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Abstract. Fluorescently-tagged proteins located on vesicles can fuse with the
surface membrane (visualised as a ‘puff’) or undock and return back into the bulk
of the cell. Detection and quantitative measurement of these events from time-
lapse videos has proven difficult. We propose a novel approach to detect fusion
and undocking events by first searching for docked vesicles that ‘disappear’ from
the field of view, and then using a diffusion model to classify them as either fusion
or undocking events. We can also use the same searching method to identify
docking events. We present comparative results against existing algorithms.

1 Introduction

The movement of numerous proteins between the various sub-compartments of a cell
is critical in the biological function of a cell. Defects in protein movement can lead to
disease, e.g. ineffective movement of a protein called GLUT4 from small intracellular
vesicles towards the surface membrane of a fat and muscle cell, and their consequent
fusion with that membrane, leads to insulin resistance and type 2 diabetes [1]. Un-
derstanding these processes at a molecular level is, therefore, critical to understanding
cellular behavior in normal and diseased states.

The docking and fusion of intracellular vesicles with the surface membrane of cells
can be visualised using Total Internal Reflection Fluorescence Microscopy (TIRFM). A
snapshot of the distribution of vesicles labeled with a fluorescently-tagged GLUT4 in a
single fat cell is shown in Fig. 1(left) while Fig. 1(right) shows some of the key events
in GLUT4 movement to the surface membrane. These key events in vesicle movement
to the surface membrane can be described as follows. First insulin, which is required
for the vesicles to fuse with the membrane, signals for the vesicles to move towards the
surface membrane. Then some of the vesicles make it to the edge of the cell and ‘dock’
with the cell membrane. This docking event corresponds to vesicles suddenly halting
and vibrating in the same place for a few seconds. After docking for some time, some
of the vesicles then fuse at the cell membrane. This can be seen as a ‘puff’ (see row A
in Fig. 2). Other vesicles dock for a few seconds and then undock and leave the vicinity
of the membrane, returning back into the main bulk cell (i.e. go out of view; row B in
Fig. 2) or move off to a different part of the membrane.

Extracting information and quantifying vesicle dynamics in TIRFM videos has
proven difficult and is a major barrier to understanding their molecular basis. It is im-
practical to manually mark the video data as it would be far too time-consuming and

N. Ayache et al. (Eds.): MICCAI 2012, Part III, LNCS 7512, pp. 329–336, 2012.
© Springer-Verlag Berlin Heidelberg 2012



330 L. Berger et al.

Fig. 1. (left) A fat cell’s vesicles (bright dots) tagged with a green fluorescent protein and imaged
using TIRFM. (right) Key events of insulin-stimulated GLUT4 translocation (see text for details).

error-prone, making an automatic approach necessary. Developing a robust quantita-
tive vesicle analysis method will be important in many areas of cell biology where
vesicle fusion and undocking with the surface membrane occurs, e.g. events such as
neurosecretory vesicle fusion [2], which is relevant to Alzheimer’s disease and
schizophrenia. Current methods that are popularly and extensively used for biologi-
cal research first segment individual vesicles by analyzing the surrounding gray level
distribution, and then use thresholds on the pixel intensity to distinguish between fu-
sion and undocking events, e.g. Bai et al.[3] and Huang et al. [4]. In Vallotton et al.
[5], a matched filtering approach is used to identify events that highly correlate against
a standard fusion event through space and time. However, this approach is not only
computationally expensive, but tends to miss many events due to the high variability in
duration, size and noise levels of fusion events. In Mele et al. [6], videos are represented
as a 3D image space, where using a threshold for noise, patches of interest are differ-
entiated from noise according to absolute difference in pixel intensity between frames.
These patches of interest are then further analysed using a 3D extension of the Maxi-
mally Stable Extremal Regions algorithm to detect high intensity and highly variable
regions which would correspond to potential fusion events. A set of descriptors includ-
ing intensity differences, fusion spot size, and degree of fit to a diffusion model are
collected for each candidate event, and are then compared against pre-identified fusion
events using PCA. This method however does not consider undocking events.

2 Proposed Method

We first outline a search algorithm for detecting vesicles that suddenly disappear due to
fusion or undocking - we shall call these candidate events. By modifying this algorithm
we are also able to detect vesicles that suddenly appear, and to the best of our knowledge
this is the first approach that has been proposed to detect docking events. To classify
the candidate events, we build on an idea taken from [6] which is to use a mathematical
diffusion model to extract features for classification. In [6] an analytical solution to the
diffusion equation is derived to explain how the intensity of a vesicle should change
over time during fusion (recall as mentioned earlier, [6] cannot handle undocking, and
docking, events). We develop this idea by considering a 2D diffusion model which
considers the whole vesicle and its surrounding area, and we also introduce a source
and sink term to model both fusion and undocking events explicitly. We then fit these
fusion and undocking models to the candidate event and use the goodness of the fit
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to classify the event as a fusion or an undocking event. We test our algorithm on real
TIRFM data and demonstrate its performance for a range of videos.

Detecting Fusion and Undocking Events - Sophisticated algorithms to track the be-
haviour of vesicles already exist, e.g. [7]. Here, the vesicles of interest are only those
that have docked to the membrane and then go on to either fuse or undock, and thus,
there is no need to track individual vesicles - this same phenomenon was also looked
at in [8] using a patch-based method. Our main assumption is that a vesicle remains
stationary for around N frames before it fuses or undocks. Hence, we search for vesi-
cles that have been visible in the same position throughout the past Np frames but then
cannot be found again in this position during Nf future frames. This corresponds to the
vesicle first being docked (visible) and then having either undocked or fused (not visi-
ble). We also allow for brief periods of vesicle disappearance. This allows us to detect
vesicles that shortly go out of view due to noise and TIRFM artifacts but still follow
the overall pattern of a disappearing vesicle. As preprocessing, we reduced noise in our
videos using a standard Gaussian filter (σ = 1.5), as in [6]. For further efficiency, we
also applied a low threshold to eliminate areas with very low intensity and no activity.
We use local maxima to identify the individual vesicles in each frame which gives better
results than using an adaptive thresholding approach as performed in [7].

Fig. 2. (Left) Local maxima (red crosses) and local minima (blue circles). (Right) An image
sequence showing a very prominent fusion event (row A), and an undocking event (row B).

Let V denote a 2D matrix that contains the positions of all local pixel maxima (see
Fig. 2) in a 5×5 neighbourhood for every frame in the video, such that vi j is the position
of the jth maxima (vesicle) in the ith frame, and vk: = [vk1, vk2, ..., vk j, ...] denote the set
of all the local maxima found in the kth frame. Similarly let W denote a 2D matrix that
contains the positions of all the pixels that have a local minima (see Fig. 2) in a 3 × 3
neighbourhood in each frame such that wi j is the position of the jth minimum in the ith

frame. We can then calculate a score ai j for each vesicle vi j which reflects how closely
vi j follows the pattern of being stationary and visible for the past Np frames and then
being out of view for the future Nf frames:

ai j =

k=i−1∑

k=i−Np

h(vk:, vi j) +
k=i+N f∑

k=i+1

g(wk:, vk:, vi j). (1)



332 L. Berger et al.

Here h(vk:, vi j) is a function which searches vk: for a local maxima that is positioned
within r pixels of vi j. More specifically,

h(vk:, vi j) =

⎧⎪⎪⎨⎪⎪⎩
1 if ∃ v ∈ vk: s.t |v − vi j| ≤ r ,

0 otherwise,
(2)

where r is the radius of the vesicle. The function g(wk:, vk:, vi j) searches wk: for a local
minima that is positioned within r pixels of vi j and also checks that there are no local
maxima v ∈ vk: which are close to vi j, i.e.

g(wk:, vk:, vi j) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if ∃w ∈ wk: s.t |w − vi j| ≤ r,

∧∀ v ∈ vk: s.t |v − vi j| > r,

0 otherwise.

(3)

To decide whether a vesicle should qualify as having gone missing we set a threshold
such that if ai j ≥ (Np + Nf )C, then a missing vesicle is detected at vi j, where C ∈ [0, 1]
is a threshold representing the amount of ‘brief disappearance’ that is allowed.

Detecting Docking Events - To detect vesicles that are first not visible but then sud-
denly appear and stay stationary we can simply rearrange Eq. (1) such that

bi j =

k=i−1∑

k=i−Np

g(wk:, vk:, vi j) +
k=i+N f∑

k=i+1

h(vk:, vi j). (4)

To decide whether a vesicle should qualify as having docked we set a threshold such
that if bi j ≥ (Np + Nf )C, then a docking vesicle is detected at vi j.

3 A Computational Model for Fusion and Undocking Events

TIRFM helps create an evanescent field which illuminates and excites fluorophores in
a region ≈100nm below the interface. The evanescent field’s intensity decreases expo-
nentially with the distance perpendicular to the interface which directly relates to an
exponential decrease in the fluorescence [9]. For a vesicle that goes from being docked
at the membrane to fusing and diffusing into the membrane, the total number of fluo-
rophores does not change, however, as the fluorophores diffuse into the membrane they
are now collectively closer to the interface which can result in a slight total intensity in-
crease in the video. In the fusion model, this is represented using a diffusive and a source
term centred at the vesicle. During an undocking event, there is no diffusion since the
vesicle just undocks and returns into the cell. This is modelled using just a sink term
centred at the vesicle which is able to explain the sudden decrease in intensity.

Definition of the Models - For each of the previously detected candidate events vi j

a sequence of subregions centred at the event spatially and temporally is taken from
the video. A sequence length of Np/2 + Nf /2 guarantees that the actual event happens
during these frames. The size of the subregion should include the whole vesicle and
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some room for a fusion (puff) to happen - we take this to be 4r × 4r. Let Ik(x, y) be
the pixel intensity at position (x, y) within the subregion, during the kth frame, with
x ∈ [−2r, 2r], y ∈ [−2r, 2r] and k ∈ [i − Np/2, i+ Nf /2]. Let Mk be the circular mask of
radius r, centred at the candidate vesicle position vi j = (vx, vy) such that

Mk(x, y) =

⎧⎪⎪⎨⎪⎪⎩
Ik(x, y) if (x − vx)2 + (y − vy)2 ≤ r2

0 otherwise.
(5)

This will be the mask on which the source or sink will be able to act. We can then
introduce the model for a fusion event as

∂I
∂t
= DF

(
∂2I
∂x2
+
∂2I
∂y2

)
+ S FMk, (6)

where S F ∈ [0,∞) is the magnitude of the source and DF ∈ [0,∞) is the diffusion coef-
ficient, which model the amount of increase and diffusion of fluorescence respectively.
The model for an undocking event is given by

∂I
∂t
= S UMk, (7)

where S U ∈ (−∞, 0] is the magnitude of the sink. As there is no puff, i.e. no diffusion
in an undocking event, then DU = 0, causing the diffusion term to disappear.

Using the Models for Classification - We can use Eqs. (6) and (7) to explain how a
candidate event evolves temporally and whether it can be classified as a fusion event, an
undocking event, or neither. We pick a frame as initial conditions to (6) and (7), evolving
the system by one time step and then comparing the predicted result with the actual next
frame. The total intensity difference between the predicted frame and the actual frame
of each model is then turned into a likelihood ratio which is used for classification. Let
us define a function which evolves the fusion model in (6) by one time step and solves
for the new intensity distribution ÎF

k+1 of the subregion

ÎF
k+1 = F(Ik,DF , S F). (8)

The fusion model in (6) is solved numerically using the Crank-Nicolson method, with
homogeneous Neumann boundary conditions and initial conditions Ik. We then opti-
mize (8) to find the optimal DF and S F values which let the fusion model best predict
the next frame. This optimization step is implemented using the well known Nelder-
Mead method. The absolute difference ξFk over the whole subregion between the pre-
dicted frame ÎF

k+1 = F(Ik,DF , S F) and the actual frame Ik+1 is then given by ξFk =

minDF ,S F

∫
Ω
|ÎF

k+1−Ik+1| dΩ, whereΩ is the area of the subregion and k = [i−Np/2, ..., i+

Nf /2]. A similar calculation can be done for the undocking model using ξUk = minS U

∫
Ω

|ÎU
k+1−Ik+1| dΩ, where ÎU

k+1 = U(Ik, S U) is the function that evolves the undocking model
(7) by one time step and solves for a new intensity distribution of the subregion. We can
then define a likelihood ratio λk =

ξUk

ξFk
to see which model is better at predicting the next

frame. When λk > 1, then the fusion model is better at predicting the next frame Ik+1,
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and if λk < 1, then the undocking model is better. To finally decide whether a fusion
event has happened, we use a simple threshold on λ to determine the class, i.e. Fusion
if (max(λ) ≥ α), Undocking if (min(λ) < γ ∧ max(λ) < α), or Noise otherwise. The
thresholds can be determined by inspecting the results of a few known events.

4 Results

All the results presented here are evaluated against groundtruth generated by a cell
biology expert working in the field of TIRF microscopy and vesicle trafficking. Our data
set comprises of four videos1. The first part of the proposed method, which searches
for ‘disappearing’ vesicles, achieves an average detection rate of 87.5%. This might
not seem as high as expected but is due to the inherent difficulty of the problem. The
fusions can be extremely varied in their nature and are often, even for biology experts,
difficult to spot and classify. The low spatial and temporal resolution and low SNR in
the videos, due to microscopy limitations, also add to the difficulty of the problem.
Table 1 shows the number of fusion and undocking events in the groundtruth for each
video, the total number of candidate events detected by the proposed method, and the
number of candidate events detected by the proposed method corresponding to true
events in the groundtruth. In these experiments, we set Np = Nf = 20 and C = 0.6.
Other advantages of the proposed method are that it is easy to implement, it is fast,
and it does not rely on any intensity thresholds, just minima and maxima. This part of
the proposed method, i.e. the detection of candidate events alone can be very useful for
biologists who analyze such videos. What previously took a full day’s work to analyze
one video manually can now be achieved in just a few minutes by finding all candidate
events in a video (about 0.25 fps) and then manually classifying the events as fusion
or undocking events. To automatically classify the events, a threshold on the likelihood
ratio produced by the two models is used. The large peak in Fig. 3(left) demonstrates
the algorithm’s ability to produce a clear signal even for cases where a fusion looks
fairly similar to an undocking event. This large peak can then easily be classified as a
fusion event.

Table 1. Precision and Recall results for detecting candidate events

Fusion Undocking Candidate Correct Time
events events events candidate Recall Precision taken

groundtruth groundtruth detected events seconds (s)

Movie1 16 7 24 19 82.6% 79.2% 42 s
Movie2 10 3 13 13 100% 100% 30 s
Movie3 15 12 35 22 81.5% 62.9% 43 s
Movie4 9 12 23 18 85.7% 78.3% 31 s
Average 87.5% 80.1%

In Fig. 3(right), an example of an undocking event is shown, where the large trough
in the likelihood ratio can also be easily classified as an undocking event. The vesicle in

1 Note in other works, e.g. [3] and [4], only one long movie was tested.



Diffusion Model for Detecting and Classifying Vesicle Fusion and Undocking Events 335

2 4 6 8 10 12 14
0.5

1

1.5

2

2.5

Frame number

Li
kl

ih
oo

d 
ra

io
 λ

2 4 6 8 10 12 14
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Frame number

Li
kl

ih
oo

d 
ra

tio
 λ

Fig. 3. (Top left) frames 4-11 taken from a fusion event in Movie3.avi, (bottom left) the likelihood
ratio between the fusion model and the undocking model for different frames during the fusion
sequence, and a threshold of α = 1.5. (Top right) an undocking event and its likelihood ratio
(bottom right) with a threshold of γ = 0.9.

the image sequence is stationary and then moves away (undocks) instead of returning
straight back into the cell which is more common for an undocking event (see Fig.
2(B)). This is where other methods, such as [3] that use intensity thresholds on features
including the maximum intensity increase in the annular area of the vesicle, would fail
and incorrectly classify the event as fusion due to the increase in intensity in the annulus,
which of course is caused by the vesicle movement, and not by a fusion.

Table 2. Results for the automatic classification of detected events

Fusion Accuracy Recall Precision False +ve Undocking Accuracy Recall Precision False +ve
Movie1 91.7% 100.0% 85.7% 16.7% Movie1 91.7% 85.7% 85.7% 5.9%
Movie2 76.9% 80.0% 88.9% 33.3% Movie2 76.9% 33.3% 50.0% 10.0%
Movie3 80.0% 80.0% 61.5% 20.0% Movie3 54.3% 60.0% 37.5% 43.5%
Movie4 91.3% 83.3% 83.3% 5.9% Movie4 78.3% 75.0% 81.8% 18.2%
Average 85.0% 85.8% 79.9% 19.0% 75.3% 63.5% 63.8% 19.4%

Table 2 shows the results for the automatic classification of events detected during the
searching stage with α = 1.5 and γ = 0.9. It also shows that the diffusion model is able
to correctly classify the majority of events and is consistent in detecting fusion events
across videos, which are of prime interest to researchers. The complete analysis for a
typical set of 200 frames of size 160x160 on a standard 2GHz processor took around
1-2 minutes when implemented in MATLAB. Results for detecting docking events have
not been presented here because obtaining the groundtruth for them is extremely cum-
bersome. Fig. 4 shows a comparison of our method against Bai et al. [3] and Huang et
al. [4] using ROC plots. The parameters in algorithms [3] and [4] were optimised for
our videos to give their best possible results. Our proposed method outperforms [3] and
[4], since it avoids the use of pixel intensity thresholds for classification. This makes it
more robust to different videos with different quality and image properties as well as
busy regions where closely neighbouring vesicles can interfere with events that are be-
ing analyzed. Fig. 4 (right) also shows a basic sensitivity analysis on the classification
threshold α which has been performed over all videos. This analysis only looks at the
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Fig. 4. ROC plots for comparative evaluation of fusion (left) and undocking (middle) events, and
a sensitivity analysis (right) of α on the classification of fusion events

classification of fusion events which are of main interest. Choosing α between 1.3 and
1.8 seems to optimize most of the performance measures.

5 Conclusion

Quantitatively measuring the rate of fusions and undocking vesicles is a common
problem in cell biology and crucial for making progress in researching the biological
function of cells. We proposed a simple, fast and easy to implement search algorithm to
find disappearing vesicles. This searching algorithm can also be reformulated to detect
docking events. To automatically classify the disappearing events, we proposed a novel
computational diffusion model for both fusion and undocking events.
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