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Abstract. Model-based segmentation approaches have been proven to
produce very accurate segmentation results while simultaneously provid-
ing an anatomic labeling for the segmented structures. However, variations
of the anatomy, as they are often encountered e.g. on the drainage pattern
of the pulmonary veins to the left atrium, cannot be represented by a single
model. Automatic model selection extends the model-based segmentation
approach to handling significant variational anatomies without user inter-
action. Using models for the three most common anatomical variations of
the left atrium, we propose a method that uses an estimation of the local
fit of different models to select the best fitting model automatically. Our
approach employs the support vector machine for the automatic model se-
lection. The method was evaluated on 42 very accurate segmentations of
MRI scans using three different models. The correct model was chosen in
88.1 % of the cases. In a second experiment, reflecting average segmen-
tation results, the model corresponding to the clinical classification was
automatically found in 78.0 % of the cases.

1 Introduction

With a prevalence of 0.4% to 1%, atrial fibrillation (AF) is the most common
cardiac arrhythmia in the USA and in Europe [1] and can lead to severe, life-
threatening conditions like stroke. Catheter ablation procedures aim at the elec-
trical isolation of reentry pathways and ectopic foci that are causing AF in the
atrial tissue. Triggering foci are often found in the pulmonary veins (PVs) of
the left atrium (LA) [2]. The knowledge of the anatomy of the LA is crucial
for successful procedures as it enables accurate planning of ablation lines and
guidance during the procedure.

With the advent of ablation procedures to treat AF by the isolation of the
PVs, interest in the assessment of the PV configuration rose. Typically, the LA
is joined by two PVs on each side through individual ostia: left superior and left
inferior PV (LSPV, LIPV) on the left side of the LA; right superior and right
inferior PV (RSPV, RIPV) on the right. This, typical pattern is found in about
60 % of the patients [3]. The most frequent variation on the left side of the LA
is the common left trunk (CLT). Both left PVs merge into a single trunk in the
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proximity of the LA body. With a distance from the ostium to the bifurcation
shorter than 1 cm to 1.5 cm, depending on the study [3,4], it is called short CLT
and occurs in 10 % of the patients while the CLT is found in 4 % to 8 % of
the patients. Kaseno et al. suggest a typical configuration as well as the short
CLT to be normal [4]. On the right side, the right middle PV pattern (RMPV),
which is characterized by an accessory PV joining the LA body with a separate
ostium, is found in 13 % to 24 % of the patients. The presence of concurrent
variations on both sides of the LA is rarely reported.

Using model-based segmentation, very accurate segmentation results have
been demonstrated in the past for the heart [5,6,7] in general and the LA in
particular [8]. However, using only a single model, variations in the anatomy of
the LA cannot be reflected and thus, the segmentation is inaccurate. Different
approaches emerged from the necessity to account for the variational anatomy
while preserving the advantages of model-based segmentation. Zheng et al. pre-
sented a part based model approach, adapting the chamber with the LAA and
the four major PVs as individual parts on C-arm CT datasets [9]. In the adapted
state, the parts are joined, enabling the approach to represent both, two individ-
ual PVs on the left as well as the CLT pattern. Hanna et al. introduced a hybrid
method combining model-based segmentation and guided region growing for the
automatic detection of three PV patterns on the right side of the LA in CT im-
ages [10]. This approach, however, is unsuitable for MRI because of image noise,
lack of gray-level calibration, field inhomogeneities and artifacts due to patient
movement. Incorporating anatomical variations into model-based segmentation
remains a challenging and active area of research.

In our proposed approach, model-based segmentation as described in [11] is
carried out with multiple models. We define a measure of the local segmentation
fit in the areas where the models reflect the anatomical variations without the
availability of ground truth annotations. This measure is then used as the input
for a support vector machine (SVM) to automatically select the model resulting
in the most accurate segmentation.

2 Method

2.1 Used Image Database

The used database consists of 59 whole heart (WH) scans of individual patients
which were classified according to the anatomical variant by a clinical expert.
About 53 % of the atria had normal anatomy (typical or short CLT on the left
and two PVs on the right), 14 % the CLT and 25 % the RMPV pattern. The
scans were acquired on Philips Achieva 1.5T systems at Kings College London
using either contrast enhanced inversion recovery turbo field echo (IR-TFE) or
steady state free precession (SSFP) protocols, both with SENSE encoding for
shorter acquisition times. The same cardiac and breathing cycle was achieved
using a navigator technique. The image resolution ranged from 0.72 to 1.48 mm
in-plane and from 1.5 to 2.0 mm through-plane.
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2.2 Shape Models of the Left Atrium

To create models for the most frequent anatomical variations, 32 WH scans were
arbitrarily selected from the database: seven with typical anatomy, eleven with
short CLT, seven with CLT and seven with RMPV pattern. We used the left
atrium model described in [11] as the basis for the model generation. This model
has two PVs on each side and was complemented by the trunk of the left atrial
appendage (LAA). The model was manually adapted to one arbitrary dataset
and an initial feature training was carried out to allow for coarse automatic
segmentations of further datasets, which were manually refined to generate the
ground truth. Training was carried out on 18 datasets, having either typical
anatomy or short CLT on the left and two PVs on the right to represent the
normal anatomy (normal model). To generate a model for the most frequent
anatomical variation on the left side of the LA, the CLT, selective training on
seven CLT datasets was performed (CLT model). For the RMPVmodel, a generic
cylinder was manually merged to the original mesh, estimating its position, to
account for the accessory PV joining the LA. Using this mesh in ground truth
annotation for the RMPV-datasets and the following training led to the RMPV
model. The resulting mean meshes for all three models are depicted in Fig. 1.

(a) normal model (b) CLT model (c) RMPV model

Fig. 1. Resulting labeled mean meshes after training. The left atrial body is labeled
green. All pulmonary veins are colored in violet. The LAA is colored in mint green. A
special label was assigned to the CLT in dark violet (b).

2.3 Segmentation Framework

In order to generate a patient specific segmentation, consisting of a triangle
mesh with labeled triangles, the automatic model-based segmentation framework
described in [11] was used. In a nutshell, a hierarchical model of the organ with
boundary detection functions trained on reference data is adapted to the 3-D
image data. The attraction of the model to the image boundaries is realized by
the search for target points, which is carried out for every triangle center along
discrete positions on a search profile in the direction of the triangle normal.
Target points are selected at the position having the largest weighted feature
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response, reflecting the reliability of the found image feature (eg. gray-level or
gradient). The aim of the following adaptation steps is to successively minimize
the distance between triangle centers and target points. In the beginning, the
PVs and the LAA are inactive and only the LA body is adapted to the image. By
applying a single similarity transform, the pose is corrected. Further adaptation
is achieved by employing an affine transform to the whole mesh. Next, a multi-
affine adaption is performed. To enhance segmentation accuracy, we assigned an
extra transformation to the right side of the LA. In the last segmentation step
a deformable adaption is performed to allow the triangle mesh to fully adapt
to the patient’s anatomy. In this step, the LAA and the PVs are successively
activated and adapted to the image. Throughout the entire segmentation process,
an external energy term is used that represents the image forces pulling the
mesh towards image features. During deformable segmentation, the shape is
constrained by an internal energy term which maintains the similarity to the
original mean mesh.

For evaluation purposes, leave-one-out crossvalidation on the ground truth
data was employed. Segmentation with the four chamber heart model, described
in [11], previously trained on MRI, has been used to initialize the position of
the LA. Symmetric constrained point-to-surface (CPS) distances between the
automatically adapted meshes and the ground truth segmentations were com-
puted according to [11]. The mean CPS distances εmean are shown in Tab. 1.
The overall CPS distance of about 1.1 mm for all models is in the range of the
voxel resolution. Towards the more variable structures, like the LAA and the
PVs, the segmentation error rises but averages to less than 2 mm. Compared to
Ecabert et al. [11], who used CT-data with high resolution, the mean errors are
larger. This difference is mainly accounted to the coarser resolution of the image
data used in our work and the more challenging image characteristics of MRI.

Table 1. Mean constrained point-to-surface distances εmean [mm] resulting from the
leave-one-out crossvalidation for the three models

Model
εmean per region [mm]

LA body LSPV LIPV CLT RSPV RIPV RMPV LAA Whole mesh

Normal 0.87 1.56 1.81 – 1.41 1.11 – 1.70 1.14
CLT 0.81 1.17 1.73 1.18 1.17 1.16 – 1.25 1.01
RMPV 0.79 0.94 0.78 – 1.27 1.60 1.00 1.51 1.05

2.4 Automatic Model Discrimination

To improve the model-based segmentation the three models have to be automat-
ically selected for the respective datasets. The developed models possess differ-
ences only in certain regions, leading to different segmentation results in those
regions on the same dataset. Information about the segmentation fit is extracted
in these regions of interest (ROIs) (see Fig. 2) and used as input for the SVM.
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The classification problem is split into two binary classification sub-problems,
testing each variant against the normal model. In the first sub-problem the
left sides of the two models that are expected to result in different outcomes in
the region of the left PVs are considered. Thus, the ROIs of the nomal model and
the CLT model are chosen (Fig. 2a and 2b). Using the analogous argumentation
for the right side of the models, the ROIs in the normal model and the RMPV
model, highlighted in Fig. 2c and 2d, are selected for the second sub-problem.

(a) normal model (b) CLT model (c) normal model (d) RMPV model

Fig. 2. Regions of interest (ROIs) highlighted in red. For the first sub-problem, the
regions in (a) and (b) are considered. For the second sub-problem, the regions in (c)
and (d) are selected.

Assessment of the segmentation fit exploits the fact that the model is only
approximately adapted to the detected target points. To assess the segmentation
fit, the search for target points is started again after the segmentation process is
complete to get the distance to the target point and the corresponding feature
response for each triangle center. We considered two approaches to construct
the observation vectors for the SVM. Firstly, the vectors were constructed using
spatial coding, ordered after the triangle index. Secondly, the ROIs were sta-
tistically analyzed and the resulting histogram bins were used as the elements
of the observation vector. Considering different search profile lengths (2, 4 and
10 mm), we extracted 24 different kinds of SVM input vectors as candidates for
our discriminative measure. As input data for the SVM, the histograms of the
unsigned distances to the target point at a search profile length of 2 mm were
found to perform the best.

For the training of the SVM, the complete image database of 59 WH scans was
considered to raise the number of available data and at the same time reducing
the bias introduced on the datasets already used in the training of the models.
All datasets were automatically segmented with the three models and selected as
training data if one of the models yielded a very good segmentation result. For
the annotated 32 datasets a mean CPS distance in the area of all ostia of less than
2 mm was considered to be very good. The automatic segmentation results for
the remaining datasets were qualitatively evaluated and required to be similarly
accurate in the regions of the ostia. In total, 42 datasets, of which 23 have been
used in ground truth annotation, were selected for training of the SVM. To
optimize the kernel-parameters for the Gaussian kernel, we performed the grid
search approach with 5-fold crossvalidation according to [12] and adjusted the
class weights to reflect the distribution of the PV-patterns in the image data.
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3 Results

3.1 Discrimination Performance for Accurate Segmentations

The aim of the first experiment was to evaluate the automatic model discrim-
ination under optimal conditions. Leave-one-out crossvalidation was performed
on the 42 very good training datasets. The class distribution of the datasets
is as follows: 57 % normal anatomy, 31 % RMPV, 12 % CLT pattern. For the
first sub-problem in 40 of the 42 cases the model according to the clinical
classification was selected. For the second sub-problem the correct model was
chosen for 39 datasets (92.86 %). Combining the two sub-problems, the cor-
rect model was chosen for 88.1 % of the datasets, meaning that only five of 42
datasets were falsely classified. The confusion matrix summarizes the classifica-
tion results (Tab. 2). Examination of the automatically selected segmentations
of the five datasets revealed that in one case, the automatically selected model
(CLT model, yellow in Fig. 3a) yielded an absolutely comparable segmentation
result, despite not matching the clinical classification (short CLT), as indicated
by brackets in Tab. 2. Three datasets with a present third PV were not correctly
classified by the SVM. In two of the cases the third PV has an early branching
in the ROI of the RMPV model. In the other misclassified case the accessory PV
has very low contrast. Taking into account that in one case the model chosen
by the SVM yields a similar result, despite not matching the clinical classifica-
tion, an accurate automatic segmentation is achieved for 90.5 % of the datasets
which means an increase of 33.5 % compared to using a single model covering
the majority class.

3.2 Discrimination Performance for Average Segmentations

We evaluated the model discrimination method in a second experiment with the
17 remaining datasets which were previously excluded because the automatic
segmentation did not fulfill the criterion used to identify very accurate segmen-
tations. It is known a priori that five of the datasets cannot be segmented satis-
fyingly with either of the models because their variants are not considered. Seven
of the twelve remaining datasets can be segmented using the model of the major-
ity class. In nine of the twelve cases, the SVM chose the model corresponding to
the clinical classification for the first sub-problem, while only one dataset was
falsely classified in the second sub-problem. The confusion matrix in Tab. 3
includes the results of the previous experiment to reflect the performance on
average data. Summing it up, for the complete database, the model correspond-
ing to the clinical classification was automatically chosen in 78.0 % of the cases.
As in the first experiment, we further examined the segmentation results of the
misclassified cases. With the automatic model selection approach one dataset
with a normal PV configuration was classified in the CLT class which resulted
in an more accurate segmentation of the left PVs (see Fig. 3b). The RMPV
was detected in one of two cases while simultaneously classifying the left side
as CLT which yields a more accurate segmentation. In the other case the acces-
sory PV is surrounded by structures that are not visible in the other datasets.
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(a) (b) (c)

Fig. 3. Examples for successful selection of the better fitting model. Automatic seg-
mentation results with the normal model is shown in yellow, model CLT is shown in
green and model RMPV in blue.

Table 2. Confusion matrix for accurate
segmentations. Values in brackets indicate
false automatic classifications yielding an in-
creased segmentation accuracy.

Actual Prediction
Class normal CLT RMPV CLT+RMPV

normal 23 (1) 0 0
CLT 1 4 0 0
RMPV 3 0 10 0
other – – – –

Table 3. Confusion matrix for aver-
age segmentations

Prediction
normal CLT RMPV CLT+RMPV

29 (2) 0 0
2 6 0 0
4 0 10 (1)
2 1 2 0

Especially in the region of the ROI, model RMPV does not yield an accurate
segmentation. Considering the datasets that were classified falsely but result in
a more accurate segmentation with the automatically selected model, 10 of the
12 additional datasets were segmented correctly. For the complete database an
accurate segmentation has been achieved in 28.8 % more of the cases compared
to using only one model covering the majority class.

4 Conclusion

We present a new approach that enables multi-model-based segmentation by
comparing the local fit of different adapted models and automatically choosing
the best model using an SVM. Using the three created models, the method
achieved a correct clinical classification in 88.1 % of the cases and increased the
fraction of datasets that could be accurately segmented from 57 % to 90.5 %
under ideal conditions. If accurate segmentations are not achieved, the classifier
performs less reliably as shown in the second experiment. Further improvements
could be achieved by the generation of new models covering more variants.
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