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Abstract. Image registration is inherently ill-posed, and lacks a unique
solution. In the context of medical applications, it is desirable to avoid
solutions that describe physically unsound deformations within the pa-
tient anatomy. Among the accepted methods of regularizing non-rigid
image registration to provide solutions applicable to medical practice is
the penalty of thin-plate bending energy. In this paper, we develop an
exact, analytic method for computing the bending energy of a three-
dimensional B-spline deformation field as a quadratic matrix operation
on the spline coefficient values. Results presented on ten thoracic case
studies indicate the analytic solution is between 61–1371x faster than a
numerical central differencing solution.
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1 Introduction

B-spline based deformable registration has become a popular method for deriving
coordinate system transforms between image volumes exhibiting complex local
variations due to its compact local support, rapid computation, and applicability
to both single and multi-modalities. Such transforms allow non-rigid structures
to be mapped between images and provide quantitative measure of local mo-
tion and volumetric change over time. Consequently, deformable registration has
played an important role in advancing numerous fields of research and applied
medicine including Alzheimer’s disease [1], schizophrenia [2], generalized brain
development [3], image-guided surgery [4,5], image guided radiotherapy [6,7],
motion estimation [8] and time-evolution visualization [9].

Due to the inherent ill-posed nature of image registration, the existence of
a unique mapping is not guaranteed and the solution space must, therefore, be
confined to only physically meaningful transforms. To this end, several regular-
ization methods have been proposed: Rueckert et al. propose penalizing high
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thin-plate bending energy [10]. Rohlfing et al. propose penalizing local devia-
tions from a unity Jacobian determinate [11]. Miller et al. propose minimizing
linear elastic energy[12]. Li et al. enforce a maximum delta between adjacent B-
spline coefficients [13], whereas Chun and Fessler propose encouraging invertible
diffeomorphic transforms by placing more complex constraints upon coefficients.
This paper builds upon [10] by introducing a fast analytic method for computing
the thin-plate bending energy penalty via a set of static matrix operators.

2 Theory

Fig. 1. 2D region
supported by 16
control-points

Here we develop the necessary theory to compute the bend-
ing energy of a three-dimensional deformation field parame-
terized by a uniform cubic B-spline basis. Given a uniformly
spaced control-point grid as shown in Fig. 1, the bending
energy of the entire deformation may be expressed as a lin-
ear combination of the bending energies computed within
the individual regions of the grid. Therefore, our approach
is to develop an operator that computes the bending energy
within a region as a function of the B-spline control points
that support the region.

Given a three dimensional fixed image F with voxel coordinates θ = x, y, z
and voxel intensity f = F (θ) and moving image M with voxel coordinates
φ = x2, y2, z2 and voxel intensity m = M(φ) representing the same underlying
anatomy as F within the image overlap domain Ω, the two images F and M are
said to be registered when cost function

C =
∑

T(θ)∈Ω

Ψ (f,m) + λS (1)

is optimized according to the similarity metric Ψ under the coordinate mapping
T(θ) = θ + ν. Here ν is the dense vector field defined for every voxel θ ∈ Ω,
which is assumed capable of providing a good one-to-one mapping from F to M .
The smoothness S of ν is added to C with weight λ to drive T to a physically
meaningful coordinate map. When represented sparsely via the uniform cubic
B-spline basis, the vector field ν is parameterized by the set of B-spline basis
coefficients P i,j,k = px,py,pz, where:

px =

⎡

⎢⎣
px,0,0,0

...
px,I,J,K

⎤

⎥⎦ ,py =

⎡

⎢⎣
py,0,0,0

...
py,I,J,K

⎤

⎥⎦ ,pz =

⎡

⎢⎣
pz,0,0,0

...
pz,I,J,K

⎤

⎥⎦ (2)

are defined for n = I × J × K control-points with real world spacing r =
rx, ry, rz . From this new basis, the vector field may be expressed at a point θ
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with Euclidean coefficients ν computed via the following tensor product using
the 64 B-spline coefficients supporting θ:

νx =

3∑

i=0

3∑

j=0

3∑

k=0

pi,j,k

3∑

a=0

Q(δx)
x (i, a)x(a)

3∑

b=0

Q(δy)
y (j, b)y(b)

3∑

c=0

Q(δz)
z (k, c)z(c)

(3)
for the x-dimension and similarly for the y- and z-dimensions. Here

x = [1 x x2 x3]T (4)

forms a Cartesian basis and y and z are defined similarly. The matrices Q
(δ)
x ,

Q
(δ)
y , and Q

(δ)
z are defined by

Q(δ)
x = BRxΔ

(δ) Q(δ)
y = BRyΔ

(δ) Q(δ)
z = BRzΔ

(δ) (5)

where B forms the cubic B-spline basis and Rx, Ry, and Rz confine the evalu-
ation of the B-spline basis to ∈ [0, 1]:

B =
1

6

⎡

⎢⎢⎣

1 −3 3 −1
4 0 −6 3
1 3 3 −3
0 0 0 1

⎤

⎥⎥⎦ , Rx =

⎡

⎢⎢⎣

1 0 0 0
0 1

rx
0 0

0 0 1
r2x

0

0 0 0 1
r3x

⎤

⎥⎥⎦ , (6)

The matrix Δ(δ) is defined thusly for δ ∈ [0,2]

Δ(0) =

⎡

⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦ , Δ(1) =

⎡

⎢⎢⎣

0 0 0 0
1 0 0 0
0 2 0 0
0 0 3 0

⎤

⎥⎥⎦ , Δ(2) =

⎡

⎢⎢⎣

0 0 0 0
0 0 0 0
2 0 0 0
0 6 0 0

⎤

⎥⎥⎦ . (7)

and provides a convenient method for obtaining ν ′ and ν′′ w.r.t to the Euclidean
basis as required by the calculation of the smoothness penalty [10]:

S =

∫

Ω

(
∂2ν

∂x2

)2

+

(
∂2ν

∂y2

)2

+

(
∂2ν

∂z2

)2

+ 2

[(
∂2ν

∂xy

)2

+

(
∂2ν

∂xz

)2

+

(
∂2ν

∂yz

)2
]
dx.

(8)

We may obtain expressions for these derivative terms by referring to (3) and
expanding the triple summation over (i, j, k) to the 64× 1 vector:

γ(δx,δy,δz) =
⎡

⎢⎢⎢⎢⎢⎢⎣

(∑
a Q

(δx)
x (0, a)x(a)

)(∑
b Q

(δy)
y (0, b)y(b)

)(∑
c Q

(δz)
z (0, c)z(c)

)

(∑
a Q

(δx)
x (1, a)x(a)

)(∑
b Q

(δy)
y (0, b)y(b)

)(∑
c Q

(δz)
z (0, c)z(c)

)

...(∑
a Q

(δx)
x (3, a)x(a)

)(∑
b Q

(δy)
y (3, b)y(b)

)(∑
c Q

(δz)
z (3, c)z(c)

)

⎤

⎥⎥⎥⎥⎥⎥⎦

(9)
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leading to the expression

Γ(δx,δy,δz) = γ(δx,δy,δz) ⊗ γ(δx,δy,δz) (10)

which allows for the production of the polynomial expressions for the squared
second order partial derivatives by setting (δx, δy, δz) and operating directly on
the control-point coefficients. For example,

(
∂2νx
∂x∂z

)2

= pTx

(
Γ(1,0,1)

)
px . (11)

We can now devise a single matrix operator for computing (8) over any given
region supported by a set of 64 control-points. Fig. 1 provides a 2D visualiza-
tion. To later simplify computation, we separate the term Γ by B-spline basis
orientation such that:

Γ(δx,δy,δz) = Γ(δx)
x ⊗ Γ(δy)

y ⊗ Γ(δz)
z . (12)

By separating the 4 rows of Q
(δx)
x into unit vectors

Q(δx)
x =

⎡

⎢⎢⎣

qTx,0
qTx,1
qTx,2
qTx,3

⎤

⎥⎥⎦

(δx)

(13)

we may define the sixteen 4 × 4 matrices given by Ξx,a,b = qx,a ⊗ qx,b and
construct the 4× 4 matrix:

Γ(δx)
x (a, b) = Ξx,a,b . (14)

Grouping like order polynomials terms within Ξx,a,b yields the column vector
σx,a,b:

σx,a,b =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ξ(0, 0)
Ξ(0, 1) +Ξ(1, 0)
Ξ(0, 2) +Ξ(1, 1) +Ξ(2, 0)
Ξ(0, 3) +Ξ(1, 2) +Ξ(2, 1) + Ξ(3, 0)
Ξ(1, 3) +Ξ(2, 2) +Ξ(3, 1)
Ξ(2, 3) +Ξ(3, 2)
Ξ(3, 3)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

x,a,b

(15)

and by integrating the resulting 8th order Cartesian bases over r

ψx =
[
rx

1
2r

2
x

1
3r

3
x

1
4r

4
x

1
5r

5
x

1
6r

6
x

1
7r

7
x

]T
(16)

the integral of Γ
(δx)
x over a B-spline region may be expressed as a 4 × 4 matrix

of vector products

Γ̄(δx)
x (a, b) =

∫ rx

0

Γ(δx)
x (a, b)dx = σT

x,a,bψx (17)
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and similarly for Γy and Γz . This allows for the construction of the six desired
composite matrix operators

V(δx,δy,δz) =

{
Γ̄
(δx)
x ⊗ Γ̄

(δy)
y ⊗ Γ̄

(δz)
z for δx + δy + δz = 2

0 otherwise
(18)

which facilitate the rapid computation of the smoothness metric over a region
indexed by (l,m, n) as

Sl,m,n =
∑

(δx,δy,δz)

(
pTx V

(δx,δy,δz)px + pTy V
(δx,δy,δz)py + p

T
z V

(δx,δy,δz)pz

)
(19)

with derivative w.r.t to a B-spline control-point P i,j,k

∂Sl,m,n

∂P i,j,k
=

∑

(δx,δy,δz)

(
2V(δx,δy,δz)px + 2V(δx,δy,δz)py + 2V(δx,δy,δz)pz

)
. (20)

The total penalty S and its gradient are expressable via the summations

S =
∑

(l,m,n)

Sl,m,n and
∂S

∂P i,j,k
=

3∑

l=0

3∑

m=0

3∑

n=0

∂Sl,m,n

∂P i,j,k
, (21)

where the summation for S indexed by (l,m, n) is over all regions and the sum-
mation for the gradient is over the 64 regions within the local support of the
control point P i,j,k.

3 Results

We assess the performance of our analytic method by comparison to a numerical
method that computes the squared second derivatives from (8) via direct central
differencing of the deformation field ν, which is accumulated over the overlap
domain Ω. Computational time required by such an approach is proportional
to the number of voxels within Ω. By contrast, the time required by the pro-
posed analytic method is proportional to the number of regions defined by the
B-spline control-point spacing; thus reducing the complexity. Furthermore, the

Table 1. Wall clock execution times and associated speed-ups for the proposed analytic
scheme vs numerical central differencing of the vector field

Processing Time
Volume Size Control-Point Spacing Numeric Analytic Speed-up

256× 256 × 256 10× 10× 10 91.746s 1.505s 61x
256× 256 × 256 30× 30× 30 90.238s 0.126s 722x
512× 512 × 512 10× 10× 10 758.902s 11.650s 65x
512× 512 × 512 30× 30× 30 762.041s 0.556s 1371x
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(a) Image difference (b) T for λ = 0 (c) T for λ = 0.007 (d) T for λ = 0.7

Fig. 2. Coronal slice of of deformation field T acquired by registering (a) exhaled and
inhaled thoracic CT images. T is computed with a 10× 10× 10 control-point spacing
for (b-d) different values of λ.

six V matrices may be pre-computed and reused throughout the optimization
of the B-spline coefficients P for a given control-point spacing r. As shown in
Table 1, our analytic method achieves a speed-up ranging between 61x–1371x,
dependent upon the voxel to region ratio for a given registration configuration.
Agreement between numerical and analytic solutions is within 2% [14]. The
effect of the bending-energy penalty factor λ on the transform T is qualita-
tively demonstrated by Fig. 2 where inhaled and exhaled thoracic volumes with
displacement shown by Fig. 2(a) are registered using a B-spline control-point
spacing of 10 × 10× 10 mm for λ varying over several orders of magnitude. As
expected, the resulting transforms T shown in Fig. 2(b-d) exhibit decreasing
bending energy for increasing λ. This single example is from one of ten case
studies performed to quantitatively explore the effectiveness of our analytic reg-
ularization as a function of control-point spacing r and penalty factor λ.

Each of the ten studies consists of an image volume taken at full inhalation
and a subsequent volume at full exhalation. Five of the ten studies have volumes
of 512 × 512 × 128 voxels with physical separations of 0.92 × 0.92 × 2.5 mm;
the remaining five studies have the same physical separations but volumes are
lower resolution at 256× 256 × 128 voxels. For each image, 300 landmarks are
placed within the lung by a medical expert. Registrations are performed using
the mean-squared error similarity metric penalized by S with weight λ as in
(1). The B-spline coefficients P describing the transform T are optimized via
the quasi-Newtonian method implemented by the L-BFGS-B optimizer using
an analytically computed cost function and gradient. Fig. 3(a) shows the mean
separation of corresponding landmarks between inhaled and exhaled volumes
as a function of control-point spacing and λ after application of the computed
transform T. The primary range of interest falls mostly within 10−1–102 where
increasing values of λ produce increasing mean separations between landmarks.
As shown in Fig. 3(c), the minimum Jacobian determinate of T reveals that
as λ increases through this range, the resulting transforms tend to increase
in smoothness until becoming nearly plastic as |∇T| approaches unity within
the range 1 < λ < 2. In the absence of regularization, control-point spacings
10–30mm tend to produce non-smooth local deformations due to the restricted
influence of the B-spline basis; however, the resulting increased parameterization
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Fig. 3. Average separation of corresponding landmarks as a function of B-spline
control-point spacing and the bending energy penalty factor λ over the 10 thoracic
cases.

of T allows for more complex local variations to be described. Small values
of λ less than 10−2 have little effect in this region and |∇T| deviates greatly
from unity. This is an indication of aggressive local expansion and compression
in T that is most likely physiologically unsound. Furthermore, the occurrence
of negative values for |∇T| indicate the presence of non-orientation preserving
local transforms within this range of λ. Consequently, increasing λ beyond 10−2

exhibits the unique quality of increasing registration accuracy as well as the
potential physiological applicability of T for such fine control-point spacings, as
shown by Fig. 3(a).

4 Conclusions

We have developed an analytically derived set of composite matrix operators
that operate directly on a set of 64 control-points to produce the bending en-
ergy within a given region of support. The behavior of our method has been
characterized by application to ten thoracic studies and it was demonstrated
that our method of bending energy computation provides a speed-up within the
range of 60–1371x depending on input volume resolution and B-spline control-
point spacing.

This algorithm has been implemented as part of Plastimatch and can be
downloaded under a BSD-style license from http://www.plastimatch.org.
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