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Abstract. A new approach to align 3D CT data of a segmented lung
object with a given prototype (reference lung object) using an affine
transformation is proposed. Visual appearance of the lung from CT im-
ages, after equalizing their signals, is modeled with a new 3D Markov-
Gibbs random field (MGRF) with pairwise interaction model. Similarity
to the prototype is measured by a Gibbs energy of signal co-occurrences
in a characteristic subset of voxel pairs derived automatically from the
prototype. An object is aligned by an affine transformation maximizing
the similarity by using an automatic initialization followed by a gradient
search. Experiments confirm that our approach aligns complex objects
better than popular conventional algorithms.

1 Introduction

Image registration aligns two or more images of similar objects taken at different
times, from different viewpoints, and/or by different sensors. The images are ge-
ometrically transformed to ensure their close similarity. Registration is a crucial
step in many applied image analysis tasks, e.g., early diagnosis of detected lung
nodules. One of the most compelling motivations for identifying a potentially
malignant nodule is to assess its growth rate. To quantify the growth rate of a
nodule, one must be able to measure the volume of nodules and identify cor-
responding nodules in a follow-up scans. The principal difficulty in estimating
the nodule growth rate is automatic identification and registration (alignment)
of the corresponding nodules in follow-up scans. Registration of the lung tissues
is a challenging task due to large displacements between them in successive CT
scans, which may be caused by variation in respiratory volumes and patient
positioning. For these reasons, the registration of the successive CT lung data
taken at different times is the main goal of this paper.

Most of the known registration methods fall into two main categories:
feature-based and area-based techniques [1]. Feature-based techniques use sparse
geometric features such as points, curves, and/or surface patches, and their
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correspondences to compute an optimal transformation. Area-based methods,
such as the classical least square correlation, directly match image signals to
avoid feature extraction [2]. More powerful mutual information (MI) based image
registration [3] exploits a probabilistic similarity measure that allows for more
general types of signal deviations than correlation. The statistical dependency
between two data sets is measured by comparing a joint empirical distribution
of the corresponding signals in the two images to the joint distribution of the
independent signals (e.g., see [4lJ5] for more details about the existing approaches
for medical images registration).

In this paper, we consider a more general case of registering 3D segmented lung
data to a prototype (the reference data, usually the CT collected at the first visit of
the patient) with similar visual appearance under their relative 3D affine trans-
formations and monotone variations of signal correspondences. To suppress the
variations between the images, all test and training images were equalized to the
same signal ranges, thus having the same dimensions in their co-occurrence matri-
ces. Generally, any equalization scheme can be used. The co-registered equalized
images are described with a characteristic subset of signal co-occurrence statistics.
The description implicitly “homogenizes” the images, i.e., considers them as spa-
tially homogeneous patterns with the same statistics. Our approach differs from
the feature-based registration in that the statistics characterize the whole object,
and from conventional area-based techniques in that the similarities between the
statistics rather than pixel-to-pixel correspondences are measured.

2 MGRF Based Image Registration

2.1 Basic Notation

Q=1{0,...,Q — 1} — a finite set of scalar image signals (e.g., gray levels).
-R=[z94,2) :2=0,...,.X—-1y=0,....Y-1,2=0,....Z—-1] - a
3D arithmetic lattice supporting digital low dose CT (LDCT) image data
g:R— 0.
— R, C R — an arbitrary-shaped part of the lattice occupied by a prototype.
N ={(&,m,0),--,(&n, M, Cn)} — a finite set of (z,y, z)-coordinate offsets
defining neighboring voxels, or neighbors {((z + &,y + 1,2 + (), (z — &,y —
n,z—C)):(&n,() € N} A R, interacting with each voxel (z,y, z) € Rp.
— T — an indicator of vector or matrix transposition.

The set AV yields a 3D neighborhood graph on R, describing translation invariant
pairwise interactions between the voxels with |[N| families Ce ,, ¢ of the 2"-order
cliques c¢ . c(z,y,2) = ((z,y,2), (x + &,y +1n, 2+ ()) shown in Fig. [l

Quantitative interaction strengths for the clique families are given by a vector
VT = ng,c 2 (&,m, Q) € ./\/‘} of potentials ngC = [Vemc(a,d) : (q,4) € Q2]
being functions of signal co-occurrences in the cliques.
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Data Normalization: To account for possible monotone (order-preserving)
changes of signals, e.g., due to different sensor characteristics, every LDCT data
set is equalized using the cumulative probability distribution of its signals.

Markov-Gibbs Random Field-Based Appearance Model: The main idea
of learning the appearance model using an MGRF is to find the neighborhood
system (i.e., the subsets of voxels which have strong relations with each current
voxel) and to estimate the interaction between each two voxels in this neighbor-
hood system (see Fig. [II).

(3]
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Fig. 1. Pairwise voxel interaction sys- Fig. 2. Values of the Gibbs energy, MI, and
tem NMI at the successive steps of the gradient
ascent based search

In a generic MGRF with multiple pairwise interaction in Fig. [ [6], the Gibbs
probability P(g) o exp(FE(g)) of an object g aligned with the prototype ¢° on
R, is specified with the Gibbs energy E(g) = |R,|VTF(g). Here,

FT(g) is the vector of scaled empirical probability distributions of signal co-
occurrences over each clique family: FT(g) = [Pi,n,CFg,n,g(g) 2 (&m,¢) e NT;
- Pemc = ‘CfR”;’ld is the relative size of the family C¢ , ¢, and
— F¢,c(g) is the vector of empirical probabilities for this family:
Fenc(9) = [fenc(a.4'19) : (a.¢') € Q°7 where
o fencladlo) = "spmr )
ities, and
o Cenciaq(9) C Cepcis asubfamily of the cliques c¢  ¢(, y, z) supporting
the co-occurrence (9z,y.> = ¢, Gote,y4n,24¢ =¢') in g.

are empirical signal co-occurrence probabil-

The co-occurrence distributions and the Gibbs energy for the object are deter-
mined over Ry, i.e., within the prototype boundary after an object is affinely
aligned with the prototype. To account for the affine transformation, the initial
image is resampled to the back-projected R, by bilinear interpolation.

The appearance model consists of the neighborhood N and the potential V
to be learned from the prototype. Below we will show how to estimate N and
V for the lung tissues from the LDCT images.
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Learning the Potentials: In the first approximation, the maximum likelihood
estimate (MLE) of V is proportional to the scaled and centered empirical co-
occurrence distributions for the prototype@:

1
Ve = Mg (Fs,n,c(g") ~ 0 U) ; (EnQ) eN

where U is the vector with unit components. The common scaling factor A is also
computed analytically; it is approximately equal to Q% if @ > 1 and Pemc =1
for all (£,1,¢) € M. In our case it can be set to A = 1 because the registration
uses only relative potential values and energies.

Learning the Characteristic Neighbors: To find the characteristic neigh-
borhood set N, the relative energies E¢ ,, ¢(¢°) = pg’n’Cngnnggm’g(go), i.e., the
scaled variances of the corresponding empirical co-occurrence distributions for
the clique families, are compared for a large number of possible candidates.

VN 2 6D

Fig.3. The 3D neighborhood sys- (©) B .
tem estimated for the lung tissues 1
Table 1. Alignment errors (in mm)
for the expert-identified landmarks +
over the 100 data sets, and the ex-  (g)

(a) (b)

ecution times comparing the pro-
posed approach against MI- and
NMI-based methods. SD stands for
standard deviation.

Fig. 4. 3D voxel-wise Gibbs energies projected
onto the 2D axial (A), coronal (C), and sagittal
(S) planes for visualization: 2D slices of the orig-
inal LDCT images (a) and the voxel-wise Gibbs
energies for |N| = 275 which is estimated us-
ing LCDG model (b) and |[N| = 3927 which is
estimated using tradition EM algorithm (c)

Our MI NMI

Mean 1.9 5.1 4.8
SD 1.1 23 1.9
Time (min) 12 9.0 9.0

To automatically select the characteristic neighbors, we consider an empirical
probability distribution of the energies as a mixture of a large “non-characteristic”
low-energy component and a considerably smaller characteristic high-energy com-
ponent: P(F) = nPo(E)+ (1 —7)Py(E). The components P, (EF) and P, (E) are

! For complete proof, please see: https://louisville.edu/speed/bioengineering/
faculty/bioengineering-full/dr-ayman-el-baz/supplemental-materials


https://louisville.edu/speed/bioengineering/faculty/bioengineering-full/dr-ayman-el-baz/supplemental-materials
https://louisville.edu/speed/bioengineering/faculty/bioengineering-full/dr-ayman-el-baz/supplemental-materials

118 A. El-Baz et al.

of arbitrary shape and thus are approximated with linear combinations of positive
and negative Gaussians (LCDGQG) using efficient Expectation-Maximization-based
algorithms introduced in [7] (the latter estimate both the components and the
prior 7). The intersection of the estimated mixture components using the LCDG
model gives an energy threshold 6 for selecting the characteristic neighbors: N' =
{(&,n) : Een(g°) > 6} where Pni(0) > Po(0)n/(1 — m). The above example
results in the threshold 6 = 28 producing 275 characteristic neighbors shown in
Fig. Bl Figure M presents the relative 3D voxel-wise Gibbs energies e, , .(g°) for
this system:

€ry,2(9°) = Z ‘/E,n,c(gi,y,z7gi+g,y+n,z+c)
(&mQ)eN

Appearance-Based Registration. The desired affine transformation of an
object g corresponds to a local maximum of its relative energy E(ga) = V' F(ga)
under the learned appearance model [N, V]. Here, g, is the part of the object
image reduced to R, by a 3D affine transformation a = [a11,...,a3]: 2’ =
anz+apy+aizztais; Yy = anr+any+asztan; 2 = azir+ay+azzz+as,s.
Its initial step is a pure translation (a11 = ag2 = aszs = 1; a12 = a13 = az1 =
a3 = ag1 = aszz = 0) ensuring the most “energetic” overlap between the object
and prototype. In other words, the chosen initial position (a},, a3,, a3,) in Fig.
maximizes the energy. Then, the gradient ascent based search for the local energy
maximum closest to the initialization selects all the 12 parameters a. Note that
this gradient-based optimization was used for all tested registration methods to
estimate the goal parameters.

EDEDEDED
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Fig. 6. Global registration results: our (a), MI-based (b),
NMI-based (c), and SIFT-based (d) algorithms. These
registration results were obtained from the segmented
lung data without any pre-processing steps.

Fig. 5. Initialization of
the proposed global regis-
tration algorithm
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3 Experimental Results

The proposed registration approach has been tested on the clinical data sets that
have been collected from 100 patients at the end-expiration breath hold (EE-
BH). Each patient has two LDCT scans, with the three-month period between
each two successive scans. This clinical database was collected by the LDCT scan
protocol using a multidetector GE Light Speed Plus scanner (General Electric,
Milwuakee, USA) with the following scanning parameters: the slice thickness of
2.5 mm reconstructed every 1.5 mm; scanning pitch 1.5 mm; 140 KV; 100 MA;
and the field-of-view 36 cm.

Results of the proposed global alignment of two lungs are shown in Figs.
and [1 Tt is clear from Fig. [ (a) and Fig. [ (c,d) that there are small mis-
alignment at the lung surface, this is due to local deformation of lung tissues
which come from breathing and heart beats. This can be handle by applying
any local deformation transformation model (e.g., 3D cubic splines as a local
transformation model [§]) as shown in Fig. [ (f).

Fig. 7. 3D global and local registration: (a) the reference data, (b) the target data, (c)
the target data after a 3D affine transformation, (d) the checkerboard visualization to
show the motion of lung tissues, (e) non-rigid registration based using 3D cubic splines
as a local transformation model [§], and (f) the checkerboard visualization to show the
quality of the proposed local deformation model

To highlight the advantages of the proposed registration approach, we com-
pared, on segmented lung data, our global alignment to three popular conven-
tional techniques, namely, to the area-based registration by mutual information
(MI) [3] or normalized MI (NMI) [9] and to the feature-based registration that
establishes correspondences between the images with 3D scale-invariant feature
transform (SIFT) [10].

To clarify why the MI- or NMI-based alignment is less accurate, Fig. ] com-
pares the MI/NMI and Gibbs energy values for a sequence of affine parameters
that appear at successive steps of the gradient ascent-based search for the max-
imum similarity in terms of mutual information or energy. Both the MI and
NMI have many outstanding local maxima that potentially hinder the search,
whereas the energy is much smoother and practically unimodal in these experi-
ments. The 3D SIFT-based alignment fails because it cannot establish accurate
correspondences between the similar lung areas.
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Subject#2 Subject#1

Fig. 8. Registration results of the proposed validation control study: (a) scan #1 before
the movement of the patient; (b) scan #2 after patients rotation and translation; (c)
the two scans superposed; (d) the registration results of the proposed approach; (e) su-
perposition of the registered scan #2 with the reference scan #1; and (f) checkerboard
visualization to show the quality of the proposed registration

Validation: To validate the proposed approach, we have performed a control
study using two subjects, each with one solid nodule. The CT data was collected
with the same scanning protocol described above. In this new control study, we
acquired two scans from the same patient at the EE-BH. The only difference
between the two scans was that the patient was asked to make a global rotation
and translation after the first scan. The purpose of this control study was to get
the data from the same patient with minimal local deformation by breathing
in order to test the proposed 3D global registration approach. Figure [ illus-
trates the registration results of the proposed approach. We used scan #1 before
the patients movement as a reference image to register scan #2 after the pa-
tient movement. The superposition of the registered and reference data and the
checkerboard visualization in Fig. Ble,f) demonstrates the high quality of the
proposed registration. The average registration error is 1.4 mm with standard
deviation +0.7 mm. This estimated error is based on calculating the Euclidean
distance between 250 landmark points manually selected by a radiologist on the
reference and the registered target data.

Additionally, our registration approach was validated on the 100 data sets
based on using anatomical landmark correspondences selected by a radiologist.
After the target data is aligned to the reference data, 10 anatomical landmarks,
between both the reference and registered target data, are identified by the ra-
diologist. The registration accuracy is quantitatively assessed by calculating the
Fuclidian distance for each expert-identified landmark on the registered data
and its correspondence on the reference data. The error statistics for this vali-
dation experiment as well as the average execution time for our approach and
the MI- and NMI-based methods are summarized in Table [l
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4 Conclusions

In this paper we introduced a new approach to align 3D CT data of a lung object
with a given prototype whose appearance is modeled with a new 3D Markov-
Gibbs random field with pairwise interaction model. Experimental results con-
firm that lung registration based on our new Markov-Gibbs appearance model
is more robust and accurate than popular conventional algorithms. Moreover, it
is worth mentioning that the proposed registration approach is not limited only
to lung objects, but it is also suitable for registering any 3D texture medical
objects. Furthermore, the proposed approach can be integrated with any nonrigid
registration algorithm (e.g., cubic B-Splines based techniques). In our future
work will use the evaluation framework proposed by van de Kraats et al. [I1] to
evaluate the performance of our registration approach against the MI- and NMI-
based approaches as well as higher-order MI-based techniques (e.g., [12] ).
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