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Abstract. We propose a method for deformable registration based on
learning the manifolds of individual brain regions. Recent publications
on registration of medical images advocate the use of manifold learning
in order to confine the search space to anatomically plausible deforma-
tions. Existing methods construct manifolds based on a single metric over
the entire image domain thus frequently miss regional brain variations.
We address this issue by first learning manifolds for specific regions and
then computing region-specific deformations from these manifolds. We
then determine deformations for the entire image domain by learning the
global manifold in such a way that it preserves the region-specific defor-
mations. We evaluate the accuracy of our method by applying it to the
LPBA40 dataset and measuring the overlap of the deformed segmenta-
tions. The result shows significant improvement in registration accuracy
on cortex regions compared to other state of the art methods.
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1 Introduction

The analysis of deformation from non-rigid registration has become an impor-
tant component in brain image applications such as morphometric analysis [1]
and atlas-based segmentation [6]. To improve registration accuracy and thus the
subsequent analysis, recent publications on registration [3,5,7,11] first learn the
manifold capturing the neighborhood relationship of a set of images before reg-
istering individual scans. Registration then consists of determining the geodesic
path between the image pairs and decomposing the deformation into a series of
small deformations along that path. Since each subject moves only towards its
nearby subject, the resulting deformations can be more accurate.

However, the state-of-the-art in this domain faces several challenges. First,
the accuracy of the manifold in capturing the neighborhood relationship of the
underlying data structure highly depends on the metric used for measuring dif-
ferences between images. Current methods typically use a single metric over the
entire image domain. For example, ABSORB [7] measures intensity difference
of the images and GRAM [11] computes the distance based on pairwise defor-
mations between whole brain anatomies. However, two images might be very
similar in certain image regions but very different in other regions. A single
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global metric generally will blur those differences and thus not accurately cap-
ture the neighborhood relations of localized brain regions. A second challenge
relates to the sample size used for training the manifolds. Since manifolds are
constructed directly from image samples, training based on a limited number of
the image samples is likely to result in a poor approximation of the true data
structure. This concern is especially relevant to medical image domain, where
studies are usually limited to a few hundred samples. We address these issues
by developing a deformable registration method based on regional manifolds.

Our method constructs the manifold over the entire image region in two steps.
First, it separately learns the manifolds for individual brain regions and uses
these manifolds to compute region-specific deformations. The construction of
these regional manifolds is now based on metrics that are much more sensitive
to local variations within that region than a single global metric. In addition, the
anatomical variation within a specific region is smaller compared to one captures
in the entire image domain so that our method can faithfully learn regional man-
ifolds with a relatively small number of samples. In the second step, our method
learns the manifold over the entire image domain so that moving along geodesics
of that manifold does not interfere with the deformations inferred from the re-
gional manifolds. Specifically, we use a Markov Random Field model to produce
smooth deformation maps across the entire image domain while preserving the
region-specific deformations. In other words, our approach determines the opti-
mal geodesic path over the entire image region by gradually warping localized
brain regions according to the regional manifolds.

We demonstrate the advantage of our method by performing atlas-based seg-
mentation on LPBA40 dataset. The results show significant improvement in
registration accuracy on cortex regions in terms of overlap score compared to
other state-of-the art registration methods.

2 Regional Manifold Learning Based Registration

We now describe our Regional Manifold Learning based Registration (RMLR)
as illustrated in Fig.1. RMLR first defines a set of regions of interests (ROIs) in
training images. Then, RMLR independently learns the manifolds for individual
regions and finds the region-specific deformations constrained by the regional
manifolds. Next, RMLR learns the manifold for the whole brain image based
on regional manifolds. Finally, RMLR determines the deformation in the entire
image domain based on the global manifold while preserving region-specific de-
formations. We outline each step in more detail in the remainder of this section.

Defining the ROIs. To define the ROIs, we first set the ROIs in the template
image IT . Specifically, we separate the entire image domain Ω into R image
regions {Ωr : r = 1, . . . , R} so that the union of all regions is a subset of Ω
(i.e. ∪r=R

r=1 Ω
r ⊂ Ω) and each region does not overlap with another region, (i.e.

for ∀r,�s �= r : {Ωr ∩ Ωs �= ∅}). We then automatically find the corresponding
regions in training images {Ii : i = 1, . . . , N} using a non-rigid registration [10].
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Fig. 1. Illustration of the proposed method: It first defines ROIs and then learns the
manifolds for each ROI. Next, the global manifold is constructed based on these regional
manifolds. Then, the localized brain regions will be warped to their nearest neighbors
based on the regional manifolds (red and green), however adjacent regions will deform
in mutually compatible ways maintaining the smoothness of the overall deformation
based on the global manifold (blue).

Computing the Regional Manifolds. For each Ωr, we learn the regional
manifolds as in GRAM [5], which was originally proposed for learning the mani-
fold of an entire image domain. In order to reduce the risk of boundary artifacts
during registration, we compute the manifold for a larger image block Br ⊃ Ωr.
Let φBr (Ii, Ij) be the diffeomorphic deformation which maps the image block in
Ii to the corresponding block in Ij . Then, the distance dBr (Ii, Ij) between blocks
is defined as the weighted sum of intensity difference and field smoothness [3,5]:

dBr(Ii, Ij) :=
∑

u∈Br

||Ii ◦ φBr (Ii, Ij)(u)− Ij(u)||22 + λr|| 
 φBr (Ii, Ij)(u)||22, (1)

where λr is a weighting parameter between intensity difference and field smooth-
ness term, and || · || is the L2 norm. To reduce the computational burden in com-
puting the distances for all pairs of blocks, we use the symmetric diffeomorphic
registration [10] and compute dBr (Ii, Ij) only for i < j. Also, we empirically set
λr so that two terms have the same maximum value over all pairs of images.

Based on these pairwise distances, we construct k-NN graph for each region
whose nodes correspond to the image blocks. Heuristically, we set the smallest
value that makes the k-NN graph connected as k. From the k-NN graph, we
find the shortest paths from the block in the template IT to all other image
blocks. Then, the shortest paths from one root node to the rest form a span-
ning tree with respect to Br. We consider this spanning tree MΩr as the regional
manifold for Ωr that represents the neighborhood relations in the specific region.

Registering the ROIs. After computing the regional manifold, we construct
the region-specific deformation based on this regional manifold. Between two
image blocks in Ii and Ij , we choose the shortest path [i, p1, . . . , pl, j] within

the graph MΩr and define φ̂Br (Ii, Ij) := φBr (Ii, Ip1) ◦ · · · ◦ φBr (Ipl
, Ij) by con-

catenating the corresponding deformations between neighbor blocks along that
path. φ̂Br (Ii, Ij) is diffeomorphic because composition operator preserves this

property. The region-specific deformation φ̂Ωr (Ii, Ij) is simply the φ̂Br (Ii, Ij)
restricted to the region Ωr. This process is performed on all R regions indepen-
dently, producing region-specific deformation fields.
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Computing the Global Manifold. Given registration results in the ROIs,
we compute the manifold for the entire image domain Ω. Similar to regional
manifold computation, we measure the distance based on pairwise deformations
φΩ(Ii, Ij) between Ii and Ij . To preserve pre-computed region-specific deforma-
tions while maintaining the smoothness of overall deformation, it is desirable
to compute the globally diffeomorphic deformation in such a way that it keeps
the region-specific deformations. Toward this, we determine φΩ(Ii, Ij) using an
MRF based registration method [4]. A typical MRF model optimizes the follow-
ing energy function:

E :=
∑

s∈V
θs(xs) +

∑

(s,t)∈E
θst(xs, xt), (2)

where V is a set of nodes on the image, E is a set of edges between neighbor nodes,
and xs is the label of node s ∈ V . Each label xs corresponds to a displacement
vector v(xs) by which s moves to a new position. The unary term θs(xs) repre-
sents the data cost of assigning label xs at node s in terms of image dissimilarity.
The smoothness term θst(xs, xt) penalizes the cost of label discrepancy between
two neighboring nodes s and t, i.e. θst(xs, xt) := γst ·min{||v(xs)−v(xt)||1, Tst},
with γst being a regularization constant and Tst being a threshold for truncation.
In order to preserve the region-specific deformations, we define a modified unary
term θ̂s(xs) as following:

θ̂s(xs) :=

{
L(1− δ(xs − x̂s)) for s ∈ ∪r=R

r=1 Ω
r

1−NCC(xs) for s ∈ Ω \ ∪r=R
r=1 Ω

r,
(3)

where L is very large, x̂s is the pre-defined label from region-specific deforma-
tions, δ(·) is a delta function, and NCC is a normalized cross correlation. We
optimize this energy model via tree re-weighted message passing method [8] with
γst = 3 and Tst = 20. In order to guarantee the diffeomorphism, we constrain
the displacement at each node not to exceed 40% of the spacing between two
adjacent nodes [2]. The MRF-based registration for each pair of subjects gives
us φΩ which is diffeomorphic and preserves the region-specific deformations.

Based on these MRF registrations, we construct the k-NN graph whose nodes
represent the images. From this graph, we find a spanning tree from one root
node to all images and consider this spanning tree MΩ as the global manifold.

Registering the Whole Brain Images. We now find the global deformation

φ̂Ω(Ii, Ij) between Ii and Ij constrained by the global manifold MΩ. We denote

[i, G1, . . . , Gm, j] as the shortest path between Ii and Ij in MΩ. Then, φ̂Ω(Ii, Ij)

is defined as φ̂Ω(Ii, Ij) := φΩ(Ii, IG1) ◦ · · · ◦ φΩ(IGm , Ij), where φΩ is the MRF

propagated deformation from the previous step. We now show that φ̂Ω(Ii, Ij)

preserves the region-specific deformation φ̂Ωr (Ii, Ij) in Ωr.
We prove the claim by contradiction. First, in Ωr, the deformation φΩ between

neighbor nodes on MΩ is defined by φ̂Ωr (according to MΩr) because our MRF
registration preserves the region-specific deformation. Then, the deformation for
any path on MΩr with the same start and end node [b, . . . , b] is the identity as
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MΩr is loop-free and φ̂Ωr is symmetric. Thus, the deformation of path passing
through a node twice, such as [a, . . . , b, . . . , b, . . . , c], is equivalent to the defor-
mation defined by the path [a, . . . , b, . . . , c] without that loop. Now, suppose that

there is an image pair with φ̂Ωr (Ii, Ij) �= φ̂Ω(Ii, Ij) onΩr. Let [i, p1, . . . , pl, j] and
[i, G1, . . . , Gm, j] be the shortest paths in MΩr and MΩ, respectively. Then, we
define [i, G′

1, . . . , G
′
n, j] as the corresponding equivalent path of [i, G1, . . . , Gm, j]

in MΩr by first replacing two neighboring nodes [Gq, Gq+1] with the correspond-
ing path in MΩr and then removing all loops according to the previous observa-
tion. We note that a node in either path [i, p1, . . . , pl, j] or [i, G

′
1, . . . , G

′
n, j] can

only appear once in that path. If now φ̂Ωr (Ii, Ij) �= φ̂Ω(Ii, Ij) on Ωr, then two
paths have to differ in at least one position k, i.e. pk �= G′

k. This implies that the
loop-free graph structure MΩr has a loop as there are two unique loop-free paths
between node i and j. As this contradicts our assumption of MΩr , it follows that
φ̂Ω(Ii, Ij) always has to be equivalent to φ̂Ωr (Ii, Ij) on Ωr.

3 Experiments on LPBA40 Dataset

We measure the accuracy of our RMLR method by applying it to the LPBA40
dataset [9]. The dataset consists of 40 linearly aligned brain images each with 54
manually labeled segmentations. From those 40 scans, we empirically choose one
scan as a template. We then determine the registration accuracy by aligning all
other subjects to the template and measuring the overlap between the aligned
and template segmentations. For comparison, we measure the accuracy of direct
diffeomorphic Demons [10] which aligns the images without any manifold learn-
ing. In addition, we compare our RMLR method with whole brain GRAM [5]
which learns the manifold based on a single metric over the entire image domain.
For all three methods, we used the same registration parameters with three levels
of resolution and the smoothing kernel size of 1.5. The remainder of this section
discusses the experimental results in further detail.

Choosing Regions. The proposed method is independent of the choices of
ROIs. In this paper, we try out the two schemes shown in Fig.2. First, we define
regions simply as cubes over the entire image domain as shown in Fig.2(a). The

(a) cubic regions (b) structure regions

Fig. 2. The mid-axial slice of the template image with (a) cubic regions and (b) struc-
ture regions. Red boundaries indicate ROIs.
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(a) region-specific deformation (b) whole brain deformation

Fig. 3. y-displacement in a coronal view for (a) region-specific and (b) whole brain
deformations from RMLR. Black boundaries represent the ROIs. Notice that whole
brain deformation is globally smooth while preserving region-specific deformations.

151×188×136 image is divided into 36 cubic regions whose sizes are 37×32×32.
In order to separate cubic regions, we empirically set a gap of 20-voxels between
regions. The second scheme uses the segmentation of template image IT to define
regions according to anatomical brain structures. As illustrated in Fig.2(b), we
specify 10 regions including frontal lobe, parietal lobe, occipital lobe, temporal
lobe, and sub-cortical regions of left and right hemispheres. Each structure re-
gion is refined through erosion to guarantee the non-overlap between regions.

Comparing Regional and Global Deformations. First,wevisually compare
the region-specific deformation with the whole brain deformation from our RMLR
method. Fig.3(a) shows an example of region-specific deformations based on re-
gionalmanifolds.Weonly display y-displacement vector field in amid-coronal slice.
Black boundaries represent structure ROIs including frontal lobe, temporal lobe
and subcortical regions. Initially, there is only zero-displacement vector field out-
side the ROIs. Fig.3(b) illustrates the whole brain deformation based on the global
manifold which is constructed from regional manifolds. Note that the whole brain
deformation is globally smooth and preserves the region-specific deformation from
the Fig.3(a). This supports our claim thatMRF registration produces the globally
smooth deformation and the region-specific deformation can be preserved during
the MRF registration and composition along the path on the global manifold.

Comparing the RMLR and GRAM. Next, we compare the regional mani-
folds from RMLR with the manifold produced by GRAM based on a single metric
over a whole brain image. To do so, we visualize the shortest paths for the left
hippocampus and right angular gyrus in Fig.4(a) and Fig.4(b), respectively. Up-
per row represents the GRAM manifold and lower row represents the regional
manifolds from RMLR. First, we note that the paths are the same for both re-
gions according to the GRAM manifold (upper) but not so for RMLR (lower).
This indicates that the anatomical variation for one region is generally different
from that of another region and the manifold based on a single global metric
may not capture this local variation with limited samples. Furthermore, regional
manifolds reflect more gradual changes in both regions in terms of hippocampus
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(a) left hippocampus (b) right angular gyrus

Fig. 4. Shortest path for (a) left hippocampus and (b) right angular gyrus. The upper
row is the path by GRAM and the lower row is the path by regional manifolds. The
numbers on top is the subject ID. Notice gradual decreases in hippocampus size and
sulcal depth in the paths of regional manifolds compared with those from GRAM.

size and gyrus appearance compared to the path from GRAM manifold. This
also confirms that regional manifold can better capture the anatomical variation
in the specific region with a small number of samples.

Measuring DICE Scores. To measure registration accuracy, we compute the
DICE score between manual segmentation and atlas-based segmentation from
all registration methods. The average DICE score over all 54 labels on the orig-
inal dataset is 57.4% and the score after direct diffeomorphic Demons is 72%.
Whole brain GRAM slightly improves the score to 73.1%. RMLR increases the
score to 75.1% with the cubic and to 75.2% with the structural region setting.
This shows that our RMLR achieves improvement in average DICE score over all
labels and that this improvement is somewhat independent towards the region
selection schemes. For further comparison, we display in Fig 5 the 25, 50 and 75
percentiles of the DICE scores for the four different registration methods with
respect to selected structures. RMLR produces scores with higher median and
lower variation than GRAM or Demons. In particular, RMLR achieves statisti-
cally significant improvement in cortex regions (p < 0.05). If we use the scores
of Demons as an indicator regarding the degree of difficulty in registering the

Fig. 5. Structure-specific DICE scores. Upper and lower bar represent 75 and 25 per-
centiles of DICE scores, respectively. Midpoint indicates the median.
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regions then the regional manifolds provides the biggest improvements in dif-
ficult regions, such as angular gyrus, and only slightly impacted the results in
easy regions, such as the temporal gyrus and subcortical regions. In summary,
these results agree with our initial intuition that manifolds based on a single
metric over the entire image domain are not as accurate in capturing local brain
variations than ones that are based on regional manifolds.

4 Conclusion

In this paper, we proposed a deformable registration based on learning the man-
ifolds of individual brain regions. Our method first learns the manifolds for spe-
cific regions and then computes region-specific deformations from these mani-
folds. We then determine deformations for the entire image domain by learning
the global manifold while preserving the region-specific deformations via a MRF
model. Experimental results on the LPBA40 dataset show that the proposed
method can significantly improve registration accuracy compared to direct pair-
wise or whole brain manifold learning based registration methods. In a future
work, we will investigate an adaptive way of our method for overlapping ROIs.
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