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Abstract. Segmentation of lungs with large tumors is a challenging
and time-consuming task, especially for 4D CT data sets used in radia-
tion therapy. Existing lung segmentation methods are ineffective in these
cases, because they are either not able to deal with large tumors and/or
process every 3D image independently neglecting temporal information.
In this paper, we present a approach for model-based 4D segmentation of
lungs with large tumors in 4D CT data sets. In our approach, a 4D statis-
tical shape model that accounts for inter- and intra-patient variability is
fitted to the 4D image sequence, and the segmentation result is refined by
a 4D graph-based optimal surface finding. The approach is evaluated us-
ing 10 4D CT data sets of lung tumor patients. The segmentation results
are compared with a standard intensity-based approach and a 3D version
of the presented model-based segmentation method. The intensity-based
approach shows a better performance for normal lungs, however, fails in
presence of large lung tumors. Although overall performance of 3D and
4D model-based segmentation is similar, the results indicate improved
temporal coherence and improved robustness with respect to the seg-
mentation parameters for the 4D model-based segmentation.

1 Introduction

Breathing-induced tumor motion represents a major challenge in radiation ther-
apy of lung cancer. Patient-specific information about the respiratory dynamics,
estimated by using spatio-temporal 4D CT data sets and non-linear image reg-
istration techniques, can therefore help to optimize the treatment planning and
the delivery process [I]. To confine motion estimation and subsequent analysis
steps (e.g., tumor detection and tracking) to the lungs, segmentations of the lung
tissue in all 3D images of a 4D sequence are needed.

Many approaches dealing with the automatic segmentation of healthy lungs
in 3D CT images have been proposed (e.g., [2I3]). These methods mainly take
advantage of the large density difference between the air-filled lungs and sur-
rounding tissue and therefore frequently fail to include areas of high density
abnormalities (e.g., tumors) into the segmentation. As a consequence, several
groups have suggested algorithms specifically designed to handle CT images of
pathological lungs by incorporating prior knowledge to guide the segmentation
process. For example, Sluimer et al. [4] and van Rikxoort et al. [5] employed
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atlas-based techniques for the segmentation of lungs with arbitrary pathologic
abnormalities. They were able to significantly increase segmentation accuracy,
but the required non-linear atlas-to-image registration process was very time con-
suming. Sun et al. presented a time-efficient method especially aimed to segment
lungs with large tumors using a robust active shape model [6]. Their results are
very promising, but their approach, like other approaches, can only handle single
3D images. In the case of 4D data sets, methods processing all individual 3D im-
ages separately ignore the temporal information included in spatio-temporal 4D
data: We hypothesize that including temporal information improves robustness
of the segmentation process and temporal consistency of the results.

The aim of this work is the temporally consistent segmentation of lungs with
large tumors in 4D CT data sets. Our method is based on the work of Perperidis
et al. [7], who used a 4D statistical shape model (4D-SSM) for 4D cardiac image
segmentation. This 4D-SSM accounts for both changes of the organ shape caused
by inter-patient variability and shape changes due to cardiac (or in our case,
respiratory) dynamics (intra-patient variability). We present a novel 4D fitting
algorithm for this 4D-SSM and refine the segmentation results by using 4D
graph-based optimal surface finding. In an evaluation, the results of our 4D
approach are compared to segmentations obtained by using standard 3D-SSMs,
as well as results of a standard intensity-based lung segmentation algorithm.

2 Method

First, we generate a 4D-SSM for each lung based on IV, segmented 4D CT im-
age sequences of different patients (Section 21]). Each image sequence is assumed
to consist of N; 3D image volumes I, ; : 2 — R (2 C R3), reconstructed at
corresponding phases j of the breathing cycle, e.g. end-expiration (EE), mid-
inspiration (MI), end-inspiration (EI), and mid-expiration (ME). For segmen-
tation, the generated model is simultaneously adapted to all 3D images of an
unseen 4D CT data set (Section [Z2]). Afterwards, all segmentations are refined
using a graph-based post-processing method (Section [Z3)).

2.1 Building a 4D Statistical Shape Model

The first step in building a statistical shape model (SSM) based on a training
set of N = N,N; complete lung shapes obtained from segmented 4D CT image
sequences is to establish correspondence between all shapes. This is achieved by
propagating M pseudo-landmarks from an automatically landmarked atlas to
all other shapes of the training set. After the generation and landmarking (by
means of a surface triangulation and curvature-based mesh simplification) of
an average lung shape atlas, landmark propagation is done by using non-linear
transformations obtained from atlas-patient and intra-patient registrations of
the images performed with a non-linear diffeomorphic registration method [§].
Let {gp; € R3™|p =1,...,N,;5 = 1,...,N;} denote the set of N aligned
training shapes. Each shape vector q,; = [pgjyl,...,p;ij’M]T consists of a
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concatenation of M landmarks p, ;5 € {2. Principal component analysis (PCA)
performed on this shape vectors yields a common 3D-SSM

p J
Ssp(b, ) = p(q + Pb) with q = ;] SN g, (1)

p=1j=1
where P denotes a matrix whose columns are orthonormal eigenvectors e; of
covariance matrix C = 1/N Z;V:pl Z;yzjl(qp,j —q)(gp; — q)" with eigenvalues
Ai < Ait1 [9]. The model is parameterized by shape parameter vector b and
similarity transformation . As a consequence of using all shapes of all patients
to estimate C, the resulting eigenmodes explain both inter- and intra-patient
variability. This leads to IV; different and independent sets of model parameters
{b, v} to describe a lung’s shape during a breathing cycle, making the model
unsuitable for 4D segmentation. We therefore propose the application of a so-

called 4D-SSM based on the work of Perperidis et al. [7] and defined by

S4D (binte'r‘a bgntraa 90) = QD(q + -Pinte'rbinter + -I:)int'rabgntra) ) (2)

which describes a patient’s lung shape as a combination of a fixed patient-specific
part (given by biner and ¢) and a varying part depending on the breathing
phase j (weighted by bgntm) P,.ier and Pjy,i- denote matrices of orthonormal
eigenvectors defining subspaces of R3M accounting for inter- and intra-patient
variability, respectively. Separate PCAs performed on the covariance matrices
Cinter and Clipyrq yield the eigenvectors defining both subspaces. Cjjterr €xplains

the variability across the different patients and is given by

. N;
Ny 1
Cinter = p pz:; - Q)T Wlth q, = N ]z; qp.j - (3)

Accordingly, Cy,irq describes the shape differences across the respiratory cycle
as deviations from the mean shape of each patient p:

Czntra - NlN ZZ QP, qp, - qp)T . (4)

p‘?pljl

2.2 Fitting the Model to an Image Sequence

The simultaneous lung segmentation in all N; 3D images I;, j € {1...,N,},

of a 4D CT data set using a 4D-SSM (eq. IZI) consists of finding parameters
{Binter,briras -« s bfztm, @}, such that 75 = Sap(binser, b, .0, ) is a good ap-

proximation of lung shape r; € R3M implicitly encoded in I 7. When using the
common sum of squared distances between corresponding model landmarks and
image points as a measure, this can be formulated as the optimization problem

N

Z Hrj - S4D(bintera b{ntra’ 90)”2 — min ) (5)
j=1
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which we divide into

(i)interv 35) = argmin” Z ’l"] S4D inter 07 30)”2 and (6)
binter,p
(Bgntra) = argminHrj - S4D( inter b?ntra’ 95) H2 . (7)

intra
Eq. (@) is motivated by the assumption that patient-specific shape properties
independent of the breathing motion can be described by the patient’s mean
shape (eq. ([B)). In contrast to [7], both problems are minimized by an alternating
iterative optimization scheme based on the active shape model (ASM) algorithm
[9] without a heuristic pre-initialization of the intra-patient parameters b/, ..
1. Initial placing of mean shape Syp(0,0, ). The initial ¢ is determined by a
heuristic based on the detected bronchial tree [10].
2. For all j € {1...,N;}: Displace each landmark p;; of model instance
Sap (binter, bl 100 <p) to better match the corresponding lung surface in I;.
The displaced landmarks p; ;, form a candidate shape vector r; € R3M

3. The mean candidate shape vector r = 1/Nj Zjvzjl rj is used to deicermine
@ and bjpter (see eq. (@) by the minimization of ||r — o(q)||?, and bjpser =
‘Pzzter( _1(T) - Q)-

4. Repeat step 2. Each new r; is used to determine a corresponding breathing-

related b7 . Solving (7)) yields b/ , . = PT. (¢~ (;) — @ — Pinterbinter)-
5. Steps 2-4 are repeated until convergence.

A displaced landmark’s position p; . = p; .k +7n;105; is determined by choosing
the optimal position

sjk = argmin Fjx(pjx + n;x6l) (8)
l=—L,...+L

on a sampled 1D intensity profile of 2L + 1 points at intervals of § along the unit
surface normal n; ;. Each sampling point is evaluated by

1_ max{O,n}jkVIj(w)} (9)

F o) 1 if I;(x) > —100HU
Pk otherwise

Imaz,j

where gmaz,; is the maximum gradient magnitude in I;. The value Fj(x) is
inversely related to the likelihood that x is a point on the lung’s surface.
Success of the model fitting largely depends on the selected displaced land-
marks. If many landmarks are detected at positions representing transitions from
healthy lung parenchyma to tumor tissue, the outlined least squares approach
will fail to recover the true lung shape. We try to avoid this by assuming an
initial position close to the lung shape, and therefore use only short profiles.
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2.3 Optimal Surface Finding

The final part of our segmentation approach aims at integrating patient-specific
shape variations, not described by 4D-SSMs built from usually small training
sets. Therefore, the N; shapes {7;} resulting from the model fitting step are de-
formed to better match the image data, while maintaining the established spatial
and temporal consistency (optimal surface finding). Let R; = (V;, E;) denote
the triangulated surface mesh of shape vector 7; with vertex set V; and edge set
E;. The deformation of all surfaces is, as in Sec. [22] achieved by displacing every
vertex p; . € V; along its surface normal to a position p; i = pjr + nj 10, k. In
contrast to the model fitting step, where all displacements {s;x € [-L.. + L]}
are detected independently, globally optimal solutions are needed to preserve
the consistencies mentioned above. The task of determining spatially consistent
refined segmentations can be defined as the optimization problem

Nj M Nj
Z ZFj’k(pj’k; + ’I’Lj’k(sSj,k) + Z Z a\sj,k — Sj,m‘ {M} min (10)

j=1k=1 J=1[p;k,pj,m|EE;
subject to Vi € {1,...,N;} V[pjk:Pjm] € Ej 1186 — Sjm| < Asp

where Asp is the parameter of a hard smoothness constraint specifying how
many steps adjacent vertices are allowed to shift against each other on their
sampled profiles, while constant a penalizes every shift (soft smoothness con-
straint). Both constraints aim to prevent large deviations from the prior shapes
{7;}. A globally optimal solution of eq. (IU) can be obtained by computing
the minimum-closed-set of a directed arc-weighted graph build from all sam-
pled profiles using a max-flow/min-cut algorithm [IT]. For our 4D segmentation
approach, we also try to maintain the established temporal consistency by in-
corporating an additional hard smoothness constraint into eq. ([I0]), where Asp
limits the shifting of temporally corresponding vertices:

Vvme{l,...,N;}Vne{m,...,N;}Vk e {1,.... M} : sk — Snk

< Aup .

3 Experiments and Results

12 4D CT data sets of healthy lungs with N; = 10 phases are used to build 3D-
SSMs (eq. (@) and 4D-SSMs (eq. ([@)) for left and right lung separately (N = 120
shapes with M ~ 2000 landmarks). The most significant inter-patient eigenmode
of the 4D-SSM describes lung shapes from high and thin to low and broad, while
the most significant intra-patient mode explains most of the breathing-related
volume changes.

10 4D CT data sets of lung cancer patients (each containing 7-14 3D images)
are used for the evaluation. All images had a size of 512 x 512 x 126-467 voxel
with a voxel size between 0.94x0.94x1.5 mm? and 0.97x0.97x3.0mm?3. Out of
the 20 different lungs, 8 were without abnormalities (normal lungs), 7 contained
small tumors < 13 cm?, and 5 contained large tumors > 13 cm® adhering to non-
lung structures. Manual segmentations were available for the breathing phases
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Table 1. Performance comparison between 4D-Seg, 3D-Seg, standard intensity-based
(Conv), and combined (Comb) segmentation approaches. Results averaged over all pro-
cessed lungs of each group (normal & small tumors, large tumors), given as p4o. Error
metrics: Jaccard coefficient J(A, B), symmetric mean surface distance D(A, B), and
the symmetric Hausdorff distance H(A, B). A and B are the automatically estimated
lung region and the corresponding manual segmentation serving as ground truth.

Measures/Methods 4D-Seg 3D-Seg Conv Comb
Normal lungs/Lungs with small tumors < 13 cm®
J(A, B) 0.924+0.03 0.92+0.03 0.95+0.02 0.95+0.02
D(A, B) [mm] 1.32+048 1.30+0.51 0.914+0.52 0.8540.31
H(A, B) [mm] 25.06 +9.53 24.89 + 8.67 22.68 £+ 8.98 22.98 + 8.86
Lungs with large tumors > 13 cm?

J(A, B) 0.924+0.03 0.92+0.03 0.89+0.04 0.95+0.02
D(A, B) [mm] 1.45+049 146 +0.52 2.124+1.26 0.914+0.30
H(A,B) [mm)] 21.57 £6.02 21.69 £ 5.93 36.65 &+ 11.03 19.64 + 3.63

(a) 4D-Seg J (b) 3D-Seg - (c) Conv - (d) Comb

Fig. 1. Segmentation results for a right lung with a tumor adhering to the chest wall.
Results generated with different segmentation methods. Depicted is an axial slice of one
breathing phase (EI) of a 4D CT image sequence. Results of the automatic methods
are displayed in red, the manually obtained segmentation in green.

(a) EE (b) MI (c) EI (d) ME

Fig. 2. Left lung segmentation results for 4 different respiratory phases of a 4D CT im-
age sequence obtained by employing 3D-Seg (white contour) and 4D-Seg (red contour)
method. Results of 3D-Seg are partially influenced by the gas-filled bowel resulting in
temporally inconsistent segmentations. The errors in (c) and (d) are mainly introduced
in the 3D-SSM fitting stage. Results of 4D-Seg were computed using all 10 phases of
the 4D data set.
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of EE, MI, EI, and ME. In total, 80 segmentations (normal and small tumors:
60, large tumors: 20) were used as ground truth for the evaluation. The accuracy
of the proposed model-based 4D segmentation approach (4D-Seg) was compared
to three other approaches: 1) standard intensity-based lung segmentation similar
to [3] (Conv), 2) standard 3D-SSMs (see eq. () and ASM fitting with spatially
consistent optimal surface finding (3D-Seg), and 3) combined results of 4D and
standard segmentation (Comb=4D-Seg U Conv). Three error metrics were uti-
lized for the comparison: Jaccard coefficient, symmetric mean surface distance,
and the symmetric Hausdorff distance. The parameters of method 4D-Seg were
fixed for all test cases (L = 20, = 1.0mm, Asp = Ayp = 10, a = 0.01). For the
3D-Seg method, we were unable to determine common parameter values suitable
for all test cases (L = 15-30, § = 1.0mm, Asp = 10, a = 0.01-0.015).

Table [l summarizes the quantitative results of our evaluation grouped into
two categories (normal and small tumors, large tumors). It can be observed
that standard segmentation (Conv) leads to better results for normal lungs and
lungs with small tumors than the model-based approaches 4D-Seg and 3D-Seg.
As shown in Fig. [l in the case of lungs with large tumors adhering to non-
lung structures, Conv is outperformed by 4D-Seg and 3D-Seg, which give nearly
equivalent overall accuracy. The small differences between them reported in Tab.
1 are not statistically significant (paired t-test, p < 0.05). However, despite that,
Fig. @ depicts an exemplary case where only the 3D approach is partially influ-
enced by the gas-filled bowel resulting in temporally inconsistent segmentations.
Using 3D-Seg with a single set of parameters for all patients (L = 30, a = 0.01)
leads to two additional cases with temporal inconsistencies.

Due to the globally chosen smoothness constraints and the small training set
used for model building, both model-based approaches are prone to cause over-
and under-segmentation in higly curved areas of the lungs. Therefore, combining
the results of 4D and standard segmentation (Comb) yields the best accuracy for
lungs with large tumors, because under-segmentation is considerably reduced.

4 Conclusion

In this paper, we present an automatic model-based method to simultaneously
segment the lungs in all 3D images of 4D CT data sets of lung cancer patients.
This method combines the fitting of a 4D-SSM with a 4D graph-based refinement
step, taking into account spatio-temporal consistency. An intrinsic characteristic
of the 4D-SSM is that differences within a 4D sequence are restricted to intra-
patient variations and therefore temporal consistency is achieved without explicit
temporal regularization. In contrast to [7], our novel 4D model fitting algorithm
works without a heuristic pre-initilization of the intra-patient variation parame-
ters. Thus, no assumptions about number and ordering of the breathing phases to
be segmented are needed. Furthermore, the 4D-SSM can also be used to segment
breathing phases not included in the model’s training data set. Experimental re-
sults demonstrate the potential of the proposed 4D model-based approach, which
performs better than standard intensity-based segmentation in the presence of
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large tumors adhering to non-lung structures. Under-segmentations in highly
curved areas of the lungs can be reduced by combining 4D and conventional
segmentation algorithms. While the mean overall accuracy of 3D and 4D model-
based segmentation is nearly identical, improvements in temporal coherence and
robustness with respect to the segmentation parameters can be achieved by us-
ing the 4D approach. Summing up, there is no reason to use a 3D approach for
lung segmentation in 4D data sets in the presence of large tumors. This is also
supported by the nearly identical running times of both model-based methods
(~40 min. for a 4D data set with 14 phases). In future work, the training and test
data sets will be significantly enlarged, and we intend to improve the robustness
of the least-squares model fitting by adding an outlier detection step.
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