dz

ij≤τ}
�gi

, track-preci = maxnj=1
#{z: dz

ij≤τ}
�dj

. (9)

Tracking precision and recall together quantify how consistently the 3D segmentation
hypotheses capture the 3D ground-truth structures [17]. We visualize the histogram of
(track-reci,track-preci) over all labelled tubular structures in Fig.4 right. We set τ = 3.

Our method outperforms all baseline approaches. Low contrast and faint boundaries
make stereocilia segmentation challenging. Our gain in performance comes from cor-
rections of leakages and miss-detections by propagating separations or detections from
informative to ambiguous places in the 3D volume, as shown in Fig.4. Miss-detections
in our method are often due to localization errors: segment hypotheses centers are a bit
more than 3 pixels away from the corresponding ground-truth. A local gradient descent
for discovering the intensity peak in the local neighbourhood could alleviate from such
localization mistakes. We did not add this step to keep the method clean.
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5 Conclusion

We presented an algorithm for unravelling 3D tubular structures in a tight bundle by
propagating grouping information across multiple cross-sections of their 3D volume si-
multaneously via spectral partitioning of structural-flow trajectories. Our qualitative and
quantitative results show our method effectively integrates local grouping cues for ac-
curate segmentation and identification of densely packed structures, outperforming 3D
and 2D baseline segmentation algorithms. We are currently exploring ways of applying
our algorithm to 4D cell tracking, where both temporal and structural correspondences
would mediate cues for segmenting spatio-temporal cell structures.
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