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Abstract. We present what we believe to be the first investigation into
unbiased multi-subject registration of whole brain diffusion tractography
of the white matter. To our knowledge, this is also the first entropy-
based objective function applied to fiber tract registration. To define the
probability of fiber trajectories for the computation of entropy, we take
advantage of a pairwise fiber distance used as the basis for a Gaussian-
like kernel. By employing several values of the kernel’s scale parameter,
the method is inherently multi-scale. Results of experiments using syn-
thetic and real datasets demonstrate the potential of the method for
simultaneous joint registration of tractography.
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1 Introduction

Automated medical or neuroscientific analyses of white matter tractography
data, such as segmentation or labeling, creation of atlases, and measurement of
tract statistics, all require initial alignment or normalization of tractography via
some method. This alignment is most often performed by applying the transfor-
mations resulting from an image-based fractional anisotropy or diffusion tensor
registration [18,4]. However if the eventual goal is modeling and analysis of white
matter tracts, it may be advantageous to register the tracts themselves, as the
quantity being optimized during registration will be closely related to the final
goal. In this work we explore the possibility of driving an unbiased multi-subject
registration using the trajectory data produced by streamline tractography.

In contrast to the proposed approach, to our knowledge all other methods for
simultaneous joint registration of tractography have been based on alignment of
pre-defined fiber bundles. These methods have required a pre-existing tractog-
raphy segmentation for each subject and have thus been limited to particular
structures: corticospinal tract, forceps major, cingulum and inferior longitudinal
fasciculus [1]; structures resulting from an initial clustering plus expert labels
[19]; left uncinate and front-occipital fasciculi [17]; and the arcuate fasciculus,
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corticospinal tract, and middle cerebellar peduncles [3]. So far, methods that
have performed registration using unlabeled fiber tracts from the whole brain,
e.g. [9,21,12], have been limited to subject-to-subject (pairwise) registration.

In addition to tractography-based registration, our current work builds on two
other categories of related work: fiber tract comparison, and groupwise image reg-
istration.Work in fiber tract clustering has led tomany differentmetrics [16,15,10],
generally based on distances computed between points along the tracts, often with
conversion to fiber affinities using Gaussian kernels as in our proposed objective
function. Tracts have also been analyzed via many styles of point-wise matching,
for example [2,12,10,1]. In the image registration field, several groups have pro-
posed multiple-subject unbiased and template-based image registration methods.
These include entropy-based congealing methods for 2D [8] and 3D [20] that find
a population central tendency image by minimizing entropy, as well as methods
that estimate a population template image that is the minimum distance (in the
space of diffeomorphisms) from all input images [6,4].

2 Methods

2.1 Objective Function

Our basic approach is to represent a brain or atlas by a probability distribution
on trajectories. A “brain” distribution is constructed as a kernel density estimate
from the tractography, and an “atlas” distribution is constructed as a mixture of
the constituent brain distributions. We then choose the alignment parameters on
the collection of brains by maximizing the “sharpness” of the atlas, or minimizing
its entropy.

Given a distance metric D between fibers we define the probability of a fiber
f , given another fiber fj , as

p(f |fj) = 1

Z
e−

D2(f,fj )

σ2 (1)

where the distance is used as the basis for a Gaussian-like kernel with standard
deviation σ, and the normalization constant Z will be discussed later. Our cur-
rent choice of D is discussed below, however this can in principle work for any
of the many existing fiber distances from the literature. Next, the probability of
a fiber f , given the set of all fibers A and their transformations T (“the atlas”),
is defined as

p(f |A, T ) = 1

|A|
∑

j

p(f |fj ∈ A, T ) (2)

where all fibers fj in A contribute to the total probability.
The Shannon entropy H of the distribution of fibers is the expected value of

the negative log-probability of the fibers. In this case the set of current transfor-
mations T has been applied to the fibers (including the transformations Ti and
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Tj currently applied to fibers fi and fj), and we replace the expected value with
the sample average value (using the weak law of large numbers).

H(f |A, T ) = E(−log(p(f |A, T ))) (3)

= − 1

|A|
∑

i

log
1

|A|
∑

j

p(fi|fj , Ti, Tj) (4)

We minimize the entropy as our objective function, arriving at a set of transfor-
mations T .

T = argmin
T

H(f |A, T ) = argmin
T

(− 1

|A|
∑

i

log
1

|A|
∑

j

1

Z
e−

D2(fi(Ti),fj (Tj))

σ2 ) (5)

Note that to simplify the concept and the notation above, we have not mentioned
the fact that the fibers come from several brains. This is implicitly handled in
that the transformation Ti applied to fiber fi is the same transformation that is
also applied to all other fibers from that brain. We assume that Z is constant
for a given value of σ, and thus does not contribute to the optimization.

2.2 Fiber Representation and Distance Function

For simplicity and computational speed, we convert the input variable-length
fiber trajectories to a fixed-length representation (as also proposed by [12,14]).
In practice, representing each fiber by 5 points (endpoints, midpoint, and two
intermediate points) was empirically found to be effective for registration.

Using this fiber parameterization, we propose a pairwise fiber distance metric
D that is related to the Hausdorff distance (the maximum of the minimum dis-
tances between pairs of closest points). We calculate D as the maximum distance
between pairs of corresponding points along the fibers (i.e. the first through fifth
point pairs). This fiber distance computation can thus take advantage of matrix
subtractions. D is a symmetric distance that is the same between fibers (fi, fj)
and (fj , fi), eliminating the issue of the classic Hausdorff measure being a di-
rected distance. Because point ordering along the fiber is not known a priori (a
fiber parameterization can equivalently start from either end), D is computed
with both possible orderings and the minimum is chosen.

In practice, this method works very well with relatively nearby and corre-
sponding fibers. For more distant fibers the point correspondence and distance
measure may not be informative, a known problem with all such fiber distance
metrics that have been shown to capture the local structure but poorly reflect
the “true relationship” of distant fibers [16]. Luckily in our case, these uninfor-
mative large distance measures are unimportant for registration. These far-away,
dissimilar, or outlier fibers are distant relative to the radius of interest defined
by σ and have little effect on the objective function.

2.3 Implementation

We have implemented a full affine registration framework using a coordinate de-
scent method. The code is a Python package that uses VTK [7], scipy [5], and
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numpy [5]. For optimizationwe usePowell’s simplex-basedCOBYLA (Constrained
Optimization by Linear Approximation)method [13] in the scipy.optimize toolkit.
The affine parameters are constrained (across subjects) as in other entropy-based
congealing methods [8,20] to avoid an unnecessary overall rotation or translation
of all brains, and to avoid the shrink to a point solution that artifactually reduces
entropy. We require that all translation, rotation, and shear components sum to 0
over all transforms applied to the data, and that all scale factors average to 1. The
COBYLA package allows definition of expected initial step sizes ρbeg, and deter-
mines convergence when final step sizes ρend are under a user-provided threshold,
thus we have set these ρ parameters empirically using the expected magnitudes of
our transform parameters.

The σ parameter of the Gaussian kernel (eq. 1) has been tuned to enable
multi-scale registration. In practice, we run several iterations of optimization,
alternating translation and rotation, with an initial σ of 30mm. Next, we decrease
σ to 10mm, then to 5mm, and optimize while alternating translation, rotation,
scale, and shear. The computation of the fiber distances has been implemented
in a multiprocessor framework. The distances are computed between a random
sample of fibers from each input subject (typically 200-300), and another, smaller
random sample of these fibers whose size we increase during the registration
process (typically beginning with 25 or more fibers). The smaller random sample
is resampled (all sampling is done without replacement) each time we change
the parameters being optimized. The style of randomly sampling data points
at which to compute the objective function has been successfully employed in
many registration strategies [11,8,20] and in fiber clustering [15]. The terms in
eq. 5 that result from comparing fibers from the same brain are neglected.

2.4 Data and Processing

N=26 healthy subjects dataset: Diffusion weighted images (DWI) scans were
acquired on a 3-T GE system using an echo planar imaging sequence and the
following parameters: 51 gradient directions with b=900, eight baseline scans
with b=0, TR 17000 ms, TE 78 ms, FOV 24 cm, 144×144 encoding steps, 1.7 mm
slice thickness. Artifacts due to eddy currents and head motion were removed
by affine registration of diffusion to baseline images using FSL’s linear image
registration tool (FLIRT). Single-tensor streamline tractography was seeded in
the entire brain of each subject in voxels with anisotropy (linear measure) > 0.2.

3 Results

We performed three registration experiments: objective function probing, syn-
thetic data validation, and multi-subject registration.

Experiment 1: Objective Function Probing. We investigated the behavior
of the multi-scale objective function under simple rotation, translation, scaling,
and shear. One healthy control subject was chosen, and 2000 trajectories were
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randomly sampled without replacement, twice, to generate different fixed and
moving brains. A range of transformations was applied to the moving brain, and
the objective function was computed using all fibers from both brains (see fig.
1). Importantly, results demonstrate that the objective function is very smooth,
and that decreasing σ has the desired behavior of increasing sensitivity to small
transformations.

Translation Rotation Scale Shear

σ1

σ2
σ3
σ4

Fig. 1. Plots of the objective function under x-translation (-40 to 40mm), rotation
about x (-40 to 40 degrees), scaling along x (factors of 0.5 to 1.5), and shear (-40
to 40 degrees skew about x). The curves represent different values of the multi-scale
parameter σ: 5mm (top curve, blue), 10mm, 20mm, and 30mm (lowest curve, cyan).

Experiment 2: Synthetic Data Validation. Using as input one healthy con-
trol subject, we generated synthetic data as follows: 300 trajectories of length
greater than 40mm were randomly sampled from the input dataset, and a ran-
domly generated transformation was applied to these trajectories, to generate
a “synthetic brain.” The parameters of the random transform were: translation
up to ±20mm along each axis, scale factor from 0.85 to 1.15 in each axis, and
rotation up to ±20 degrees around each axis. To enable unambiguous computa-
tion of errors in the other parameters, shear was not included. This procedure
was repeated 10 times to generate a dataset of 10 synthetic brains with known
ground-truth transformations. The registration pipeline was applied to the 10
brain dataset (see fig. 2), using three levels of scale: σ of 30, 10, and 5mm; and
3 levels of randomly sampled subset fibers: 25, 50, and 75 fibers. These param-
eters were set empirically as a compromise between fast optimization and good
convergence. Errors in the resulting parameters were measured by comparison
to the ground truth applied transforms. The mean absolute errors and their
standard deviations in each component were: 1.33± 1.49, 1.50± 1.20, 2.06± 2.06
degrees rotation; 0.62 ± 0.456, 0.74 ± 0.548, 2.07 ± 0.770 mm translation; and
0.015± 0.014, 0.006± 0.007, 0.017± 0.015 scale factor magnitude. The method
cannot recover any mean transformation that may have been applied (e.g. if all
input brains were rotated together by 30 degrees that could not be detected)
so any mean transformations were removed from the ground truth transforms
before calculation of the errors. The experiment ran for 48.8 minutes, spending
the following amount of time at each level of scale: 6.6 minutes at 30mm, 18.1
minutes at 10mm, and 24 minutes at 5mm. (The computing environment was
a 2x2.26 GHz Quad-Core Mac with 16GB of memory. Note that reported run
times could be improved by coding in C rather than python, and/or increasing
use of multiprocessing, however this initial implementation is a proof of concept.)



128 L.J. O’Donnell et al.

Input Synthetic Data σ = 30 σ= 10 σ= 5

Fig. 2. Results of multi-scale registration of randomly transformed synthetic brain
(n=10) dataset (inferior view). Each subject is shown in a different color. The output
brains are shown after each registration scale (σ), demonstrating successful coarse-
to-fine registration. The output brains appear slightly “rotated” relative to standard
AC-PC orientation due to some mean component of the initial random transforms.

Input Data N=26 controls σ = 30 σ= 5

Fig. 3. Results in N=26 healthy subject dataset demonstrate successful coarse-to-fine
registration (inferior and left views shown). Each subject is shown in a different color.

Experiment 3: Multi-Subject Dataset. The proposed registration method
was applied to the full (N=26) healthy control multi-subject dataset (see fig.
3). The registration pipeline used 200 randomly sampled fibers of length greater
than 60mm per subject, three levels of scale: σ of 30, 10, and 5mm; and 4 levels
of numbers of randomly sampled subset fibers: 25, 50, 75, and 100 fibers. The
method spent 48 minutes at the 30mm scale, 188 minutes at the 10mm scale, and
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235 minutes at the 5mm scale. The results demonstrate successful alignment of
the brains, as can be appreciated visually in fig. 3, where the output trajectories
look locally similar and parallel, and the subject colors are generally mixed
locally (i.e. trajectories from many subjects are neighboring).

4 Discussion and Conclusion

We have proposed a probabilistic atlas model for tractography that enables the
computation of the entropy of a collection of fibers, and we have shown that
registration by minimizing this entropy can successfully align the white matter
in multiple subjects. Advantages of our objective function include its smoothness
and the fact that any fiber outliers will have little effect. Optimization of the
proposed objective, because it is based on tractography data, has the potential
to enhance downstream tractography modeling and statistical analysis results.
Future work will include code optimization, incorporation of higher-order defor-
mations, and comparison of the method to other fiber- and image-based regis-
tration methods. To our knowledge, this work represents the first method for
groupwise registration of whole-brain diffusion tractography data.
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