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Abstract. This study investigates regional heartmotion abnormality de-
tectionviamultiview fusion in cine cardiacMR images. In contrast toprevi-
ous methods which rely only on short-axis image sequences, the proposed
approach exploits the information from several other long-axis image se-
quences, namely, 2-chamber, 3-chamber and 4-chamber MR images. Our
analysis follows the standard issued by American Heart Association to
identify 17 standardized left ventricular segments. The proposed method
first computes an initial sequence of correspondingmyocardial points using
a nonrigid image registration algorithm within each sequence. Then, these
points were mapped to 3D space and tracked using UnscentedKalman Fil-
ter (UKS). We propose a maximum likelihood based track-to-track fusion
approach to combine UKS tracks from multiple image views. Finally, we
use a Shannon’s differential entropy of distributions of potential classifiers
obtained from multiview fusion estimates, and a naive Bayes classifier al-
gorithm to automatically detect abnormal functional regions of the my-
ocardium. We proved the benefits of the proposed method by comparing
the classification results with andwithout fusion over 480 regional myocar-
dial segments obtained from 30 subjects. The evaluations in comparisons
to the ground truth classifications by radiologists showed that the proposed
fusion yielded an area-under-the-curve (AUC) of 95.9%, bringing a signif-
icant improvement of 3.8% in comparisons to previous methods that use
only short-axis images.

1 Introduction

Accurate detection of motion abnormality of regional myocardial segments in
MRI is essential in the diagnosis and treatment of coronary heart disease [7,11,15],
the leading cause of death worldwide. The problem has attracted a recent re-
search attention recently [7,11,15]. Unfortunately, existing MRI-based methods
rely only on short-axis sequences [7,11,15]. However, the actual LV motion is
a complicated combination of motions in 3D space. Little or no through-plane
motion information is available from standard single view 2D sequences, which
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severely limits the accuracy of 3D motion estimation. Therefore, exploiting in-
formation from other orthogonal image sequences can lead to a more accurate
assessment of cardiac motion.

The purpose of our study is to develop a regional heart motion abnormal-
ity detection algorithm via multiview fusion, thereby exploiting the information
from both short- and long-axis MRI sequences, namely, 2-chamber, 3-chamber
and 4-chamber images. The proposed algorithm is based on a novel, multiview
3D motion estimation technique which consists of two main components, pre-
processing and track-to-track fusion, both depicted in Fig. 1(a). Our 3D motion
estimation is fundamentally different from existing 3D motion estimation meth-
ods, e.g., those based on incompressible models [2], deformable models [5,14],
3D harmonic phase [10] or short- and long-axis image registration [9], among
others. Furthermore, it uses only standard clinical data (i.e., cine MRI1), unlike
most of existing methods which either use data that are not available in regular
clinical routine, such as displacement encoding with stimulated echoes (DENSE)
MR images [14], or data that increase the scan time, such as myocardial tagging
[5,10].

The proposed method first computes an initial sequence of corresponding
myocardial points using a nonrigid image registration algorithm [4] within each
2D sequence, long- and short-axis, given a user-provided segmentation of the first
frame. In order to provide a temporal smoothing to the dataset, we used a 3D
extension of the nonlinear state transition model in [11]. Then, we propose to use
an unscented Kalman smoother (UKS), a recursive nonlinear Bayesian approach,
to obtain the state estimates and the corresponding covariance estimates. The
state vector consists of position and velocity information of endo- and epi-cardial
points over a cardiac cycle.

The main contributions of this study is a track-to-trackmultiview fusion based
on a maximum-likelihood formulation which combines the UKS estimates from
different views from short- and long-axis image sequences, thereby obtaining
accurate 3D motion estimates. Track-to-track fusion problems are common in
the multisensor fusion literature [1] but, to the best of our knowledge, were not
investigated previously in medical imaging.

We prove the benefits of the proposed fusion in regional cardiac motion abnor-
mality detection following a standard issued by the American Heart Association
[3], and comparing the results with ground truth classifications by radiologists.
The evaluations in comparisons to the ground truth classifications showed that
the proposed fusion brings a significant improvement of 3.8% in area-under-the-
curve (AUC) accuracy. The experimental analysis was carried over 480 regional
myocardial segments obtained from 30 subjects (20 normal and 10 abnormal).
We evaluated the classifier ability of Shannon’s differential entropies (SDE)
of normalized radial distance and endocardial segment volume with and with-
out fusion. The classifier ability of these features were measured using receiver
operating characteristic (ROC) curves with the corresponding AUCs, and the

1 Cardiac cine MRI is the most widely used MR acquisition protocol in clinical routine
due to its low processing time and complexity over other MR acquisition methods.
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Fig. 1. (a) The proposed 3D motion estimation algorithm using 2D long and short-axis
image fusion. (b) Illustration of a track-to-track maximum likelihood fusion sML using
long- and short-axis state estimates sl and ss.

Bhattacharyya distance metric [6]. We assessed the performance a via leave-one-
subject-out approach. The proposed method yielded an AUC of 95.9%, whereas
the method without multiview fusion (i.e. using only short-axis images as is the
case in [11]) yielded an AUC of 92.1%.

2 Track-to-Track Fusion

Let ss and sl be the motion estimates obtained from, respectively, short- and
long-axis images using UKS [12] and the registration algorithm [4]. The state
vectors ss, sl ∈ {[x̄ x ẋ ȳ y ẏ z̄ z ż ω]T }, where (x, y, z) is a myocardial point on
the 3D reference coordinate system corresponds to a pixel (i, j) in the image co-
ordinate system. (x, y, z) is computed using a transformation matrix constructed
based on the information from DICOM header. [ẋ ẏ ż] is the velocity vector,
(x̄, ȳ, z̄) the mean position of (x, y, z) over a cardiac cycle, and ω the angular
frequency.

Having obtained state estimates ss and sl corresponding to the same tissue
from different views, we now have to combine these estimates. In this study, we
propose a Maximum Likelihood (ML) criterion (Refer to Fig. 1(b) for illustra-
tion) to compute a combined estimate sML. We define the likelihood function as
follows:

L(s) = − ln p(ss, sl|s)

∝
([

ss

sl

]
−
[
I
I

]
s

)T

P−1

([
ss

sl

]
−
[
I
I

]
s

)
(1)

where

P =

[
P s P sl

P ls P l

]
(2)

P s and P l are the covariances of ss and sl, respectively, and P sl is the cross-
covariance between ss and sl. I is an identity matrix. We compute the maximum
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likelihood solution,
sML = argmax

s
L(s), (3)

by solving ∇sL(s) = 0. This yields:

sML =

(
[I I]P−1

[
I
I

])−1

[I I]P−1

[
ss

sl

]
(4)

Let A = P s, B = P sl and C = P l. From inversion of a partitioned matrix, we
have

P−1 =

[ A B
BT C

]−1

=

[ E F
FT G

]
(5)

where

E = (A− BC−1BT )−1 (6)

F = −EBC−1 (7)

G = C−1 + C−1BTEBC−1 (8)

Substituting for P−1 in (4), we have

sML = (E + FT + F + G)−1(E + FT )ss + (E + FT + F + G)−1(F + G)sl (9)

Substituting for E , F and G from (6)-(8) and applying matrix inversion lemma
(refer to Appendix for derivation details), we get

sML = (C −BT )(A+D − B − BT )−1ss + (A− B)(A+ C − B − BT )−1sl (10)

Substituting P s, P sl and P l, we get

sML = (P l − P ls)(P s + P l − P sl − P ls)−1ss

+ (P s − P sl)(P s + P l − P sl − P ls)−1sl (11)

We assume that cross-covariance P sl, P ls between short- and long-axis observa-
tions are zeros. Thus, we have

sML = P l(P s + P l)−1ss + P s(P s + P l)−1sl (12)

3 Experiments

The data contains 30×3 short-axis image datasets (i.e., apical, mid-cavity and
basal), each consisting of 20 functional 2D images acquired from 20 normal and
10 abnormal hearts. The data were acquired on 1.5T MRI scanners with fast
imaging employing steady state acquisition (FIESTA) mode. In Fig. 2(a) and
(b), we give a representative sample of the fusion results for end-diastolic and
end-systolic phase of the cardiac cycle plotted against long-axis cine MR images.
For each subject, three slices were respectively chosen from apical, mid-cavity
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and basal frames. In Fig. 2(c), (d) and (e), we give a representative sample of the
segmentation results for apical, mid-cavity and basal frames. The frames were
automatically segmented following the standard issued by the AHA [3], given
anatomical landmarks on the first frame. The results of 480 myocardial segments
were compared with a single ground truth classification. We classify a segment
as abnormal if that segment is hypokinetic, akinetic or dyskinetic.

We used two independent criteria to measure the performance of each classi-
fier features, namely, the ROC curves with corresponding AUCs [8], and Bhat-
tacharyya measure [6] to assess the discriminative power of each classifier fea-
tures. Furthermore, we assessed the performance of the proposed approach via
a leave-one-subject-out method.

(a) End-diastole (b) End-systole (c) Apical (d) Mid-cavity (e) Basal

Fig. 2. (a) and (b): Representative examples showing the obtained fusion estimates
plotted against long-axis MR images; (c), (d) and (e): Representative examples of
segmented myocardium using the proposed approach. Apical, mid-cavity and basal
frames were segmented, respectively, into 4, 6 and 6 segments following the standard
in [3].

ROC, AUC and Bhattacharyya Measure: The ROC curves for classifier
features SDEs of radial distance, segment area and segment volume are shown
in Fig. 3. We used the same threshold for all segments and all slices. The ROC
curves were obtained by varying such threshold. The AUCs corresponding to
the ROC curves in Fig. 3 are reported in Table 1. The reported AUC values
demonstrate that multiview fusion significantly improves the classifiers’ ability
in discriminating normal and abnormal heart motions.

We used the Bhattacharyya distance metric to evaluate the overlap between
the distributions of classifier features over normal and abnormal motions. The

Bhattacharyya metric [6] is given by B =
√
1−∑

y∈R

√
fN (y)fA(y), where fN

and fA are the distributions over, respectively, normal and abnormal motions.
The higher B, the lesser the overlap and, therefore, the better the discriminative
ability of the classifier. The Bhattacharyya distance metrics reported in Table 1
demonstrate that the multiview fusion significantly improve the discriminative
ability of the classifier features in detecting abnormal heart motion.

Classification Performance: The evaluations of classification performance in
terms of accuracy, sensitivity and specificity are given by accuracy = (TP +
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Table 1. Comparison of the area under the ROC curve and Bhattacharyya distance
metric for the methods with and without fusion (short-axis images only) [11].

The proposed method Without fusion [11]
(with multiview fusion) (short-axis only)

AUC Bhattacharyya AUC Bhattacharyya

SDE of segment volume/area 97.1 0.74 94.3 0.66
SDE of radial distance 95.9 0.70 92.1 0.61
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Fig. 3. Receiver operating characteristics of classifier features. The closer the curve to
the left hand top corner, the better the classification performance.

TN)/(P + N), specificity = TN/N, sensitivity = TP /P, where TP is true posi-
tives (number of segments correctly classified as “Abnormal”) and TN true neg-
atives (number of segments correctly classified as “Normal”). The number of
“Abnormal” and “Normal” segments are P and N , respectively. Table 2 com-
pares the classification performance of correctly classified hearts with the pro-
posed method and the method that uses only short-axis images [11], using a
leaving-one-subject-out method. In this approach, a naive Bayes classifier algo-
rithm [13] is constructed from the SDEs of the segment area and normalized ra-
dial distance. Fig. 4 shows the quadratic decision boundary for normal/abnormal
classification with the proposed method (with the UKS), where blue circles repre-
sent the normal function and red triangles the abnormal. The decision boundaries
were constructed separately for apical, mid-cavity and basal slices learning from
the remaining 29 subjects. The overall classification accuracy for the proposed
method with multiview fusion is equal to 91.9%, with a sensitivity of 96.5% and
specificity of 90.5%.
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Table 2. The percentage of classification accuracy using a leaving-one-subject-out ap-
proach for the proposed track-to-track multiview fusion. The proposed method achieved
an overall classification accuracy of 91.9%.

Accuracy (%) Sensitivity (%) Specificity (%)

Apex 90.8 96.9 88.6
Mid-cavity 95.0 95.3 94.9
Base 89.4 97.4 87.3
Overall 91.9 96.5 90.5
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Fig. 4. Decision boundary for normal and abnormal regional myocardial functions
using a Bayesian classifier

4 Conclusions

This study investigated a track-to-track multiview fusion approach to 3D LV
motion estimation and regional abnormality detection. The proposed method
uses several 2D cine MR image sequences, and yields state estimates in 3D space
representing position and velocity information of myocardial points. A nonrigid
image registration is used to obtain sequence of corresponding points and the
UKS to track these points. Then, a track-to-track fusion method is proposed to
combine UKS estimates from multiple images obtaining 3D state estimates. We
show by an experimental evaluation that the proposed approach significantly
improves the detection of regional abnormal motions in comparisons to previous
approaches that use only the short-axis images.
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