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Abstract. Purpose: Various methods exist for interpolating diffusion
tensor fields, but none of them linearly interpolate tensor shape at-
tributes. Linear interpolation is expected not to introduce spurious
changes in tensor shape. Methods: Herein we define a new linear invariant
(LI) tensor interpolation method that linearly interpolates components
of tensor shape (tensor invariants) and recapitulates the interpolated ten-
sor from the linearly interpolated tensor invariants and the eigenvectors
of a linearly interpolated tensor. The LI tensor interpolation method
is compared to the Euclidean (EU), affine-invariant Riemannian (AI),
log-Euclidean (LE) and geodesic-loxodrome (GL) interpolation methods
using both a synthetic tensor field and three experimentally measured
cardiac DT-MRI datasets. Results: EU, AI, and LE introduce significant
microstructural bias, which can be avoided through the use of GL or LI.
Conclusion: GL introduces the least microstructural bias, but LI ten-
sor interpolation performs very similarly and at substantially reduced
computational cost.

1 Introduction

Diffusion tensor magnetic resonance imaging (DT-MRI) [1] is a technique that
permits the non-destructive evaluation of the self-diffusion tensor (D) of water
within small volumes of soft tissues. The measured diffusion tensor can be used to
characterize local microstructural tissue properties, including diffusive shape and
microstructural orientation. Diffusion tensor shape and orientation properties
are important components of computational models of cardiac mechanics and
electrophysiology that require closely spaced nodes that do not necessarily lie
at lattice points. DT-MRI data are, however, acquired at lattice points within
a three-dimensional imaging volume, therefore tensor interpolation methods are
needed.

Each diffusion tensor is a three-dimensional rank-2 symmetric, positive defi-
nite tensor that can be decomposed into a system of eigenvalues (λi) and eigen-
vectors (ei), which correspond to tensor shape and orientation respectively.
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In particular, tensor shape can be described by families of tensor invariants
[2, 3], which saliently decompose tensor shape into the magnitude-of-isotropy
(tensor trace, determinant or norm), magnitude-of-anisotropy (fractional or rel-
ative anisotropy) and mode-of-anisotropy (transversely isotropic vs. orthotropic)
components. The primary eigenvector corresponds to the direction of fastest dif-
fusion, which has been shown to align with the long axis of the myocytes that
comprise the heart [4]. The secondary and tertiary eigenvectors correspond to the
crossfiber-within-sheet direction and the sheet normal direction, respectively [4].
Because these shape and orientation characteristics directly correspond to mi-
crostructural features that are observed with histology, it is judicious to linearly
interpolate all of these tensor properties directly.

The simplest tensor interpolation method is the Euclidean (EU) method, but
it suffers from the swelling effects due to non-monotonic interpolation of tensor
determinant (DET), and does not preserve the positive definiteness of diffusivity.
The Riemannian approaches [5–8] overcome this problem, and more recently the
log-Euclidean (LE) method [9] has been shown to be a computationally efficient
approximation to the affine-invariant (AI) Riemannian approach [8]. Kindlmann
et al. [10] proposed a geodesic-loxodrome (GL) approach that guarantees mono-
tonic interpolation of orthogonal tensor invariants, and demonstrated that the
EU, AI and LE approaches fail to monotonically interpolate all the tensor invari-
ants including tensor trace (TR), fractional anisotropy (FA) and tensor mode
(MODE). The geodesic-loxodrome approach, however, is computationally expen-
sive, and monotonic interpolation of the tensor invariants needs to be evaluated
using experimentally measured DT-MRI data.

Recent studies have examined different methods to interpolate separately ten-
sor shape and orientation [11, 12]. Bi et al. [11] proposed a method to linearly
interpolate eigenvalues and rotation angles between tensor orientations. This re-
sults in monotonic interpolation only for TR. Bi et al. did not provide a way
to resolve the sign ambiguity of the eigenvectors. Yang et al. [12] proposed a
method to resolve the sign ambiguity problem by finding the minimum rotation
path between tensor orientations, but the minimum rotation path may not be
the best way to resolve the sign ambiguity problem.

Firstly, we propose a new linear invariant (LI) tensor interpolation method,
which linearly interpolates components of tensor shape (tensor invariants). We
also define for the first time the necessary mathematics for converting the ten-
sor invariants to eigenvalues, which enables recapitulation of the interpolated
tensor from the linearly interpolated tensor invariants and the eigenvectors of
a linearly interpolated tensor. The LI tensor interpolation method is simple to
implement, fast, and perfectly commutative. Secondly, we determine which ten-
sor interpolation scheme introduces the least microstructural bias to the shape
and orientation of the interpolated tensors. To do so the LI tensor interpolation
method is compared to the EU, AI, LE and GL methods of tensor interpolation
using both a synthetic tensor field that reflects important myocardial tensor field
attributes, and three experimentally measured DT-MRI datasets from rabbit, pig
and human hearts.



496 J.K. Gahm et al.

2 Theory

A tensor invariant set composed of TR (K1, magnitude-of-isotropy), FA (R2,
magnitude-of-anisotropy) and MODE (R3, mode-of-anisotropy) fully decompose
the shape of a tensor D defined by [2, 3]:

K1(D) = tr(D), R2(D) =
√

3
2 |D|/|D̃|, R3(D) = 3

√
6 det(D̃/|D̃|) , (1)

where tr() and det() are the trace and determinant operators respectively, |D|
represents the magnitude (Frobenius norm) of D defined by |D| = √

tr(DDT ),

and D̃ represents the anisotropic (deviatoric) part of D defined by D̃ = D −
tr(D)I/3. Linear invariant (LI) interpolation of tensor CLI from tensors A and
B with weighting coefficient t ∈ [0, 1] starts by linearly interpolating the tensor
invariants:

K1(CLI) = (1− t)K1(A) + tK1(B), Rj(CLI) = (1− t)Rj(A) + tRj(B) , (2)

for j = 2, 3. Without derivation we define the mathematics for converting the
tensor invariants into the eigenvalues by solving the cubic characteristic polyno-
mial for a tensor:

λi =
1
3K1 +

2K1R2

3
√
3− 2R2

2

cos

(
arccos (R3) + Pi

3

)
, (3)

where Pi = 0,−2π, 2π for i = 1, 2, 3. Then Eq. 3 permits converting the tensor
invariants of CLI into the eigenvalues λi(CLI).

To define the eigenvectors for CLI, we use linear (EU) tensor interpolation
CEU = (1− t)A+ tB, then decompose CEU into the eigenvector and eigenvalue
matrices REU and ΛEU where CEU = REUΛEUR

T
EU. We can use AI, LE or GL

tensor interpolation, but EU is the simplest and fastest, and introduces a similar
bias in tensor orientation recovery, as will be shown later in Section 4.

Finally the interpolated tensor CLI is constructed using the eigenvalue matrix
ΛLI = diag (λi(CLI)) from the linearly interpolated tensor invariants, and the
eigenvector matrix REU from the linearly interpolated tensor :

CLI = REUΛLIR
T
EU . (4)

3 Methods

Synthetic Tensor Field. Using the EU, LE, GL and LI tensor interpolation
methods, bilinear interpolation was performed between tensors that approxi-
mate the sheet shape of (K1, R2, R3) = (7, 0.6, 0.5) and fiber shape of (6, 0.7, 1)
observed in cardiac DT-MRI data, and range of tensor orientations.

Real Cardiac DT-MRI Acquisition. The rabbit heart DT-MRI data was ac-
quired in a formalin fixed rabbit heart using a 7T Bruker Biospin scanner and a
3D fast spin echo sequence. Five non-diffusion weighted and twenty-five diffusion
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weighted (b-value = 1000 s/mm2) imaging volumes were used to estimate the lo-
cal D without zero padding and with linear regression. The imaging parameters
were TE/TR = 29.1/550ms, RARE factor two, FOV = 35× 35× 35mm, and a
96×96×72 encoding matrix – resulting in 365×365×528μm spatial resolution.
The porcine heart DT-MRI data was acquired using 2D multislice readout seg-
mented EPI, similar encoding directions and reconstruction method with the fol-
lowing imaging parameters: TE/TR = 80/6800ms, FOV = 150× 150× 129mm,
and an 150×150×43 encoding matrix – resulting in 1×1×3mm spatial resolution.
The high-resolution human heart DT-MRI data was downloaded from Johns
Hopkins University [13]. The FOV was 110×110×110mm, the encoding matrix
size was 256× 256× 134, and the spatial resolution was 0.430× 0.430× 1.0mm.

Interpolation Evaluation. Each DT-MRI volume was segmented to identify
the myocardium using thresholding and morphologic operations on the non-
diffusion weighted image volume. To evaluate each interpolation method the
measured (“truth”) tensor volume was first downsampled in each direction by
a factor of 2 for the rabbit and porcine heart data, and by a factor of 4 for the
high-resolution human heart data. Subsequently tensors were trilinearly inter-
polated at the positions of the removed tensors using the remaining data. This
permits a direct, paired comparison of the interpolated tensors to the “truth”
tensors using data de-correlation and bootstrap statistics (see below). This com-
parison was made for six tensor scalar measures (TR, FA, MODE, DET, angle
difference between primary eigenvectors, and log-Eugclidean tensor distance [9])
computed at each location of the interpolated tensors using each of the tensor
interpolation methods.

Tensor Statistics. The distributions of the six tensor scalar measures contain
correlated data, are non-Gaussian, and have non-uniform variances. The use of
ANOVAand t-test statistics, however, requires that the data in eachpopulation are
not correlated, are Gaussian distributed (negligible skewness, kurtosis, etc.), and
have similar variances; hence de-correlation and bootstrap methods are required.

De-correlation. The population of each tensor scalar measure was spatially
decorrelated by computing the autocorrelation (AC) length for every dimen-
sion using the fully sampled data and the mask. For each of the x−, y− and
z−directions, all lines having at least four continuous myocardial points were
found within the mask. For each line, the data values of the line were subtracted
from their average, and then the AC sequence was computed. The AC length,
which is the lag value at the first zero-crossing of the AC curve, was computed.
The interpolated and original tensor data were conservatively decimated by the
minimum integer value greater than or equal to all the median AC lengths for
the tensor scalar measures in every dimension in order to spatially de-correlate
the data.

Bootstrap Statistics. A paired comparison of each scalar tensor measure
between the de-correlated interpolated tensors and the de-correlated original
“truth” tensors was made using bootstrap methods. The population of paired dif-
ferences between the scalar tensor measures (interpolated minus “truth” values)



498 J.K. Gahm et al.

(a) EU interpolation (b) LE interpolation

(c) GL interpolation (d) LI interpolation
EU LE GL LI

 

 

5

7

(e) TR

EU LE GL LI

 

 

0

0.7

(f) FA
EU LE GL LI

 

 

−1

1

(g) MODE

EU LE GL LI

 

 

4

12

(h) DET

Fig. 1. Superquadric glyph rendering of the tensor field obtained from Euclidean (a),
log-Euclidean (b), geodesic-loxodrome (c), and linear invariant (d) bilinear interpola-
tion between the four myocardial tensors at the vertices. Maps of tensor trace (e), FA
(f), tensor mode (g), and tensor determinant (h) from the resultant interpolated tensor
fields are shown for each interpolation method. The front left edge in the tensor glyph
images corresponds to the bottom of the tensor invariant images.

was computed, and 1000 randomly resampled populations with replacement were
constructed from the paired difference dataset. From each randomly resampled
population the median was calculated. The 1000 median measures were sorted,
and the asymmetric 95% confidence interval (CI) about the median was com-
puted from the distribution for each tensor scalar measure. When this method
is applied to paired angle differences between the primary eigenvectors or log-
Euclidean tensor distances, only unsigned differences or distances can be com-
puted. The median of the scalar tensor measure differences and the bootstrapped
95% CI of the median were compared to the zero-bias line (null hypothesis). If
the paired differences are not significant, then the 95% Cl will overlap with the
zero-bias line. When the paired difference CI does not overlap with the zero-bias
line, then the respective tensor interpolation method introduces a significant bias
to the tensor field.
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4 Results

Synthetic Example. Fig. 1 shows an example of bilinear interpolation between
the four myocardial tensors at the vertices using the EU, LE, GL and LI methods.
The tensors are visualized using superquadric glyphs [14]. Each edge represents a
microstructural transformation that can be observed both histologically and with
DT-MRI. EU only monotonically interpolates TR. EU negatively biases FA and
positively biases DET (i.e. the so-called tensor swelling effect [9]). LE negatively
biases TR and FA, and only monotonically interpolates DET. Both EU and LE
heterogeneously bias MODE. GL monotonically and LI linearly interpolate all
the tensor invariants including DET. In order to establish that monotonic or
linear interpolation of the tensor invariants is the best interpolation method, we
evaluated each tensor interpolation method using the experimentally measured
DT-MRI datasets as follows.

Autocorrelation. The AC procedure resulted in AC lengths of 3 in all the
directions for the rabbit heart data; 4 in the x− and y−directions, and 2 in the
z−direction for the porcine heart data; and 8 in the x− and y−directions, and
6 in the z−direction for the human heart data. To ensure that the data was
de-correlated, the data was decimated by the AC length in each dimension.

Bootstrap Statistics. Figure 2 shows that EU does not introduce a significant
bias to TR nor DET, but it does negatively bias FA and positively bias MODE.
AI and LE are nearly identical and show a negative bias for TR, FA, and DET;
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Fig. 2. Bootstrap statistics for tensor measures. The upper row corresponds to the
rabbit heart data, the middle row to the porcine heart data, and the lower row to the
human heart data. Results of the paired comparison for tensor trace (a), FA (b), tensor
mode (c), tensor determinant (d), angle difference between primary eigenvectors (e),
and log-Euclidean tensor distance (f) are shown for each interpolation method. Each
black horizontal line represents the median of each measure, and each box represents
the bootstrapped 95% confidence interval of the median. The light gray horizontal lines
at zero represent the zero bias.
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and a positive bias for MODE. GL shows no significant bias for TR, FA, MODE,
nor DET. LI does not introduce a significant bias for TR, FA, nor DET, but it
does negatively bias MODE. All of the tensor interpolation methods produce an
equivalent and positive bias for the primary eigenvector and the log-Euclidean
tensor distance metric.

5 Conclusion

The bootstrap comparison results demonstrate that GL and LI outperform EU,
LE and AI in terms of tensor shape recovery. The bias introduced by AI and LE
for recovery of TR and DET is a small (≈ 2%) change relative to the absolute
measures. Furthermore, current models do not make use of the TR information
from the DT-MRI data because the conductivity tensor’s eigenvalues have to be
rescaled, hence this bias is not likely to be significant. The bias in FA introduced
by EU, AI and LE is larger (≈ 8%), and may significantly impact simulations
when this data is incorporated into the computational model to rescale the
conductivity tensor in regions of fibrosis and scar. Hence, accurate recovery of
FA is important.

The magnitude of the bias in MODE by EU, AI, LE, and LI is similar (≈ 4%).
Only GL shows a distinct advantage as it interpolates MODE with no bias.
Both electrophysiologic activation and mechanical tissue properties are known
to be orthotropic, therefore accurate interpolation of MODE (lower bias) is likely
beneficial.

For computational electrophysiology and mechanical modeling of the heart,
orientation recovery is very important because the primary eigenvector (myofiber
direction) strongly governs the direction of electrical activation and active con-
traction. All of the tested tensor interpolation methods introduce a ≈ 5◦ − 8◦

bias, which may introduce notable fiber “disarray” into computational models.
A tensor interpolation method that better recovers tensor orientation is still
needed.

The path interpolated by LI (respectively, GL) between two tensors lies in the
6-dimensional nonlinear manifold of tensors; this path has a projection onto the
3-manifold of tensor invariants (losing the directionality information). Here we
interpolate on the 3-manifold, to linearly (respectively, monotonically) preserve
the tensor shape attributes. The use of direct linear interpolation does not imply,
nor is it motivated by, assumptions about global linearity, but naturally follows
by considering the small neighborhood around a point to be homeomorphic to
Euclidean space (valid for short distances), as given by the manifold structure.
The paths are demonstrably close approximations of each other, and our fun-
damental ignorance of the true physical path on the tensor manifold makes it
difficult to describe either LI or GL as “more meaningful.” We therefore tested
all the methods on real data.

In conclusion, if MODE recovery is important then GL should be used despite
the computational cost. If MODE recovery is not critical then LI interpolation is
an otherwise equivalent tensor interpolation method with reduced computational
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cost, which is important when interpolating tensors to the coordinates of 5 to 25
million computational nodes found in whole heart electrophysiology models. EU,
AI, and LE tensor interpolation have no distinct advantage for the interpolation
of tensor shape and orientation information based on the comparisons presented
herein.
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