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Abstract. Despite the clear potential benefits of combining fMRI and diffusion 
MRI in learning the neural pathways that underlie brain functions, little metho-
dological progress has been made in this direction. In this paper, we propose a 
novel multimodal integration approach based on sparse Gaussian graphical 
model for estimating brain connectivity. Casting functional connectivity estima-
tion as a sparse inverse covariance learning problem, we adapt the level of 
sparse penalization on each connection based on its anatomical capacity for 
functional interactions. Functional connections with little anatomical support 
are thus more heavily penalized. For validation, we showed on real data col-
lected from a cohort of 60 subjects that additionally modeling anatomical  
capacity significantly increases subject consistency in the detected connection 
patterns. Moreover, we demonstrated that incorporating a connectivity prior 
learned with our multimodal connectivity estimation approach improves activa-
tion detection. 
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1 Introduction 

Recent evidence suggests that the effects of many neurological diseases are mani-
fested through abnormal changes in brain connectivity [1]. Techniques for inferring 
connectivity from functional magnetic resonance imaging (fMRI) data can be largely 
divided into two categories. One category comprises techniques, such as the seed-
based approach and independent component analysis (ICA) [1], which group brain 
areas into networks. The other category includes techniques that estimate the connec-
tivity between brain areas [2] and apply graph-theoretic measures to characterize the 
estimated connection structure. We focus on connectivity estimation in this work. 

The strong noise inherent in fMRI data and its high dimensionality given the typi-
cally small sample sizes pose major challenges to reliable connectivity estimation [2]. 
Since neural dynamics is largely shaped by the structure of the underlying fiber path-
ways [3, 4], informing connectivity estimation with anatomical information extracted 
from e.g. diffusion MRI (dMRI) data should prove beneficial. Past studies that jointly 
examined dMRI and fMRI data have primarily focused on comparing connectivity 
measures estimated from each modality separately [3, 4]. The general finding is that 
brain areas with high anatomical connectivity typically exhibit high functional  
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connectivity [3, 4], but the converse does not necessarily hold due to factors, such as 
noise-induced correlations in fMRI observations, indirect functional connections, and 
tractography errors [4]. Other widely-used approaches for multimodal analysis in-
clude employing fMRI to guide seed selection in tractography [3, 4]. The use of fiber 
bundle shapes to predict activated brain areas has also been explored [5]. A major 
limitation to the aforementioned approaches is that pooling information extracted 
independently from each modality does not capitalize on the complementary informa-
tion that a joint analysis of the two modalities would facilitate. To exploit the joint 
information in dMRI and fMRI data, variants of ICA and canonical correlation analy-
sis [6] have been proposed for identifying brain areas that display high correlations 
between anatomical and functional attributes, such as fractional anisotropy and activa-
tion effects. Recently, a probabilistic model has been put forth for combining dMRI 
and fMRI data in detecting group differences in brain connection structure [7].  

In this paper, we propose a novel multimodal integration approach based on sparse 
Gaussian graphical model (SGGM) for estimating intra-subject brain connectivity. 
Specifically, we cast connectivity estimation as a sparse inverse covariance learning 
problem [8]. Since elements of the inverse covariance matrix are proportional to the 
partial correlations between the associated variable pairs, zero entry would indicate 
conditional independence [8]. Using SGGM thus enables simultaneous estimation of 
connection strength and structure. To integrate anatomical information into functional 
connectivity estimation, we adapt the degree of sparse penalization on each functional 
link based on its anatomical capacity. Functional connections with less anatomical 
support are thus more heavily penalized, which helps reduce false detection of noise-
induced functional connections. Also, using partial correlations as a measure of func-
tional connectivity reduces the effects of indirect interactions. Furthermore, although 
larger penalizations are exerted on functional connections with no anatomical support, 
if ample evidence from fMRI data suggest the presence of such links, these connec-
tions will not necessarily be assigned zero connectivity. Our approach hence provides 
some tolerances to the inconsistencies between dMRI and fMRI-derived connectivity 
measures that hinder integration of these modalities. On a large dataset of 60 subjects, 
we showed that applying our multimodal approach significantly increases subject 
consistency in the detected connection structure over analyzing fMRI data alone. 
Enhanced group activation detection was also obtained by incorporating a connectivi-
ty prior [9] learned with our proposed approach, thus demonstrating the gain of inte-
grating anatomical and functional information in brain connectivity estimation. 

2 Methods 

In this work, we focus on integrating dMRI with resting state (RS) fMRI for estimat-
ing brain connectivity. For this, we propose a SGGM-based approach (Section 2.1). 
Critical to the estimation is the choice on sparsity level, which we optimize using 
cross validation with a refined grid search strategy (Section 2.2). We validate our 
approach based on subject consistency and group activation detection (Section 2.3). 



 A Novel Sparse Graphical Approach for Multimodal Brain Connectivity Inference 709 

2.1 Sparse Gaussian Graphical Model  

Let S be a d×d sample covariance matrix computed from data that are assumed to 
follow a centered multivariate Gaussian distribution. In the present context of brain 
connectivity estimation, S corresponds to correlations between the RS-fMRI observa-
tions of d brain areas of a given subject. To learn a well-conditioned sparse inverse 

covariance matrix, Λ̂ , we minimize the negative log data likelihood over the space of 
positive definite (p.d.) matrices, Λ > 0, with an l1 penalty imposed on Λ [8]:  
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where λ governs the overall level of sparsity and Wij differentially weights the amount 
of sparse penalization on each connection based on its anatomical capacity: 
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where Kij corresponds to some measures of anatomical capacity. We set Kij as the 
fiber count between brain areas i and j [3, 4] with the amount of penalization saturat-
ing to zero for Kij >> σ, modeling how the additional fibers may reflect redundant 
wiring. Other decreasing functions of Kij can also serve as Wij. We defer the selection 
of Wij for future work. σ is learned from data (Section 2.2). In accordance to past 
findings [3, 4], Λij associated with brain areas that have fewer connecting fibers are 
more strongly penalized. Note that we have explicitly set Wij to 0 for i = j, which has 
been theoretically proven and empirically shown to provide more accurate solutions 
of (1) [10]. To solve (1), we employ a recent second-order algorithm [8] that facili-
tates efficient computation of Newton steps with iterates guaranteed to remain p.d. 
This algorithm provides substantially faster convergence rate than current gradient-
based methods. We define convergence as having a duality gap, η, below 10-5 [10]: 
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2.2 Parameter Selection 

The estimated connection structure critically depends on λ. To learn the optimal λ and 
σ data-drivenly for each subject, we combine cross validation with a refined grid 
search strategy, as summarized in Algorithm 1. The algorithm requires the following 
inputs: Z = an t×d matrix containing RS-fMRI time courses of d brain areas, K = fiber 
count matrix, λlb and λub = initial lower and upper bounds of the λ search range, σlb and 
σub = lower and upper bounds of the σ search range, R = number of refinement levels, 
F = number of grid points for λ, G = number of grid points for σ, and C = number of 
cross validation folds. We set λub to max|Sij|, i ≠ j, which corresponds to the maximum 

λ beyond which ijΛ̂ is guaranteed to shrink to 0 [10]. As for λlb, we empirically found 
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that setting λlb to λub/100 assigns non-zero value to >90% of the elements in Λ̂ in the 
case of uniform sparse penalization. We fix σlb and σub to the 25th and 75th percentile 
of the fiber count distribution. R, F, G, and C are set to 3, 5, 5, and 3, respectively. 

 
Algorithm 1.  Refined Grid Search for λopt and σopt 
1:   Input: Z, K, λlb, λub, σlb, σub, R, F, G, C 
2:   Output: λopt, σopt 
3:   Temporally divide Z into C folds 
4:   Set σgrid to a log grid with G grid points between σlb and σub 
5:   for r = 1 to R  
6:  Set λgrid to a log grid with F grid points between λlb and λub in decreasing order 
7:  for f = 1 to F, g = 1 to G, and c = 1 to C 
10:  Estimate sample covariance, Strain, with all folds of Z except the cth fold 
11:  Estimate sample covariance, Stest, with the cth fold of Z 
12:  Solve (1) to find Λtrain with λ = λgrid(f), σ = σgrid(g) 
13:  Compute data likelihood, dl(f,g,c), of Stest given Λtrain, based on (1)  
14:   without the sparse penalization term 
17: end 
18: Find λopt and σopt based on maximum of the average dl(f,g,c) over C folds 
19: if λopt == λgrid(1) 
20:  Set λlb to λgrid(2), set λub to λgrid(1) 
22:  else if λopt == λgrid(F) 
23:  Set λlb to λgrid(F)/10, set λub to λgrid(F-1) 
25:  else 
26:  Find fopt corresponding to λopt 
27:  Set λlb to λgrid(fopt-1), set λlb to λgrid(fopt+1) 
29:  end 
30: end 

2.3 Validation 

We base our validation on: 1) increased subject consistency in the support of Λ̂ and 2) 
increased group activation detection. The rationale behind the first criterion is that 
subjects within the same population should have similar brain connection structure 
[2]. As for the second criterion, we have shown in a previous work [9] that incorporat-
ing a RS-connectivity prior improves group activation detection. Thus, greater in-
crease in group activation detection presumably implies that the corresponding con-
nectivity estimates better reflect the underlying neural circuitry.  

Subject Consistency. For each pair of subjects in our dataset (Section 3), we compare 

the support of their Λ̂ ’s using the Dice Similarity Coefficient (DSC), defined as  
TPR / (2TPR + FPR + FNR), with each subject alternately taken as the reference. 
TPR, FPR, and FNR are the true positive rate, false positive rate, and false negative 
rate, respectively. Both connections commonly present in each pair of subjects as well 
as those in one subject but not the other are thus accounted for in our chosen metric. 
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Group Activation Detection. Our previously proposed connectivity-informed  
activation model [9] is summarized below: 
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where Y is a d×n matrix containing task fMRI time courses of d brain areas of a given 
subject. X is a m×n regressor matrix [11]. A is a d×m activation effect matrix to be 
estimated. V1 and V2 are d×d covariance matrices of Y and A, respectively. XXT 
models the correlations between the m experimental conditions. MN(0,V2,αXXT) de-
notes the matrix normal distribution, which serves as a conjugate prior of (4) with α 
controlling the influence of this prior on A. We assume V1 = Id×d as conventionally 
done. V2 is set to the connectivity estimates learned with our proposed approach. 

3 Materials 

fMRI Data. Task fMRI data were collected from 60 healthy subjects at multiple im-
aging centers. Each subject performed 10 language, computation, and sensorimotor 
tasks similar to those in [12] over a period of ~5 min. RS-fMRI data of ~7 min were 
also collected. Data were acquired using 3T scanners from multiple manufacturers 
with TR = 2200 ms, TE = 30 ms, and flip angle = 75o. Standard preprocessing, includ-
ing slice timing correction, motion correction, temporal detrending, and spatial nor-
malization, was performed on the task fMRI data using the SPM8 software. Similar 
preprocessing was performed on the RS-fMRI data except a band-pass filter with 
cutoff frequencies at 0.01 to 0.1 Hz was applied. White matter and cerebrospinal fluid 
confounds were regressed out from the gray matter voxel time courses. 

 
dMRI Data. dMRI data were collected from the same 60 subjects. Acquisition se-
quence similar to [13] was used with TR = 15000 ms, TE = 104 ms, flip angle = 90o, 
32 gradient directions, and b-value = 1300 s/mm2. MedINRIA was employed for ten-
sor estimation and fiber tractography [14]. We warped our brain parcel template  
(described below) onto each subject’s B0 volume to facilitate fiber count computation. 

 
Brain Parcellation. We divided the brain into P parcels (P set to 500) to enable finer 
brain partitioning than facilitated by standard brain atlases (typically P < 150). This 
choice of P provides a balance between functional localization and robustness to  
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subject variability in tractography [7]. Parcellation was performed by concatenating 
RS-fMRI time courses across subjects and applying Ward clustering [15]. Parcel time 
courses were then generated by averaging the voxel time courses within each parcel, 
and normalized by subtracting the mean and dividing by the standard deviation. 

4 Results and Discussion 

To explore the gain in learning connectivity jointly from dMRI and RS-fMRI data, we 
compared based on DSC the subject consistency in the support of ijΛ̂ as estimated 
using our SGGM-based approach with anatomical capacity-weighted sparse penaliza-
tion (SGGM-A) versus uniform sparse penalization without anatomical information 
(SGGM-U). To establish a baseline for comparison, we permuted 200 times the col-
umns and rows of ijΛ̂ learned with SGGM-A to generate a null distribution of DSC. 
The average DSC of both SGGM-A and SGGM-U (Fig. 1(a)) were significantly 
greater than that of the null distribution based on a Wilcoxon signed rank test (p-value 
< 0.05). Hence, the observed subject consistency was significantly above chance. 
Moreover, DSC of SGGM-A was significantly higher than that of SGGM-U (p-values 
< 0.05), thus demonstrating the benefits of multimodal integration for connectivity 
estimation. In addition, we compared the sensitivity in group activation detection 
using: 1) ordinary least square (OLS) [11] without any connectivity prior, 2) ridge 
regression to control overfitting [9], connectivity-informed activation model [9] with 
connectivity prior learned by applying 3) oracle approximating shrinkage (OAS) on 
RS-fMRI data only [16], 4) SGGM-U on RS-fMRI data only, and 5) SGGM-A on 
dMRI and RS-fMRI data jointly. We examined 21 contrasts between the 10 experi-
mental conditions. To enforce strict control over FPR so that we can safely base our 
validation on increased group activation detection, max-t permutation test [17] was 
used. Fig. 1(b) shows the percentage of parcels detected with significant activation 
averaged over contrasts. In agreement with [9], adding a connectivity prior substan-
tially improved activation detection over OLS and ridge regression. More important-
ly, SGGM-A was found to outperform both SGGM-U and OAS. To assess whether 
the enhanced detection was statistically significant, we used a permutation test. Spe-
cifically, for each permutation, we first randomly selected half of the parcels and  
exchanged the labels (active or non-active) assigned by SGGM-A and each of the 
contrasted methods in turn for a given p-value threshold. We then computed the dif-
ference in the average number of detected parcels, and performed this procedure 
10,000 times to generate a null distribution. For all p-value thresholds in Fig. 1(b), the 
original difference in the number of detected parcels was found to be greater than the 
95th percentile of the corresponding null distribution. Hence, the detection improve-
ment was statistically significant. Qualitatively, our approach additionally detected 
relevant areas adjacent to those found by considering functional information alone 
(Fig. 1(c)).  
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(c) p-value threshold = 0.01, 

corrected 

Fig. 1. Real data results. (a) Subject consistency based on DSC. (b) Percentage of parcels with 
significant activation averaged over contrasts vs. p-value thresholds. (c) Parcels detected for 
auditory tasks. Red = detected by SGGM-A only. Purple = detected by SGGM-A and SGGM-
U. Green = detected by SGGM-A, SGGM-U, and OAS. Violet = detected by all methods. 

5 Conclusions 

We proposed a novel SGGM-based approach for multimodal brain connectivity infe-
rence. We showed that integrating dMRI and RS-fMRI data significantly increases 
subject consistency in the learned connection structure compared to analyzing RS-
fMRI data alone. Enhanced group activation detection was also demonstrated. Our 
results thus suggest that connectivity estimated by combining anatomical and func-
tional information may better resemble the underlying neural pathways than solely 
relying on functional information. A particularly important byproduct of this work is 
that our multimodal connectivity estimation approach in combination with our con-
nectivity-informed activation model [9] provides a statistically-rigorous test bench for 
comparing different dMRI processing strategies. Quantitative evaluation, as opposed 
to qualitative assessment as often used in most dMRI studies, is thus facilitated. 
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