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Abstract. In this paper, we propose a novel approach for segmenting
the skeletal muscles in MRI automatically. In order to deal with the
absence of contrast between the different muscle classes, we proposed
a principled mathematical formulation that integrates prior knowledge
with a random walks graph-based formulation. Prior knowledge is repre-
sented using a statistical shape atlas that once coupled with the random
walks segmentation leads to an efficient iterative linear optimization sys-
tem. We reveal the potential of our approach on a challenging set of real
clinical data.

1 Introduction

Segmentation of the skeletal muscles is of crucial interest when studding my-
opathies. Diseases understanding, patient monitoring, etc. rely on discriminat-
ing the muscles in anatomical images. However, delineating the muscle contours
manually is an extremely long and tedious task, and thus often a bottleneck
in clinical research. Simple automatic segmentation methods rely on finding
discriminative visual properties between objects of interest, accurate contour
detection or clinically interesting anatomical points. However, skeletal muscles
show none of these features and as a result, automatic segmentation is a chal-
lenging problem. In spite of recent advances on segmentation methods, their
application in clinical settings is difficult, and most of the times, manual seg-
mentation/correction is still the only option.

Among the limited amount of work on this specific subject, in [1,2] a method
based on deformable models was proposed to perform the segmentation of all the
muscles in one limb. Deformable models are surface models which are fitted to
the target image by minimizing a functional balancing a data term - pushing the
model towards the target contours - and a regularization term - which imposes a
smooth solution along the curve. Such models only reach a local optimum of the
functional, which can be far from the desired solution, and depend heavily on
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their initial position. In [3], a more efficient shape representation was introduced
where prior knowledge was encoded through diffusion wavelets to reduce the
space of solutions and thus relax the smoothing constraints. The surface of one
muscle was modeled through a hierarchical representation, and the set of allowed
deformations at each scale was learned from an annotated training set. Model-
ing the surface of one muscle with landmark points is an efficient alternative, as
proposed in [4] with a graph-based method. The shape variability was modeled
through high-order pose-invariant priors and the data term relied on classifica-
tion and detection of the landmark points. The graph-based framework allowed
to perform an efficient non-local optimization, without initialization. However,
such method requires to be able to learn consistent image features in order to de-
tect the landmarks, which is difficult to insure in practice in the case of muscles.
More generally, all surface models suffer from the absence of reliable contours
in MRI images of skeletal muscles. Recently, in [5], a model-based method oper-
ating in the image domain with promising results was proposed. This approach
consisted in modeling a segmentation though Principal Component Analysis in
an Isometric Log-ratio space. Then, a gradient descent was performed with re-
spect to the PCA coefficients to minimize an energy functional which allows
label transition only along detected contours. In this method, contour detection
is explicit, achieved in a pre-processing stage, and could be a weak link in the
chain in cases of undetected or spurious contours.

Our approach builds upon the general Random Walker Segmentation algo-
rithm proposed in [6]. The strength of this method relies on its robustness in the
case of incomplete contours and its efficient optimization. While originally this
method required manual interaction - an user had to annotate a few pixels of
each desired object - the possibility of using prior knowledge based on intensity
distribution was introduced in [7]. In this paper, we propose to build a prior
model of the shape of the thigh muscles from a training data set, to be used in
the RW framework. The prior term of our functional is derived from learning
a Gaussian model of the RW unknown probability vector. We also propose to
modulate the strength of the model constraints according to the strength of the
contours found in the segmented image.

This paper is organized as follows: in section 2 we briefly recall the principle of
the RW segmentation and detail the formulation of our model. Then, in section
3, we present segmentation results obtained on 3D MR volumes of the right
thigh. Section 4 concludes the paper.

2 Random Walks Segmentation With Prior Knowledge

Notations Let us consider an image I with N pixels, and Ii the gray-level of
pixel i. The segmentation is formulated as a labeling problem of an undirected
weighted graph G = (V , E), where V is the set of nodes and E is the set of edges.
Given S, a set of labels, we want to assign a label s ∈ S to each node p ∈ V .
In this framework, the node vi is the i-th pixel, and to each label corresponds a
muscle.
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Fig. 1. (left) Cross-section of an MR volume of the thigh. (center) Manual segmentation
of the muscles. (right) Confidence map.

2.1 Random Walks Formulation

Let us proceed with a review of the random walks algorithm for image segmen-
tation. We refer the reader to [6] for an extensive description of this method.

The RW approach provides the probability xs
i that the node vi ∈ V is assigned

to the label s. In its original formulation, one has to provide the algorithm with
a few already labeled (marked) nodes, also called“seeds”. Typically, the user will
manually mark some pixels of each object to be segmented with a different label.
Lets denote VM the set of marked nodes and VU the set of unmarked nodes, such
that VU ∩VM = Ø and VU ∪VM = V . It was shown [6] that all unknown entries of
xs = [xs

1, x
s
2, . . . , x

s
N ]T - i.e. the probabilities that each node vi ∈ VU is assigned

to label s - can be obtained through the minimization of:

Es
RW (xs) = xsT Lxs (1)

where the known entries of xs (the seeds) are set as follow:

∀vi ∈ VM , xs
i =

{
1 if pixel iis marked with label s

0 if pixel iis marked with another label
(2)

and where L is the combinatorial Laplacian matrix of the graph, defined as:

Li,j =

⎧⎪⎨
⎪⎩

∑
k wkj if i = j

−wij if i �= j

0 otherwise
(3)

with
wij = ω + exp−β (Ii − Ij)

2 (4)

where β is a scaling parameter to be set according to the contrast of the image,
and ω is a regularization parameter which amounts to penalizing the gradient
norm of xs (no regularization if ω = 0). After minimizing Es

RW for each label
s, the segmentation is obtained by retaining the label of maximum probability:
li = arg maxs xs

i .
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2.2 Prior Knowledge

In [7], prior appearance knowledge to the RW formulation was introduced through
an estimate of the probability distribution of the gray-level intensity for each la-
bel. A prior appearance term is simply added to the RW cost function, balanced
by a parameter γ:

Es
RWP (xs) = xs T Lxs + γ

(
xsT Dxs − 2xsT ds

)
(5)

where ds (i) is the probability that the intensity at pixel i belongs to the inten-
sity distribution for label s, and D = diag (

∑
s ds) (we refer the reader to [7] for

details). In the context of muscle segmentation, the intensity distributions of the
labels (the muscles) are extremely similar resulting in an inefficient prior. More-
over, we could think of no other discernible and discriminative features (textures,
remarkable points, etc.) to use within this framework. Thus, we decided to learn
a pixel-based model of the shape based on previous segmentations of images in
a training set D.

Assume we know x̄s
i and σs 2

i , respectively the mean and the variance of xs
i .

Our model simply penalizes the deviation of vector xs
i from x̄s

i , weighted by the
inverse of σs 2

i . In vector form, we obtain the following functional:

Es
model (x

s) = (xs − x̄s)T
Λs

σ (xs − x̄s) (6)

where Λs
σ is a diagonal matrix such that Λs

σ (i, i) = 1/σs 2
i .

This is equivalent to modeling xs
i as a random variable with Normal distribu-

tion N (
x̄s

i , σ
s 2
i

)
, and maximizing the log probability of xs

i . Since xs
i is a prob-

ability, such Gaussian modeling can only be a rough approximation. The mean
and variance are estimated by computing, respectively, the empirical mean and
the empirical variance over a training base of non-rigidly registered segmented
images. When one owns only a small number of training examples, the empirical
variance is known to be a particularly inefficient estimator. In [8], an improved
locally-smooth estimator was proposed, for using as a similar shape prior in the
level-set framework. The new estimate is computed, through a gradient descent,
as the minimum of a functional which combines the log-likelihood of the training
data and a spatial regularization term :

σ̃s = argmin
σ

N∑
i=1

⎛
⎜⎝∑

d∈D
log σ2

i +

(
xs

d,i − x̄s
i

)2

σ2
i

⎞
⎟⎠ + α

N∑
i,j=1

δi,j

(
σ2

i − σ2
j

)2
(7)

where xs
d,i = 1 if pixel i of training data d has label s (xs

d,i = 0 otherwise),
δi,j = 1 if pixels i and j are neighbors (δij = 0 otherwise), and α is a weighting
parameter setting the degree of smoothing.

We combine energy functionals (1) and (6) by introducing a balancing param-
eter λs:

Es
total1 (xs) = Es

RW (x) + λsEs
model (x) (8)
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It is possible to set a different value of λs for each label s, as some muscles
may require a stronger influence from the prior model than others. The solution
which minimizes (8) verifies:

(L + λsΛs
σ)x = λsΛs

σx̄s (9)

As noted in [7], when one adds such a prior term to the RW functional, it is
no longer necessary to own pre-labeled nodes (seeds) in order to compute the
segmentation. Indeed, the system of equations (9) is directly invertible, even
when all entries of x are unknown. However, it is still possible - and useful - to
use seeds to obtain more robust segmentations.

2.3 Confidence Map

As we saw previously , the functional Es
model (x

s) penalizes the deviation of xs

from the mean x̄s. Such prior is all the more useful as the local uncertainty of
contour presence is large. One can impose such a condition by adjusting the
influence of the model according to the strength of the contours in the test
image: the stronger the contours, the least we should rely on the model. Assume
we possess such a “confidence map” c, with values close to 0 on strong contours,
and values close to 1 in homogeneous regions, we replace the term (6) by the
following:

Es
model (x

s) = (xs − x̄s)T
ΛcΛ

s
σ (xs − x̄s)T (10)

where Λc is a diagonal matrix with c on the diagonal.
The local confidence of the image can be easily determined using a decreasing

function inversely proportional to the image variance (see figure 1):

ci = exp−kvσ2
r (i) (11)

where σ2
r (i) is the variance at pixel i computed on a patch with radius r, and

kv is a free parameter. The system to solve is now:

(L + λsΛcΛ
s
σ)xs = λsΛcΛ

s
σx̄s (12)

3 Experimental Validation

Our data set comprises 14 3D volumes of the right thigh of healthy subjects,
covering a wide range of morphologies, acquired with a 3T Siemens scanner and
using 3pt Dixon sequence (TR=10ms, TE1=2.75 ms TE2=3.95 ms TE3=5.15
ms, rf flip angle =3°) of resolution: 1mm×1mm×5mm. We manually segmented
each volume in order to evaluate the quality of the segmentation results. We
focused our evaluation on clinically relevant muscles of the thigh (13 muscles).
In order to compute the empirical mean x̄s and the empirical variance σs 2

i ,
we non-rigidly registered all the volumes and their segmentation map in the
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Fig. 2. Box-plot presentation of the Dice coefficients of our segmentation algorithm.
(Right) Individual muscles; (Left) All muscles. Average dice values for: registration
only: 0.81±0.08; RW + shape prior: 0.84±0.08; RW + shape prior + c. map: 0.86±0.07;
automatic seeds ([9]): 0.80 ± 0.19.

training set to the same target volume. The registration process is achieved us-
ing the method presented in [10] and the related registration software (Drop©,
www.mrf-registration.net). We adopted a leave-one-out cross-validation proto-
col: each test volume is used as the target volume for the registration of the
13 other volumes. Then we computed the estimates of x̄s and σs 2

i on the 13
registered volumes, and perform the segmentation of the test volume. After the
registration process, all volumes had the size: 191×178×63. For solving the linear
systems, we used iterative algorithms, such as Bi-conjugate Gradient. Comput-
ing the segmentation takes around 5 min on a 2.8 GHz Intel® processor with
4 GB of RAM. From a series of tests, we computed the best value for parame-
ter λs = 10−3, except for the Gracilis muscle which we had to constrain more:
λs = 10−1.

The quality of the segmentation is measured by computing Dice coefficients
with the box-plot presentation 1 (See figure 2). The expression of the Dice co-
efficient is: D = 2 |T ∩ R| / (|T | + |R|), where T and R are the pixel sets for
the algorithm’s output and the ground truth segmentation respectively. We also
compared the different methods with p-values obtained using the non-parametric
statistical test Wilcoxon rank-sum (cf. scipy.stats).

In figure 2, for comparision with a simple segmentation by atlas registration
method, we computed the Dice coefficients of the segmentation which we obtain
when retaining the label of maximum probability of the mean probability: li =
1 Box-plot presentation: the boxes contain the middle 50% of the data and the median

value, and the extremities of the lines indicate the min and max values, excluding
the outliers (for more details, see the documentation of Matplotlib).

http://www.mrf-registration.net
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argmaxs x̄s
i . This method yielded inferior results as compared to our method

without confidence map with a p-value of 2 × 10−10. Adding the confidence
map slightly improves the segmentation results as compared to not using it
(p-value: 6.6 × 10−2), yielding an average Dice coefficient value of 0.86 ± 0.07.
We also compare our results with a previous method of ours [9]. This method
consisted in automatically determining appropriate seed positions with respect
to the different muscle classes. The output of this optimization process was then
fed to the standard RW algorithm. We obtained inferior results to the method
presented here (average Dice: 0.80± 0.19; p-value when compared to confidence
map method: 7.0 × 10−4).

In figure 3, we show cross-sections of segmentation results obtained with the
RW method using the prior model and the confidence map. Segmentation errors
tend to affect primarily small muscles (e.g. Gracilis) and muscles located on the
extreme upper part of the volumes (e.g Tensor Fasciae Latae) which reveals the
limitations of the mean model. These errors are due to the large registration
errors on the same muscles. This shows that our model is too constraining, as
it does not allow the segmentation to deviate enough from the mean. Due to
the few number of training examples, we noted that the variance estimate had
little influence on the results: replacing Λs

σ with the identity matrix gave us no
significantly different results. This suggests that we should add more data to the
training set in order to improve the statistical validity of our estimates.

Fig. 3. Segmentation results obtained with the RW algorithm with shape prior and
confidence map. Segmentation errors are shown in white.

4 Conclusion

The inherent difficulties of segmenting the skeletal muscles in MR images -
namely: partial contours, no discernible texture differences, large variation inter-
individuals and unremarkable shapes - render standard segmentation methods
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inoperative on this issue. One has to search for methods which perform ro-
bustly on inconsistent images cues (partial contours), and flexible models, al-
lowing enough freedom to account for large inter-subject shape variations. We
propose a prior model method, resting on the strengths of the Random Walks
segmentation algorithm. Due to its robustness when faced with missing contours,
the RW algorithm appears to be a good candidate for combination with a trained
shape model. We believe to have achieved promising results which demonstrate
the potential of our fully automatic approach.

Future work will consist in designing a model which allows more shape vari-
ability. We could obtain such model by building a low dimensional space through
computing a PCA on the training base. Furthermore, the similarities between
the RW algorithm and Markov Random Fields formulations let us envision ap-
plying the recent advances in MRF learning to the estimation of the Laplacian
matrix.
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