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Abstract. Registration of DWI data, unlike scalar image data, is complicated
by the need of reorientation algorithms for keeping the orientation architecture of
each voxel aligned with the rest of the image. This paper presents an algorithm for
effective and efficient warping and reconstruction of diffusion-weighted imaging
(DWI) signals for the purpose of spatial transformation. The key idea is to decom-
pose the DWI signal profile, a function defined on a unit sphere, into a series of
weighted fiber basis functions (FBFs), reorient these FBFs independently based
on the local affine transformation, and then recompose the reoriented FBFs to
obtain the final transformed DWI signal profile. We enforce a sparsity constraint
on the weights of the FBFs during the decomposition to reflect the fact that the
DWI signal profile typically gains its information from a limited number of fiber
populations. A non-negative constraint is further imposed so that noise-induced
negative lobes in the profile can be avoided. The proposed framework also explic-
itly models the isotropic component of the diffusion signals to avoid undesirable
reorientation artifacts in signal reconstruction. In contrast to existing methods,
the current algorithm is executed directly in the DWI signal space, thus allowing
any diffusion models to be fitted to the data after transformation.

1 Introduction

Spatial normalization of diffusion-weighted (DW) images often requires more than per-
forming spatial mapping between image domains. The diffusion profile (the diffusion
signals represented as a spherical function) encapsulated by each image voxel often has
to be transformed to correctly align local fiber orientations. For the case of diffusion
tensor imaging (DTI), this task is reduced to the reorientation of the diffusion pro-
file based on the principal diffusion direction. For the case of high angular resolution
diffusion imaging (HARDI), where the preservation of fiber crossing information is es-
sential, the problem becomes more complicated, since the transformation has to now
cater to multiple local fiber orientations in each voxel due to the existence of multiple
fiber populations.

For this purpose, a decent reorientation framework was proposed by Raffelt et al. [6].
In their framework, the fiber ODF [8] is decomposed into a series of weighted spherical-
harmonics-based point spread functions (PSFs), which are then reoriented individually
and recomposed to form the reoriented fiber ODF. This approach was later extended in [1]
for direct reorientation in theQ-space. It is further demonstrated in [1] that it is important
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to take into account the isotropic component in modeling the diffusion to avoid the danger
of turning an isotropic diffusion-attenuated signal profile to an anisotropic profile.

This paper proposes an algorithm for direct reorientation of the diffusion-attenuated
signal profile in the Q-space by using a sparse representation framework with the DWI
signal profile modeled as a combination of Watson distribution functions [10]. The pro-
posed algorithm:

1. Avoids the computation complexity of spherical harmonics, especially that required
by the associate Legendre polynomials. Although it can be argued that the spheri-
cal harmonics can be computed once and stored for subsequent computations, this
strategy is generally not applicable to the case of registration, where very often the
basis functions have to be computed a significant number of times, with respect to
transformations that cannot be known a priori, as the registration algorithm iterates
to refine correspondence matching;

2. Avoids the smoothing nature of spherical harmonics. When spherical harmonic ba-
sis functions of insufficient order are used, loss of sharp directional information
occurs;

3. Explicitly models the isotopic diffusion component so that the isotropic content of
the signal profile will not be reoriented; and

4. Incorporates an efficient non-negative L1-regularized least-squares solver,
which is guaranteed to converge to the global solution in a finite number of iter-
ative steps. This will allow us to obtain a sparse representation of the signal profile,
reflecting the fact that the DWI signals at each voxel are essentially generated by a
limited number of fiber populations. This is not explicitly considered in [1, 6].

While employing sparse representation for diffusion modeling has been well docu-
mented (see [4] for an excellent example), the application of such framework to DWI
reorientation has not been sufficiently studied. We will demonstrate that using such
sparse representation framework will allow one to naturally deal with all voxels, irre-
spective of whether they are isotropic or highly anisotropic.

2 Approach

The proposed algorithm entails first decomposing the DWI signal profile into a series
of fiber basis functions (FBFs) that are based on the Watson distribution function [10].
Given a local affine transformation, which can be computed from the local Jacobian of
a deformation field estimated by any deformable registration algorithms, the FBFs are
then reoriented independently and recomposed to obtain the final orientation-corrected
DWI profile.

2.1 Fiber Basis Functions (FBFs)

Fig. 1. The Watson distribution func-
tions for κ = −5,−1, 1, 5

The core of our algorithm lies in the effective
decomposition of the DWI signal profile into a
combination of FBFs. For better understanding
of the present work, we first consider the single
tensor model, with which ellipsoidal, planar and
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spherical directional functions can be reasonably approximated. A diffusion tensor D
can be decomposed as D = UKUT, where U is a rotation matrix and K is a diag-
onal matrix of eigenvalues {λ1, λ2, λ3}. The eigenvalues determine the shape of the
tensor. For principal diffusion along a particular direction µ (i.e., the ellipsoidal case,
λ1 � λ2 = λ3), one can approximate the exponent in the diffusion tensor model
S(ĝ) = S0 exp(−bĝTDĝ) as −bĝTDĝ ≈ −bλ1ĝ

T(µµT)ĝ = −bλ1(µ
Tĝ)2. Thus, we

have the approximation S(ĝ) ≈ S0 exp(−bλ1(µ
Tĝ)2). This equation takes a form that

is identical to the probability distribution function (PDF) of the bipolar Watson distri-
bution [10]:

f(ĝ|µ, κ) = C(κ) exp(κ(µTĝ)2). (1)

The Watson distribution function hence has tensor-like properties and is especially
suited for modeling the diffusion profile. The parameter µ is a unit vector called the
mean orientation and κ is a constant called the concentration parameter. C(κ) is a nor-
malizing constant to ensure that the density function integrates to unity over the unit
sphere. Here we note that the concentration parameter κ can take both positive and
negative values, giving very different shapes for the PDF. As shown in Fig. 1, negative
κ values result in donut-shaped function, which is typically the shape of the diffusion
profile of a fiber population with one dominant orientation. Based on this important
observation, the upcoming subsections will detail how the DWI signal profile can be
decomposed into a series of FBFs of different orientations for achieving the purpose of
orientation correction.

2.2 Decomposing the Diffusion-Attenuated Signal Profile

Denoting the diffusion signals measured in direction ĝi (i = 1, . . . ,M ) by S(ĝi), our
aim is to represent this spherical function based on a FBF series, which in our case is
realized by a combination of Watson distribution functions:

S(ĝi) = w0f0 +

N∑

j=1

wjf(ĝi|µj , κ) (2)

where κ < 0 and wj are the weights for the FBFs f(·). f0 = C(0) is a constant term
representing the isotropic diffusion component. The directions of the FBFs, µj , can
be set to distribute uniformly on a sphere. In matrix form, the above equation can be
rewritten as S = Fw, where

S =

⎡

⎢⎢⎢⎣

S(ĝ1)
S(ĝ2)

...
S(ĝM )

⎤

⎥⎥⎥⎦ , w =

⎡

⎢⎢⎢⎣

w0

w1

...
wN

⎤

⎥⎥⎥⎦ , F =

⎡

⎢⎣
f0 f(ĝ1|µ1, κ) . . . f(ĝ1|µN , κ)
...

...
. . .

...
f0 f(ĝM |µ1, κ) . . . f(ĝM |µN , κ)

⎤

⎥⎦ . (3)

Assuming M < N + 1, we have a set of underdetermined linear equations, solution to
which involves solving a least L2-norm problem:

min
w

||w||2 s.t. Fw = S, (4)
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where || · ||p denotes the p-norm. However, to better harness the fact the DWI signals
at each voxel is due to the response from a limited number of fiber populations, we
compute the solution to (2) by means of a non-negative L1-regularized least-squares
problem:

min
w

{||S− Fw||22 + β||w||1
}

s.t. w ≥ 0 (5)

where β ≥ 0 is a tuning parameter. The above problem can be solved using an active-
set-based algorithm that is modified from the feature-sign algorithm presented in [5] to
incorporate the non-negative constraint. The algorithm can be proven to always con-
verge to the global optimum in a finite number of iterations.

Sparse Representation and the Isotropic Term. Determining the weight for the iso-
tropic term by solving the least-norm problem (4) can be ambiguous. When the FBFs
are distributed dense enough uniformly on a sphere, giving equal weights to all FBFs
can result in an isotropic diffusion profile, hence defeating the purpose of including an
isotropic term in (2) in modeling the signal profile. The sparse representation problem
(5) helps avoid this pitfall by choosing the sparsest representation. In particular, in the
case of an isotropic profile only w0 will have a nonzero value.

2.3 Transformation and Recomposition

For signal profile correction in relation to spatial normalization, the directions of the
FBFs, µj , are reoriented independently based on the local affine transformation matrix

A, i.e., µ′
j =

Aµj

||Aµj || . Based on the reoriented FBFs, a new matrix in replacement of F

can be computed as

F′ =

⎡

⎢⎣
f0 f(ĝ1|µ′

1, κ) . . . f(ĝ1|µ′
N , κ)

...
...

. . .
...

f0 f(ĝM |µ′
1, κ) . . . f(ĝM |µ′

N , κ)

⎤

⎥⎦ . (6)

The transformed DWI signal profile S′ is finally obtained as S′ = F′w. Note that the
isotropic component is not reoriented.

3 Experimental Results

We will first describe how the ODF and the orientations of the ODF peaks can be
computed for the purpose of evaluation. We will then describe our evaluation based on
simulated and in vivo data. For all experiments, we set β = M/N and κ = −κ′ =
−bλ1. For the in vivo data, λ1 was estimated from the corpus callosum. A total of 501
orientations generated by optimizing the covering algorithm (see [2]) were used as the
mean orientations of the FBFs. T = 1281 orientations [2] were used to locate the ODF
peaks.
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Fig. 2. Orientational discrepancy of the fiber orientations detected after reorientation with respect
to the ground truth orientations

Fig. 3. Estimated fiber orientations after profile reorientation for the proposed method (top) and
SH8 (bottom). Red: estimated orientations; Blue: ground truth orientations. The results from left
to right correspond to shearing factor α = 0.0, 0.1, . . . , 0.9.

3.1 Computing the ODF and the ODF Peaks

The ODF associated with a Watson distribution function can be written as [7]
O[f(ĝi|µj , κ)] ∝ f(ĝi|µj , κ

′) with κ′ > 0. We can hence write O [S(ĝi)] = w0f0 +∑N
j wjf(ĝi|µj , κ

′). A concentration κ′ = −κ/2 will give results similar to that de-
rived in [7], which is based on the method suggested by Tuch [9]. A larger value of κ′

will give results closer to the sharper fiber ODF [8]. For simplicity, we used κ′ = −κ
for all experiments. To extract the orientations of the ODF peaks, which represent the
local fiber orientations, the following steps were performed:

1. Sample the ODF with sufficient density at orientations ŵ1, . . . ŵT .
2. Remove orientations associated with ODF values less than the mean value.
3. Locate orientations with values greater than their neighboring orientations.
4. Compute the mean orientations of the orientations in the neighborhood of the ori-

entations with the maximal values. This can be done by computing the eigenvec-
tor corresponding to the largest eigenvalue of the dyadic tensor Ddyadic(ŵi) =

1
|N (ŵi)|

∑
v∈N (ŵi)

vvT for ŵi satisfying O [S(ŵi)] > O [S(v)], ∀v ∈ N (ŵi).
N (ŵi) denotes the neighborhood of ŵi. Return the mean orientations as the
output.
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Fig. 4. Preservation of isotropy after reorientation. A greater c.v. value indicates higher
anisotropy. Note that the values given by the proposed method is consistently zero for all cases;
therefore, they are not visible.

Fig. 5. Reorientation results for the proposed method (top) and SH8 (bottom) using shearing
factor α = 0.0, 0.1, . . . , 0.9. With the proposed method, the isotropy of the profile is faithfully
preserved.

3.2 Simulated Data

Assuming 2 crossing fiber populations, we used a mixture of diffusion tensors to gen-
erate a diffusion profile representing a fiber crossing for the evaluation of the proposed
method. Each fiber population is represented by a tensor with λ1 = 5 × 10−3mm2/s,
λ2 = λ3 = 5 × 10−4mm2/s and b = 1000s/mm2. The (120) gradient directions were
taken from the in vivo dataset. One tensor is oriented in the horizontal (x-axis) direction
and the other in the vertical (y-axis) direction.

Reorientation Accuracy. The diffusion profile was sheared in the horizontal direction
using the transformation matrix A = [1 α 0; 0 1 0; 0 0 1], where α is the shearing
factor, increment of which will result in a greater degree of shearing. We set α =
0.1, 0.2, . . . , 0.9. The ground-truth orientations were computed by reorienting directly
the orientations of the individual tensors, i.e., [1, 0, 0] and [0, 1, 0]. We evaluated the
accuracy of the reorientated diffusion profile by comparing fiber orientations detected
from it with respect to the ground truth. Assuming that U is the set of ground truth ori-
entations and V is the corresponding set of estimated orientations, the orientational dis-

crepency is defined as 1
2

[
1

|U|
∑

u∈Uminv∈V dθ(u,v) +
1

|V|
∑

v∈V minu∈U dθ(v,u)
]
,

where dθ(u,v) gives the angle difference between u and v, i.e., dθ(u,v) = cos−1(|u ·
v|). The absolute value is taken since diffusion is assumed to be antipodal symmetric.
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Fig. 6. Reorientation accuracy evaluated using
in vivo data

The results are shown quantitatively in
Fig. 2 and qualitatively in Fig. 3. The
results generated using Raffelt et al.’s
method [6], applied directly to the ODF
using spherical harmonics up to order 8
(SH8), 10 (SH10), and 12 (SH12), are also
included for comparison. Note that for the
proposed algorithm the ODFs were com-
puted based on the reoriented DWI sig-
nal profiles, whereas for the comparison
method reorientation was performed di-
rectly on the ODF. The results indicate that
the proposed method 1) yields lesser error
in the estimated orientations, and 2) affects less the diffusion profile in the horizontal
direction, which is to be expected, since shearing is applied in the horizontal direction.

Preservation of Isotropy. We also evaluated the proposed method on whether it can
successfully preserve the isotropy of an isotropic profile. For this purpose, we measured
the anisotropy of the reoriented ODFs using the coefficient of variation c.v. = std(O[S])

〈O[S]〉 ,
recalling that O[·] is the ODF operator previously defined. A larger c.v. value indicates
a greater degree of anisotropy.

We generated an isotropic diffusion profile with constant signal magnitude
exp(−bλ), where b = 1000s/mm2 and λ = 5 × 10−3mm2/s, in all directions. This
profile was then subject to the different degree of shearing identical to the experiment
using simulated data. The c.v. values of the reoriented ODFs were then measured as an
indication of whether the reorientation algorithm unnecessarily distorts the originally
isotropic profile. The results, shown in Fig. 4, demonstrate the importance of explicitly
modeling the isotropic diffusion component. Neglecting this will cause the originally
isotropic profile to become anisotropic after reorientation, which cannot be physically
true. Visual results for comparison are shown in Fig. 5, where it can be seen that the
distortion for the representative case of SH8 is quite apparent.

3.3 Real Data

Diffusion-weighted images were acquired for an adult subject using a Siemens 3T TIM
Trio MR Scanner with an EPI sequence. Diffusion gradients were applied in 120 non-
collinear directions with diffusion weighting b = 2000s/mm2. The imaging matrix was
128× 128 with a rectangular FOV of 256× 256mm2. 80 contiguous slices with a slice
thickness of 2mm covered the whole brain.

We extracted DWI signal profiles from the voxels located in the pons, since this lo-
cation of the brain was found to contain a significant amount of fiber crossings [3].
The profiles were randomly transformed using the matrix A = [1 α 0; 0 1 0; 0 0 1]R,
where R = RxRyRz is composed by matrices of rotations around the x, y, and
z axes. The local orientations prior to profile reorientation were estimated and trans-
formed using the corresponding matrix A to serve as ground truth for evaluation of the
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reorientation algorithms. The reorientation accuracy was measured by computing the
orientational discrepancy of the estimated orientations with respect to the ground truth.
The results, shown in Fig. 6, again confirms that the proposed method yields markedly
improved results.

4 Conclusion

We have presented in this paper a novel algorithm for the transformation of raw DWI
data directly in the Q-space. The algorithm takes into account of the isotropic diffu-
sion component and can therefore be applied to any voxels without requiring explicitly
masking out gray matter and cerebospinal fluid voxels. The capability of working di-
rectly with the diffusion signal profiles implies that the transformed outcome will allow
the plethora of diffusion models to be fitted after the fact. It is not difficult to envision
that future works involving registration, segmentation, and voxel-based analysis using
diffusion-weighted images will benefit fundamentally from the current work.
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