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Abstract. Sparse learning has recently received increasing attentions in 
neuroimaging research such as brain disease diagnosis and progression. Most 
existing studies focus on cross-sectional analysis, i.e., learning a sparse model 
based on single time-point of data. However, in some brain imaging 
applications, multiple time-points of data are often available, thus longitudinal 
analysis can be performed to better uncover the underlying disease progression 
patterns. In this paper, we propose a novel temporally-constrained group sparse 
learning method aiming for longitudinal analysis with multiple time-points of 
data. Specifically, for each time-point, we train a sparse linear regression model 
by using the imaging data and the corresponding responses, and further use the 
group regularization to group the weights corresponding to the same brain 
region across different time-points together. Moreover, to reflect the smooth 
changes between adjacent time-points of data, we also include two smoothness 
regularization terms into the objective function, i.e., one fused smoothness term 
which requires the differences between two successive weight vectors from 
adjacent time-points should be small, and another output smoothness term 
which requires the differences between outputs of two successive models from 
adjacent time-points should also be small. We develop an efficient algorithm to 
solve the new objective function with both group-sparsity and smoothness 
regularizations. We validate our method through estimation of clinical cognitive 
scores using imaging data at multiple time-points which are available in the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database.  

1 Introduction 

Neuroimaging plays an important role in characterizing the neurodegenerative process 
of many brain diseases such as Alzheimer’s disease (AD). At present, a lot of pattern 
classification and regression methods have been developed for brain disease diagnosis 
and progression. Recently, sparse learning techniques have attracted more and more 
attentions due to their excellent performances in a series of neuroimaging applications 
on different modalities. For example, in a recent study [1], a voxel-based sparse 
classifier using L1-norm regularized linear regression model, also known as the least 
absolute shrinkage and selection operator (LASSO) [2], was applied for classification 
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of AD and mild cognitive impairment (MCI) using magnetic resonance imaging 
(MRI) data, showing better performance than support vector machine (SVM) which is 
one of the state-of-the-art methods in brain imaging classification. 

Following LASSO, several other advanced sparse learning models (i.e., LASSO 
variants) have also been recently used for solving problems in neuroimaging 
applications. For example, in [3], the elastic net which extends LASSO by imposing 
extra L2-norm based regularizer to encourage a grouping effect, was recently used for 
identifying both neuroimaging and proteomic biomarkers for AD and MCI using MRI 
and proteomic data. In [4], a generalized sparse regularization with domain-specific 
knowledge was proposed for functional MRI (fMRI) based brain decoding. More 
recently, group LASSO [5], based on L2,1-norm regularization, was used for jointly 
learning multiple tasks including both classification tasks (e.g., AD/MCI vs. healthy 
controls) and regression tasks (e.g., estimation of clinical cognitive scores) using MRI 
data in [6] and multimodal data including MRI, fluorodeoxyglucose positron emission 
tomography (FDG-PET) and cerebrospinal fluid (CSF) in [7], respectively. Here, the 
assumption of both methods is that multiple regression/classification variables are 
inherently related and essentially determined by the same underlying pathology, i.e., 
the diseased brain regions, and thus they can be solved together. 

One commonplace of all above mentioned methods (i.e., LASSO and its variants) 
is that they aimed for cross-sectional analysis. In other words, only single-time-point 
imaging data (input) and single-time-point responses (output) are used for learning 
models in those methods. However, in some practical brain imaging applications, 
multiple-time-point data and/or multi-time-point responses are often available, thus 
longitudinal analysis can be performed to better uncover the underlying disease 
progression patterns [8]. According to the number of time-points in input and output 
of learning models, we can categorize them into the following four different learning 
problems: 1) Single-time-point Input and Single-time-point Output (SISO), 2) Single-
time-point Input and Multi-time-points Output (SIMO), 3) Multi-time-points Input 
and Single-time-point Output (MISO), and 4) Multi-time-points Input and Multi-time-
points Output (MIMO). Fig. 1 gives an illustration for these four different learning 
problems, with more detailed explanations given later in Section 2. To the best of our 
knowledge, most existing sparse models are aimed for the SISO problem (Fig. 1(a)), 
and it remains unknown in the literature on how to effectively use the longitudinal 
information in sparse learning to solve the other three problems (Fig. 1(b)-(d)). 

In this paper, we address the above problems, i.e., SIMO, MISO and MIMO, which 
involves longitudinal information in either output or input or both. For this purpose, 
we develop a novel temporally-constrained group LASSO method, named as 
tgLASSO, which simultaneously includes the group regularization and the 
temporally smoothness regularization into its objective function. On one hand, as in 
group LASSO (gLASSO), for each time-point we train a sparse linear regression 
model by using the corresponding imaging data and responses at that time-point, and 
further use the group regularization to group the weights corresponding to the same 
brain region across different time points together. On the other hand, to reflect the 
smooth changes between adjacent time-points of data, we also introduce two 
smoothness regularization terms: 1) fused smoothness term which originates from 
fused LASSO [9] , for constraining the differences between two successive weight 
vectors from adjacent time-points to be small; 2) output smoothness term, for 
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constraining the differences between outputs of two successive models from adjacent 
time-points to be small. To the best of our knowledge, no previous sparse models ever 
use both the group-sparsity and the (fused plus output) smoothness regularizations 
into the objective function, for which we further develop a new efficient algorithm. 
We will use our proposed method for estimating clinical cognitive scores, e.g., Mini 
Mental State Examination (MMSE) and Alzheimer’s Disease Assessment Scale - 
Cognitive Subscale (ADAS-Cog), by using MRI data from different time-points. 

 

 

Fig. 1. Illustration on four different learning problems. Here, each edge represents a model, and 
the nodes xj and yj denote the imaging data (input) and clinical scores (output) at j-th time-
point, respectively.  

2 Method 

In this section, we will introduce our temporally-constrained group LASSO 
(tgLASSO) method for longitudinal data analysis. We will first give our motivation 
and problem formulation in Section 2.1, followed by providing the objective function 
in Section 2.2 and the algorithmic solution in Section 2.3. 

2.1 Motivation and Problem Formulation 

Because of the neurodegenerative property of many brain diseases, e.g., AD and MCI, 
patients usually undergo a series of temporal changes reflected in MRI data and 
clinical scores (e.g., MMSE and ADAS-Cog for AD). Here, we want to estimate the 
clinical scores using MRI data. There are four different learning problems according 
to different number of time-points in both MRI data (input) and clinical scores 
(output), as shown in Fig. 1. 

In the first learning problem, i.e., SISO as shown in Fig. 1(a), we want to estimate 
the clinical scores at a certain time-point, e.g., time-point 1 (baseline), by using 
imaging data from single time-point (e.g., baseline). Because both input and output 
are from single time-point, no longitudinal information is involved in this problem, 
and it can be easily solved by the existing sparse linear models, e.g., LASSO. 

In the second learning problem, i.e., SIMO as shown in Fig. 1(b), we want to 
estimate the clinical scores at each time-point (ranging from 1 to T), by using imaging 
data from single time-point 1 (baseline). Similarly, in the third learning problem, i.e., 
MISO as shown in Fig. 1(c), we want to estimate the clinical scores at time-point T, 
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by using imaging data from all time-points (from 1 to T). Finally, in the fourth 
learning problem, i.e., MIMO as shown in Fig. 1(d), we want to estimate the clinical 
scores at each time-point j, by using imaging data from its corresponding time-point j, 
for j =1, …, T. 

Unlike the first learning problem (SISO), the last three learning problems all 
involve longitudinal information, and thus cannot be directly solved using the existing 
sparse models. Also, it is worth noting that SIMO can be gotten from MIMO if setting 
xj = x1 (for j =1, …, T), and similarly MISO can be gotten from MIMO if setting yj = 
yT (for j =1, …, T). For this reason, in this section we focus on MIMO and will further 
develop a new efficient algorithm to solve this new problem as below.  

2.2 Objective Function 

Assume that we have N training subjects, and each subject  has  imaging data at  
different time-points, represented as , … , , … , , where  is a -
dimensional row vector. Denote ; … ; ; … ;  ( ) and  (

) as the training data matrix (input) and the corresponding clinical scores at the -th 
time-point, respectively. We use the linear model to estimate the clinical score from the 
imaging data  at the -th time-point as , where the feature weight vector 

. Let , … , , … ,  ( ), then the objective function of our 
temporally-constrained group LASSO (tgLASSO) can be defined as follows min 12  (1)

Where  and  are the group regularization term and the smoothness 
regularization term, respectively, which are defined as below 

,  (2)

and 

 (3)

In Eq. 2,  is the -th row vector of . It is worth noting that the use of L -norm 
on row vectors forces the weights corresponding to the d-th feature across multiple 
time-points to be grouped together and the further use of L -norm tends to select 
features based on the strength of T time-points jointly. The regularization parameter 

 controls the group sparsity of the linear models. 
On the other hand, as shown in Eq. 3, the smoothness regularization consists of 

two parts. The first one as defined in the first term in Eq. 3 is called as the fused 
smoothness term which originates from fused LASSO [9], and its function is to 
constrain the differences between two successive weight vectors from adjacent time-
points to be small. Also, it is worth noting that, due to the use of L -norm in the fused 
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smoothness term which encourages the sparsity on differences of weight vectors, 
there will be a lot of zeros in the components of the weigh difference vectors. In other 
words, a lot of components from adjacent weight vectors will be identical because of 
using the fused smoothness regularization. The second term in Eq. 3 is called as the 
output smoothness term which constrains the differences between outputs of two 
successive models from adjacent time-points to be small as well. The regularization 
parameters  and  balance the relative contributions of the two terms and also 
control the smoothness of the linear models. It is easy to know that when both  and 

 are zero, our method will reduce to group LASSO. 
To the best of our knowledge, the objective function in Eq. 1 is the first time to 

simultaneously include both the group and the fused regularizations, which cannot be 
solved by the existing sparse models. Also, no previous studies consider using the 
output smoothness as extra regularizer. In the next section, we will develop a new 
efficient algorithm to solve the objective function in Eq. 1. 

2.3 Efficient Iterative Solution 

To minimize Eq. 1, we propose to use the iterative projected gradient descent approach 
[10]. Specifically, we separate the objective function in Eq. 1 to the smooth term 12 (4)

and the non-smooth term 

, (5)

In each iteration k, the projected gradient descent contains two steps. Firstly, from 
, we compute s (6)

where s  denotes the gradient of  at , and  is the step size that 
can be determined by line search. Secondly, we set min 12 | | (7)

The problem in Eq. 7 is the proximal operator associated with the non-smooth term 
, and it can be computed by sequentially solving the proximal operator 

associated with the group Lasso penalty [5] and the proximal operator associated with 
the fuse Lasso penalty [9].  

By utilizing the technique discussed in [10], the above projected gradient descent can 
be further accelerated to yield the accelerated gradient descent approach. Specifically, 
instead of performing gradient descent based on , we compute the search point 

(8)

where  is a pre-defined variable [10], Then, we set 
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s (9)

Finally, we compute the new approximate solution as in Eq. 7. It can be shown that 
such a scheme can achieve a convergence rate of 1/  for l iterations. For more 
details, please refer to [10]. 

3 Results 

In this section, we validate our proposed tgLASSO method, with comparison to the 
existing LASSO and gLASSO methods, using 445 subjects (including 91 AD, 202 
MCI, and 152 healthy controls) from the ADNI database. For each subject, there are 
MRI data as well as clinical scores including MMSE and ADAS-Cog, for the four 
different time-points, i.e., baseline, 6 months, 12 months, and 24 months which are 
denoted as T1, T2, T3 and T4, respectively. Our goal is to estimate the MMSE and 
ADAS-Cog scores at each of the four time-points using MRI data from corresponding 
time-point, which is a MIMO problem as shown in Fig. 1. It is worth noting that both 
SIMO and MISO problems can also be solved by our method as mentioned before. 
However, due to space limit, we do not report those results in this paper. 

Standard image pre-processing is performed for all MRI images, including anterior 
commissure (AC) - posterior commissure (PC) correction, skull-stripping, removal of 
cerebellum, and segmentation of structural MR images into three different tissues: 
grey matter (GM), white matter (WM), and cerebrospinal fluid (CSF). Then, an atlas 
warping method [11] is used to register all different time-point images of each subject 
to a template with 93 manually labeled regions of interests (ROIs). For each of the 93 
ROIs, we compute the GM tissue volume from the subject’s MRI image as features. 

In our experiments, 10-fold cross-validation is adopted to evaluate the performances 
of LASSO, gLASSO, and tgLASSO, by measuring the correlation coefficient between 
the actual clinical score and the estimated one. For all methods, the values of the 
parameters are determined by performing another cross-validation on the training data. 

Fig. 2 shows the feature weight maps gotten from three different methods. Here, 
gLASSO and tgLASSO jointly learn the weight vectors for the four time-points, while 
LASSO learns each weight vector independently for each time-point. As can be seen 
from Fig. 2, due to the use of group regularization, gLASSO and tgLASSO obtain 
more grouped weights across different time-points than LASSO. Furthermore, due to 
the use of smoothness regularization, tgLASSO achieves more smooth weights across 
different time-points than other two methods. These properties are helpful to discover 
those intrinsic biomarkers relevant to brain diseases. For example, as shown in Fig. 2, 
among other disease related brain regions, both left and right hippocampal regions 
which are well-known AD-relevant biomarkers, are detected by tgLASSO, while only 
the left one can be detected by the other two methods. 

On the other hand, Fig. 3 gives the comparisons of regression performances of the 
three methods in estimating MMSE and ADAS-Cog scores at four different time-
points. As can be seen from Fig. 3, tgLASSO consistently outperforms the other two 
methods in estimating clinical scores for multiple time-points. In average, tgLASSO 
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4 Conclusions 

We have presented a new sparse learning method called tgLASSO for longitudinal 
data analysis with multiple time-points of data, which is different from most existing 
sparse learning methods focusing on cross-sectional analysis with single time-point of 
data. Our methodological contributions include: 1) proposing to simultaneously use 
group and (fused plus output) smoothness regularizations in sparse learning; 2) 
developing an efficient iterative algorithm for solving the new objective function. 
Experimental results on estimating clinical scores from imaging data at multiple time-
points show the advantages of our method over the existing sparse methods on both 
regression performance and ability in discovering disease related imaging biomarkers. 
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