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Abstract. The implementation of lesion segmentation for breast ultra-
sound image relies on several diagnostic rules on intensity, texture, etc.
In this paper, we propose a novel algorithm to achieve a comprehen-
sive decision upon these rules by incorporating image over-segmentation
and lesion detection in a pairwise CRF model, rather than a term-by-
term translation. Multiple detection hypotheses are used to propagate
object-level cues to segments and a unified classifier is trained based
on the concatenated features. The experimental results show that our
algorithm can avoid the drawbacks of separate detection or bottom-up
segmentation, and can deal with very complicated cases.

1 Introduction

Breast cancer is the second leading cause of cancer death for women. Currently,
early detection is the only solution to reduce the death rate. Ultrasonography
is widely used in the diagnosis and observation of breast abnormality because
of the convenience, safety and high accuracy rate [I]. However, it is also widely
acknowledged that ultrasound image interpretation is highly reliant on medical
expertise. Designing a computer-aided system to assist ultrasound practitioners
in recognizing lesion and delineating the boundary is becoming necessary.

A typical breast ultrasound image is shown in the upper left of Fig. [l Gener-
ally, object segmentation in ultrasound images is much more difficult than that
in natural images due to the following aspects: poor quality of the image with
low contrast and heavy speckle noise; large variation of lesion in shape and ap-
pearance, especially between the benign and the malignant; existence of similar
tissues or acoustic shadows; irregular and poorly defined lesion boundaries.

In this paper, we put forward an automatic lesion segmentation algorithm.
Unlike most previous works which solve the problem by translating the diagnostic
rules into computer language term by term, we propose to achieve it in an
integrated framework of all image cues. To this end, features from segments
and multiple lesion detection hypotheses are combined together to train a single
classifier. The lesion segmentation is then accomplished by optimizing a segment
based CRF model. Fig. [0l gives an overview of our approach.
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Fig.1. An overview of the system. The process is depicted anticlockwise. The yellow
contours show the groundtruth of lesion. Rectangles in the lower middle image show
the detection windows, where the red one has the maximal confidence.

2 Motivations

A sound wave is sent by the sonographic transducer into the human breast, ab-
sorbed in or scattered from tissues and structures in it. The reflected wave is
captured and processed into a sonogram by the ultrasonic instrument. Intensive
research has been done in both fields of radiology and biomedicine [2] to dis-
tinguish lesions (both the benign and the cancerous) in ultrasound images from
normalities and shadowing artifacts.

The diagnostic criteria can be generalized into the following terms [I]. First,
the different echogenicity that nodule and the surrounding area show. A portion
of fibrous lesions are hyperechoic with respect to isoechoic fat, while another
portion of benign lesions and most of the malignant are markedly hypoechoic.
And also, distinguishable internal echotexture can be observed in many cases.
Second, the border and the shape of nodule. Benign nodules usually have a thin
echogenic pseudocapsule with an ellipsoid shape or several gentle lobulations, and
malignant nodules could show radially with spiculations and angular margins.
Third, the position of the nodule. Most lesions appear in the middle mammary
layer and shadows are produced under the nodules.

These criteria have been translated into computer vision language in many
different ways for the design of computer-aided diagnosis system [2]. In [3], Mad-
abhushi and Metaxas build probability distribution models for intensity and
echotexture of lesion, based on which they estimate the seed point followed by a
region growing procedure. To eliminate the spurious seeds, spatial arrangement
together with other rules are then used. At last, the boundaries are located and
shaped successively. In [4], Liu etc. divide the image into lattices and classify
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them based on texture descriptors. After that, they have to use rules like “le-
sions are more likely to be around the image center and occupy larger areas” to
select the true regions of interest. Another common idea is towards deformable
shape modeling, for example, the level set method [5]. The interior texture in-
formation can also be incorporated during the model deformation [6]. This type
of algorithms usually requires a careful initialization and thus cannot avoid the
selection of seed region.

From the perspective of an ultrasound practitioner, however, the recognition
(and the delineation) of breast lesion in sonogram is perhaps not a product of an
assembly line, which consists of several small and inaccurate rules with unclear
relationships. Instead, it should be an integrated decision upon these rules. The
importance of each rule is learned and adjusted through training and practicing
with a large number of samples. A notable work comes from Siemens researchers
recently [7]. They train discriminative models of both texture and boundary,
and combine them in the framework of Markov random field. However, they still
treat lesion detection and segmentation as two steps of one problem, and leave
the situation that detection fails undiscussed.

We found that in practical applications, even the state-of-the-art lesion de-
tector such as the deformable part based detection algorithm [§] still can not
provide perfect detection result. So in this paper, we propose a novel algorithm
to achieve a joint optimization of lesion detection and segmentation. Empirical
rules are implicitly contained in different units. Specifically, rules about shape
and structure are in the lesion detector, boundary and texture are in the image
over-segmentation and the segment classifier, and position cues are in both of
the sliding windows and segments.

The study on the combination of detection and segmentation is not new for
computer vision community. In [9], Gao et al. augment the bounding box with
internal cells to enrich the representation ability. Although outputting tighter
masks, their motivation is still to improve the detection results by handling the
problem of object occlusion. The most similar work to ours is [I0], where bound-
ing boxes are enforced as higher order potentials on the conditional random filed
(CRF) model of image pixel. Detection hypothesis could be accepted or rejected
depends on its agreement with confidences from pixels and segments. The dif-
ference of this paper is, we use over-redundant outputs of detection without
considering their validity. We believe that many detection windows more than
the true positive can provide higher level cues to the area they cover. These cues
are collected and retrained with features from segments into a unified classifica-
tion model, and thus the final segmentation is able to avoid the mistake which
possibly occurs in lesion detection.

3 Algorithm

We define the problem of lesion segmentation on a pairwise CRF model. Let X
denote the set of random variable which takes the label of either lesion or not,
and &€ denote the set of edge which connects each pair of nodes. A typical pairwise
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CRF is modeled as the sum of a unary potential 1) and a pairwise potential ¢,
and minimizes the energy function with the form of

ECIX) = > dleilz) +p > dleicilri,zg), (1)

T, €EX (z,x;)€E

where ¢; denotes the label (i.e. lesion or non-lesion) of the node ;.

The node in the CRF model could correspond to a pixel or a segment in the
image. We use the segment here. The over-segmentation tool we have used is
a hierarchical method proposed by G. Mori [II]. The method starts with a
normalized cut [12], and then builds the following layers iteratively by applying
the k-means clustering on the premise of respecting the existing boundaries. The
normalized cut tends to produce roughly equal size of patches and the k-means
algorithm ensures a low internal variation of intensity. In this way, we obtain
a set of segments with a multiple-layer structure. Features from different layers
are collected together to enhance the representation ability. Other less time-
consuming methods could be used for over-segmentation as well, for example,
the quick shift [13], but the system performance would deteriorate with the loss
of larger-scale information. We will show the related experiments in section [l

The unary potential of the CRF model is defined based on the response of
features of segment. Before solving the CRF problem, we will discuss first how
the features are collected, especially from lesion detection.

3.1 Lesion Detection and Feature Propagation

When the image is broken into segments, some critical information of the lesion
such as the shape or the context is possibly lost and can hardly be retrieved
with this bottom-up fashion. Then the object detector becomes a complemen-
tary tool which is capable of providing higher-level supports. For this reason,
we introduce the deformable part model (DPM) [§], one of the most successful
detectors currently.

The deformable part-based detector produces over-complete sliding windows
for potential lesion area. Many of them are retained after non-maximum sup-
pression. Then, the MAP estimation is usually applied to select the window with
maximum confidence and discard all of the others. For ultrasound image, the
problem is becoming more difficult because of the existence of similar tissues
and artifacts, which makes the detection confidence less reliable. So it is risky
to select one of the windows as the bounding box of the lesion [7] before inves-
tigating the interior.

On the other hand, however, it is also difficult to re-rank the windows based
on the ambiguous local cues. Here we propose a new mechanism to avoid the
comparison. We propagate the information provided by these rectangular win-
dows to amorphous segments. Specifically, the feature received by the segment
x; includes 4 pieces, i.e. f(x;) = [frect(@:), faist (i), Tprop(X:), face ()]

frect(zi) = [9(8i),7(81),9(Sm), 7(sm)] records the original information of rect-
angles. s; is the maximal confidence among the windows that cover xz;, and
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(a) Ultrasound im- (b) Foreground and (c) Detection win- (d) Score map of
age and groundtruth background masks dows with scores segments

Fig. 2. An illustration of how the intensity contrast score is computed and propagated
to segments. 5 windows are shown in (c) where clearly, the window with the maximal
score (in yellow) is not the one with the maximal detection confidence (in red).

g(s;) = 1/(1 4+ exp(—2s;)). For ease of exposition, we call the detection window
with s; as the proxy of x;. r(s;) contains the position and the size of the proxy,
which are regularized by the format of the image. s,, is the maximal score in
the full image.

faist(zi) = [d(s;),d(sm)] records the distances from the segment to its proxy
and the most supported window. Since tissues in windows usually appear as
dense nodules, a segment around the center is more likely to inherit the property
of the window. d(s;) = 2/(1+ exp(2t)) and t = max(t;,t,), where ¢, t, are the
distances along x and y axes and regularized by the size of the window.

fyrop(;) contains the extended properties of detection window. Here we in-
troduce the intensity contrast to measure the dissimilarity of a window to its
surrounding area. The score equals to the Chi-square distance between their
histograms of intensity. Different with [14], we modify the area masks from rect-
angle to ellipse and again pass on these scores from proxy windows to segments.
See Fig. 2l as an example. Note that other objectness measures in [14] can be
readily used as well.

fucc(z;) measures the total strength of detection confidence and intensity con-
trast score of all the windows covering x;, and then regularized by the maximal
value in the current image.

3.2 Problem Solving

We also extract the following features from segments: their positions in the
image, histograms of intensity and texture descriptors derived from grey-level
co-occurrence matrix [15]. These features and those propagated from detections
are concatenated to train a segment classifier.

Finally, we solve the lesion segmentation problem by optimizing Eq. Il The
unary potential ¢ in CRF model is defined based on the probability given by
the output of the segment classifier: ¢(c;|a;) = —log(P(c;|x;)). The pairwise
potential ¢ is defined as

s — sl
202

o(ci, cjlzs, z5) :exp(f (xi,xj))é(ci # ¢j), (2)
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where ||h; —h;]| is the distance between two histograms of intensity, and L(z;, ;)
is the strength of the shared boundary, which is set to infinity when z; and z;
are not contiguous. §() is a bool expression which takes 1 when 7 holds and 0
otherwise. The problem of minimizing Eq. [l could be solved by using the popular
min-cut/max-flow algorithm.

4 Experiments

We collect 480 breast ultrasound images to evaluate the proposed algorithm.
All the ultrasound images are grayscale, produced by the ultrasound machine
Philips 1U22. 320 images are randomly selected for training, the other 160 for
testing, but both of them covers all kinds of lesions presented in the full dataset.
Lesion boundaries are delineated by experienced ultrasound practitioners.

We create about 400 segments for each image. The segment classifier is trained
by support vector machines with RBF kernels. For the DPM detector, the number
of parts is set to 8 and the minimal size of part template is 6 x 6. From several
to dozens of detection windows are used for feature propagation depending on
the complexity of the image.

To show the functionalities of different units, we have carefully designed two
competitors. The first (Fulkerson09) is proposed in [16], where a segment based
CRF model is used to solve the segmentation problem but without the interven-
tion of any object detector. Segments are produced by the quick shift as in [16].
Another competitor (DPM-Levelset) is a cascade of lesion detection and level set
segmentation. Similar to [7], the result of detection is used as the bounding box
of the lesion to initialize the shape model of level set. The maximal number of
dynamic iterations is set to 500.

For lesions with homogeneous appearance and distinct border, all these ap-
proaches perform well. We show some complicated cases with their results in
Fig. Bl Lesions are benign in upper 4 rows and malignant in lower 4 rows. The
proposed algorithm works best in these cases. The approach of Fulkerson09
lacks of object-level information and thus has troubles in discriminating spurious
segments and recovering the lesion boundary. Post-processing of these results is
not straightforward. DPM-Levelset works quite well if the level set model is ini-
tialized properly, but it is totally confused when the lesion detection fails such
as in the 4th and 8th cases. The proposed algorithm is able to find an optimal
balance between the bottom-up and the top-down image cues, therefore avoids
being trapped by any of these problems.

The segmentation performance is reported in Table [l 10% outliers are re-
moved for all methods as in [7]. Let S be the segmented lesion region and G be
the lesion in groundtruth. The Jaccard coefficient is defined as (SN G)/(SUG).

Table 1. Statistical results of lesion segmentation

Fulkerson(09 DPM-Levelset The proposed
Average Jaccard 0.57 £ 0.24 0.69 £ 0.26 0.75 £ 0.17
Median Jaccard 0.65 0.76 0.81
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Sonogram Fulkerson(09 DPM-Levelset Proposed

Fig.3. Lesion segmentation results on breast ultrasound images. The upper 4 rows
are benign cases and the lower 4 are malignant. Contours of groundtruth are shown in
yellow. Detection windows of DPM with maximal confidences are shown as blue rectan-
gles in the 3rd column. Note that the DPM detector works in both DPM-Levelset and the
proposed algorithm. When it fails in the 4th and the last cases, the proposed algorithm
ignores the detection mistakes and outperforms its counterparts.
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Conclusion

We present a new algorithm for lesion segmentation in breast sonograms. The
integration of image over-segmentation and lesion detection into a CRF model is
proposed to achieve a comprehensive optimization on different diagnostic rules.
The segmentation is driven by the segment-based CRF model and not aligned
well with the local edge, which provides us a direction of the future work.
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