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Abstract. In the context of retinal microsurgery, visual tracking of in-
struments is a key component of robotics assistance. The difficulty of
the task and major reason why most existing strategies fail on in-vivo
image sequences lies in the fact that complex and severe changes in in-
strument appearance are challenging to model. This paper introduces a
novel approach, that is both data-driven and complementary to existing
tracking techniques. In particular, we show how to learn and integrate
an accurate detector with a simple gradient-based tracker within a ro-
bust pipeline which runs at framerate. In addition, we present a fully
annotated dataset of retinal instruments in in-vivo surgeries, which we
use to quantitatively validate our approach. We also demonstrate an
application of our method in a laparascopy image sequence.

1 Introduction

Retinal microsurgery (RM) is one of the few available treatments options for
many blinding eye conditions. During surgery, the operating surgeon uses a stereo
microscope to visualize the retina and manipulates a set of surgical instruments
(i.e. tipped forceps or picks) to perform the procedure, as depicted in Fig. [l

Given its importance and the demanding nature of the surgery, a number
of new technologies have focused on improving aspects of RM. Some of these
technologies have included a steady-hand robot [I] or an instrument capable
of visualizing anatomical structures below the surface of the retina via optical
coherence tomography [2]. Yet, for these technologies to fully develop and ulti-
mately be incorporated into clinical environments, one missing component is the
ability to accurately and reliably estimate the location of an instrument when
in the camera field of view. With this in mind, this paper focuses on real-time
visual tracking of instruments in in-vivo RM monocular image sequences.

A major difficulty with this task is that instrument appearance is difficult to
model well over time. Most existing methods have relied instead on knowing the
instrument geometry beforehand to solve complex optimization problems [3/4], or
have constructed sophisticated and robust objective functions within more tra-
ditional gradient-based frameworks to deal with appearance change [Bl6]. Typ-
ically, these methods have extremely simple appearance models that combine

N. Ayache et al. (Eds.): MICCAI 2012, Part II, LNCS 7511, pp. 568-p75] 2012.
(© Springer-Verlag Berlin Heidelberg 2012



Data-Driven Visual Tracking in Retinal Microsurgery 569

geometry with colour or edge-based features, and ultimately work well only in
limited conditions such as in eye phantoms. For example, using the method of [6],
tracking is often lost after only 5 frames in the in-vivo sequence of Fig. Il Note
that a similar observation can also be made regarding tool tracking techniques
for laparoscopic surgery [7].

In short visual tracking of instruments in in-vivo RM is characterized by com-
plex appearance changes that existing approaches fail to handle. In contrast, this
paper introduces an alternative approach, one that is data-driven and comple-
mentary to the aforementioned methods. In particular, we show how to integrate
the framework of [8], which constructs accurate classifiers, for the task of instru-
ment detection. Coupled with simple gradient-based tracking, our pipeline is
extremely robust and runs at video framerate. In addition, we present a fully
annotated dataset of retinal instruments in human in-vivo surgeries and quanti-
tatively validate our pipeline on this dataset. Finally, we also demonstrate how
our approach performs on a laparoscopy image sequence.

The remainder of this paper is organized as follows: We begin by describing
our pipeline and its components in Sec. 2l In Sec. Bl we validate our method
experimentally and conclude with final remarks in Sec. @l

2 Method

To motivate our approach and pipeline, we begin with the following observations:

1. To work reliably, gradient-based trackers [6l9] need continuous template up-
dating to maintain accurate position estimation when changes in the target
appearance are severe.

2. Using reasonable amounts of training data (e.g. 500 positive examples), clas-
sifiers as in [§] provide excellent methods to detect the 2D location of a
deformable target irrespective of its orientation.

3. Given that tracking is a sequential estimation problem, detection of targets
can be restricted to promising locations provided by fast and moderately
accurate methods.

Based on these observations, we propose a detection based scheme to track the
2D instrument tip position in in-vivo RM image sequences. Once initialized, our
pipeline operates as follows: we first use a gradient based tracker to provide an
approximate estimate of the target’s new location. We then exhaustively evaluate
a detector to predict the presence of an instrument in a reduced region of the
image space, which is parametrized by tracker’s estimate from the previous step.
Finally, we use spatial and score weighting of the detector responses to provide
accurate instrument position, and update the tracker template. This process is
depicted in Fig.[Il and the following sections describe each component in detail.
Note that, initialization of the instrument position, and reinitialization when the
instrument is not found, is achieved by using the constructed detector and hence
no user input is required in our pipeline.
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Fig. 1. Pipeline Diagram: First, an updated template and the previous frame instru-
ment position (yellow cross) are used to initialize a gradient based tracker. The new
position estimate, p (green cross) serves as the center of the region of interest (green
box), that the detector evaluates at every location. At each location, positions and
scores {pi, s;} are computed and weighted to provide the final instrument position, P
(black cross).

2.1 Tracking

In order to provide an approximate location for the instrument position, we first
compute the displacement of a window centered at the previous tool tip loca-
tion using a gradient-based tracking method. The method is based on Efficient
Second-Order Minimization [9]. Assuming that no large illumination variations
occur between sequential images, SSD was adopted as similarity measure. The
reference template used in this step is updated at every new image using the tool
tip position estimated from the previous image. In our experiments, we maintain
a fixed template size: 50 x 50 pixels. This process results in a tool tip estimate,
which we denote as p. Fig. [[l shows an example of p (green cross) on a given
frame. Note that alternative similarity measures could be substituted instead.

2.2 Detector

The strong appearance changes of tools during RM severely complicate the de-
tection task. Standard learning based detection methods can only cope with
deformations and rotations via a detailed labeling of training data and an ex-
haustive exploration of these parameters when evaluating the classifier. This lat-
ter point makes detection of targets particularly slow, which helps explain their
lack of use so far. Recently however, a framework was presented in [§] which
overcomes these difficulties. The authors design a set of so-called pose-estimator
features which modulate feature extraction according to various image cues. The
result is a deformable detector which can learn the deformations and rotations
present in the training data. The method, based on AdaBoost, does not require
an exploration of the pose parameters at test time and is thus well-suited for the
task at hand.
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We therefore use this framework along with the proposed set of deformable
features, which compute sums of oriented edges in various image areas. To train
this detector, positive and negative examples must be provided (i.e. instrument
and non-instrument images, respectively). Here, we use square bounding boxes
of the instruments indicating the location and spatial extent of the instrument
for positive samples. Negative samples are randomly selected from the remainder
of the images. One additional difficulty, not considered in [§], is how to efficiently
train such a deformable detector of fixed size r x r from an image sequence ex-
hibiting multi-scale data. To this end, we compute a Gaussian Pyramid for each
image by successive smoothing and downsampling. For each positive example,
its bounding box is replaced by an appropriately located box of size r x r at
the Gaussian Pyramid level [ which results in the best r x r approximation of
the original sample. Detection proceeds in a similar fashion with each image de-
composed into a Gaussian Pyramid and our r x r detector exhaustively visiting
every location in the Pyramid.

Given the approximate instrument position provided by the tracker, we only
evaluate the classifier at each location in a 50 x 50 region of the image, centered
on the position estimate provided by the tracker. This results in a set of pixel
positions and associated unsigned classifier score, {p;, s;}.

2.3 Estimating Instrument Position

Given the position estimate of the tracker, p and the set of detection scores
{pi, $i}, we now describe how to combine these estimates to provide the final
instrument location.

We first perform a weighting of the classifier scores with regard to their spatial
placement. In particular, we favour locations that are near the position estimate
provided by the tracker. That is, we first compute spatially adjusted scores, s,
S = sie*2i2 (p: 7’5)2, where o is half the radius of the search window (o = 520 =25
in our experiments). Then, instead of doing non-maximum suppression as in [§],
we estimate the final position of the instrument, P, by averaging the weighted

N ~
~ E . SiPi . .
scores, §;, P = %" This effectively reduces the effect of extreme scores
) ) Z e

and outlier influence by weighted voting. We consider a detection valid if the
score associated with the location P is above a threshold (in practice it is set
to provide a 80% true positive rate). When no instrument is found in a frame,
then detector is then evaluated at all locations of subsequent images, until a new
instrument location is found.

3 Experiments and Results

The presented pipeline is implemented in C++, and all experiments were per-
formed on a MacBook Pro, 2.5 GHz Quad core computer with 4GB RAM. Our
pipeline runs at 15fps and should run even faster implemented on a GPU.
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Fig. 2. Example of instrument detections (red) in our in-vivo dataset with annotated
ground truth (white cross). The pixel distance error for each example are: 8, 7, 11, 25
and 18. See Video 1 for full detection and tracking sequence.

3.1 Retina Microsurgery Dataset

We begin by introducing a fully annoted dataset for RM instrument detection
and tracking. This image set consists of 4 sequences of in-vivo vitreoretinal
surgery, containing a total of 1500 images (640 480 pixels). Fig. 2 shows rep-
resentative images from the dataset, illustrating variations in illumination type
and quantity, light source position and the presence of blur and shadows. Dif-
ferent types of cameras were used to acquire the images but in each case the
video was collected directly from the surgical microscope. Calibration data was
not available since the surgeon frequently varies the focal length during the pro-
cedure. Each image contains at most one instance of a tool, with some images
being tool free. The tool tip of each instrument has been annotated by hand.
This dataset is publicly available online via the corresponding authors website,
at https://sites.google.com/site/sznitr/.

Full Dataset Evaluation. In our first experiment, we trained our classifier
by using the first half of each sequence in the above dataset and evaluated our
method on the remaining sequence halves. The result of our pipeline can be
seen in Video 1, with some snapshots shown in Fig. 2] (see above website for
associated videos). In general, consistent tracking is achieved even in cases of
strong appearance changes.

To provide some quantitative validation of our method we plotted the propor-
tion of frames where the instrument tip was determined correctly, as function
of sensitivity of the detection criteria. More specifically, we defined a correct
detection to be any pixel estimation that is within ¢ pixels of the groundtruth
annotation. Fig. Bfleft) show this plot when varying ¢ between 15 and 40. 15
pixel may appear as a large starting threshold, but consider that the average
tool shaft diameter in the dataset is of 20 pixels, and due to blurring and illumi-
nation changes throughout the sequences, the annotations themselves are noisy
(see Fig. ). Hence, smaller threshold results are not particularly meaningful
here.

We compare our approach to three existing gradient based trackers on the
same set of images: the Mutual Information of [6], the SCV of [10] and the SSD
tracker used in this pipeline. To allow a fair comparison, when any of these
trackers provided false detections they were re-initialized with the ground truth,
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Fig. 3. Tracking Accuracy. (left) we show the percent of correctly detected instruments
as function of the accuracy threshold. In red, our approach clearly outperforms state-
of-the-art gradient-based trackers. (right) Proportion of frames for each number of
consecutive correct detections.

and we report the proportion of frames where re-initialization is not required.
From the figures, we clearly see that our approach outperforms that all three
trackers. For example, for 6 = 20 our approach detects over 70% more than [6]
and over 40% more than [I0]. This corresponds to 449 and 309 more correct
instrument detections, respectively. We also show in Fig. Blright) the proportion
of time where a certain number of consecutive correct detections (§ = 20) took
place. In particular, we see that the SCV and MI can only track for 1 frame
over 35% and 65% of the time, while this only occurs 11% of the time for our
approach. On average our method tracks for 25 consecutive frames while the
SCV and MI achieve 2 and 5 frames, respectively. Also, in the cases where our
method did lose tracking, correct reinitialization occurred on average after 1.5
frames.

Generalization: Detection-based methods as this one are often criticized for
needing large amounts of training data and only working well on images similar
to those found in the training set. To demonstrate, that this can be avoided,
we show that even when training our classifier on three sequences, and testing
on an unseen fourth, reliable tracking is achieved. As in typical cross-validation
protocols, we trained our classifier on 3 sequences, and tested on the remaining
set. We did this for 3 different sets (the 4th set was not usable in this case, since it
contains no instruments in it). Fig. @ shows training and testing image examples
for each experiment (i.e. Exp.2a through ¢). Videos 2a though 2¢ show the tested
sequences for these experiments. As in the previous case, we plotted detection
accuracy against the detection criteria, showing that our method significantly
outperforms [6] and [I0] on all three sequences.

3.2 Laparoscopy Sequence

Finally, we briefly show how our approach can work for laparoscopic instrument
tracking. Here, we downloaded a video sequence from Youtub7 extracted im-
ages and hand labeled the locations of instruments in 1000 images. This provided
roughly 2000 instrument locations (two instruments per image). From this, we

! http://www.youtube . com/watch?v=IVpisgjQ5To
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Fig. 4. Generalization experiments by training on 3 image sequences and tested on an
unseen fourth sequence. Accuracy plots are also shown for each experiment.

trained our classifier on the first 500 images and evaluated our pipeline on the
remaining images. Given, that two instruments are present in frames, we pro-
ceeded as in the RM case, found an instrument, suppressed it from the image,
and repeated this process for the second tool. Otherwise, the pipeline is identical
to that of the previous experiments.

Video 5 shows the result of our pipeline, of which a few frames are shown in
Fig. [0l In summary, tracking is maintained for a substantial number of frames.
However, two main failing points can be seen: 1) Extreme changes in instrument
structure, that were not observed in the training sequences, are poorly handled
by our system (as shown in Fig. B(right)), 2) occluded instruments are not found
given that there is no geometrical model to help with such situations. A pos-
sible alternative to overcome this may be to integrate our approach with more
elaborate prior instrument knowledge (as in [3J4U7]).

Fig. 5. Example of our approach tracking two instruments during Laparoscopic surgery

4 Conclusion

We presented an alternative approach for visual detecting and tracking retinal
instruments during in-vivo retinal microsurgery. Our technique involves training
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a highly accurate instrument detector, coupled with a simple gradient based
tracker to produce reliable tracking. Soft weighting of both classifier scores and
locations are fused to produce accurate position estimates even in challenging
cases. We extensively validated our method on a fully annotated in-vivo dataset,
where we showed consistent tracking. We also demonstrated the applicability of
our approach on a laparoscopy image sequence.
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