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Abstract. Information about the 3D shape and motion of tissue surfaces at the 
surgical site during minimally invasive surgery is important for providing me-
tric measurements that enable the deployment of image-guidance and enhanced 
robotic control. This article presents a scene flow algorithm that recovers the 
deformation and 3D structure of the surgical field-of-view from stereoscopic 
images by propagating information starting from a sparse set of candidate seed 
matches. By imposing spatial and temporal constraints the proposed algorithm 
is able to reconstruct dense 3D scene flow accurately and efficiently. Validation 
is performed using simulation data to evaluate the method against varying le-
vels of image noise and results are also presented for benchmark phantom mod-
el data. The practical value of proposed method is shown by qualitative results 
for in vivo videos from robotic assisted procedures. 

1 Introduction 

Real-time information about the motion and 3D structure of the surgical site during 
Minimally Invasive Surgery (MIS) is important for enabling computer assisted inter-
ventions and robotic surgical systems with advanced capabilities for navigation and 
active control [1-4]. With robotic surgical systems, such as da Vinci® by Intuitive 
Surgical Inc., a stereoscopic laparoscope is used to provide the surgeon with depth 
perception of the operating field-of-view. The same stereo imaging device can also be 
used to compute real-time metric measurements from the surgical site using optics 
and without introducing additional hardware into the patient or the operating theatre 
[1,2,4]. However, vision-based shape reconstruction and motion tracking are chal-
lenging problems due to dynamics at the surgical site and large scale tissue deforma-
tion, occlusions from the surgical instruments and the complex scene illumination. 

The feasibility of optical 3D reconstruction of the operating field using stereoscopic 
laparoscopes and computational stereo has previously been reported [5-7]. Prelimi-
nary validation studies on phantom models with ground truth data have shown prom-
ising results [6] but more comprehensive experimental analysis in complex scenes 
with realistic tissue reflectance need to be performed. Real-time performance reaching 
video frame rates for standard resolution images has also been reported [7].  
Other optical systems that use active illumination such as structured light [8] and 
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time-of-flight [9] have been demonstrated as promising especially when tissue surfac-
es are homogeneous [1]. These approaches compute a 3D reconstruction of the sur-
gical site but do not retrieve any information about the temporal motion of tissues or 
instruments. Methods for combined temporal tracking and 3D reconstruction have 
been reported either using sparse salient features [10,11] or by using parametric sur-
face models of the soft-tissue [12]. While such methods can operate in real-time and 
naturally enforce surface constraints on the tissue, it is not clear how they can ac-
commodate large occlusions or surface discontinuities between instrument and tissue 
boundaries. A different approach to dense motion estimation has been investigated 
with monocular images by using optical flow estimation particularly for deriving the 
camera pose in diagnostic endoscopy [13-15]. With stereo laparoscopes the optical 
flow approach can be extended to 3D by computing the flow in both the left and right 
images and simultaneously estimating the stereo disparity [16, 17]. 

 

Fig. 1. (a) Schematic illustration of the stereo-laparoscope imaging a moving point on the tissue 
surface at two time instants; (b-c) rectified stereoscopic images obtained at two time points 
illustrating the constraints on scene flow motion in the images; (d) example depth map (lighter 
shade is closer to the camera and blue pixels are occluded) computed from the stereo pair in the 
top row and the optical flow image computed using scene flow between two time instants 
shown (color intensity represents magnitude of motion with white being no motion and deep 
color meaning more, the hue represents the direction as shown around the borders of the image.  

In this study, we reports an algorithm for recovering the 3D scene flow at the sur-
gical site by propagating information around a sparse set of corresponding points to 
both estimate the stereo disparity at each time frame and the temporal motion between 
consecutive frames. The advantage of this local technique is that it is easy to incorpo-
rate constraints on instrument motion and view invariant masking of highlights which 
can influence global optimization approaches. To the authors’ knowledge this is the 
first work to report 3D scene flow in MIS where both the motion and the structure of 
the operating field are recovered in 3D. Validation using synthetic data and phantom 
models illustrates the performance of the method and qualitative results on in vivo 
videos from robotic assisted surgical procedures indicate that the method can poten-
tially be used in clinical practice. An executable of the simulation environment used 
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to generate synthetic validation data and the source code for algorithm reported in this 
study are available online1. 

2 Methods 

This article reports a novel method for determining the 3D structure of the surgical 
site and its temporal motion. The technique involves determining the disparity at each 
time frame, estimating the 2D optical flow in the left and right views and 
subsequently determining a consistent 3D flow field and detecting occluded regions. 

2.1 Disparity Estimation 

The stereo laparoscope is assumed to be calibrated such that the intrinsic and extrinsic 
camera parameters are known and the toolbox used to perform the calibration is avail-
able online1. For each incoming stereoscopic image pair at time t  the images are 
rectified to remove lens distortions and to align the epipolar geometry by using the 
known calibration parameters of the cameras [18]. From the rectified images the dis-
parity ( , , )d x y t  at an image pixel in the left image [ , ]l T

t x y=m  provides the corres-
pondence to the projection of the same world point in the right image 
as [ ( , , ), ]r T

t x d x y t y= +m . The disparity map is estimated at each time frame by 
using the implementation of the algorithm in [6] which is also available online. This is 
based on a growing scheme [19] from an initial set of seed points that are matched 
across the stereoscopic view using a sparse matching algorithm [10]. The search space 
for growing is restricted to 1D by rectification and a symmetry constraint is added to 
ensure left-right disparity map consistency. We estimate the disparity map at every 
frame in order to decouple the flow and disparity computations and optimize each 
problem individually as has been reported to be effective for scene flow [17]. 

Any feature point detection and feature matching strategy can be used to generate seed 
points for the disparity growing scheme. We use simple corner features based on the 
image gradients as they can be computed efficiently and have previously been shown to 
work well for short-term tracking in MIS images with a stereoscopic tracking method 
[10]. More complex strategies and feature detectors or descriptors can be adapted to work 
within the proposed framework at the cost of additional computational load. 

2.2 Scene Flow Estimation 

The idea of scene flow is illustrated in Fig 1 where l
tm  and r

tm  are the pixel projec-
tion coordinates in the left and right stereo images of a point on the tissue surface 

[ , , ]Tt X Y Z=M  at time t . At time 1t +  the point in the left image 1
l
t+m corres-

ponding to l
tm  can be written as 1 [ ( , , ), ( , , )]l T

t x u x y t y v x y t+ = + +m and similarly 
for the right image the point corresponding to r

tm  can be written 
as 1 [ ( , , ) ( , , ), ( , , )]r T

t x d x y t p x y t y v x y t+ = + + +m . In 2D image space the optical 

                                                           
1  http://www.cs.ucl.ac.uk/staff/dan.stoyanov/software.html 
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flow field for the left image is defined by [ ( , , ), ( , , )]Tu x y t v x y t  but because we have 
stereoscopic information we can derive the full scene flow for the 3D motion defined 
by [ ( , , ), ( , , ), ( , , )]Tu x y t v x y t p x y t  where the term ( , , )p x y t  represents the change in 
disparity between t and 1t + . By computing the parameters [ , , ]Tu v p  (omitting im-
age and time notation for clarity) we can calculate the full 3D scene flow. 

For an incoming stereo image pair, given the disparity map generated at the 
previous time frame with the method in Section 2.1 we can make the several 
measurements to compute the flow information by measuring the similarity between 
image regions, we define: 

( )1,l l
ll t te += Q m m ( )1,r r

rr t te += Q m m    ( )1 1,l r
lr t te + += Q m m  (1)

Where the similarities of image regions denoted by e  are determined by the function 
Q which is the zero mean normalized cross correlation measured between rectangular 
image windows centered at each point of interest. Using these measures it is possible 
to formulate the scene flow problem within a variation framework [13], however, this 
imposes smoothness priors that can be problematic in occluded areas or in regions 
with specular reflection. We therefore use a growing scheme similar to the one used 
for stereo matching in Section 2.1 and originally developed in [19] and recently 
adapted for scene flow in urban environments [16]. 

Starting from the set of candidate seed matches computed in Section 2.1 for both 
disparity and temporal motion we propagate information around each match using the 
best-first principle.  The seeds are stored in a priority queue determined by their simi-
larity scores from (1) and therefore obtaining the best seed to propagate at each step is 
performed by popping the queue. We perform the propagation independently in the 
left and right channels, which may seem redundant, but we exploit the redundancy to 
perform consistency and symmetry checking thus detecting occlusions in the flow as 
well as in the disparity. Furthermore, because the propagation is constrained by the 
epipolar geometry and by a disparity smoothness threshold, which we limit to one, 
there is an overlap of correlation computations which we can exploit for efficiency. 
Finally, we run the algorithm hierarchically starting with small correlation windows 
and then repeating with larger ones but using the earlier result as an initialization seed 
priority queue. The rejection scheme handles error propagation naturally in this case 
and the larger windows are able to fill in homogeneous regions more reliably. 

3 Experiments and Results 

The proposed method was implemented using C++ and, without specific optimization or 
parallelization, it is able to operate at approximately 1Hz for 360 x 288 images on a 
single core of an Intel i7 M620 2.76GHz mobile processor. For our simulation validation 
studies we used a custom simulation environment where textures are used with a surface 
model that can be augmented to simulate tissue deformations induced by the cardiac 
cycle and respiration. The environment is available online2 and has a number of 
parameters that can be used to customize the virtual cameras, the amount of additive 
Gaussian noise and the type of deformation induced on the surface. We also  
                                                           
2  http://www.cs.ucl.ac.uk/staff/dan.stoyanov/software.html 
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report results for the heart phantom datasets reported in [6] and made available by the 
Hamlyn Centre, Imperial College London3. Finally we show qualitative results on the 
in vivo data made available in [1,10]. 

3.1 Experiments with Synthetic Data 

Ground truth information for 3D scene flow is not available in surgery and even for 
phantom experiments linking the temporal motion of dense surface points is not cur-
rently possible. Therefore we evaluate the stability and performance of the proposed 
method on synthetic data with varying levels of additive Gaussian noise with zero 
mean and increasing standard deviation. While simulation environments cannot rend-
er a fully photorealistic representation of the surgical site they allow testing the ro-
bustness of an approach against known ground truth information. 

  

Fig. 2. (a,e) Images generated from the simulation environment with and without additive 
noise; (b, f) ground truth disparity map from the simulation and below the disparity generated 
with the proposed technique; (c, g) ground truth optical flow map in the left image (sub-pixel) 
and below the computed flow map using the proposed method; (d, h) plot of the error for dis-
parity computation (blue) and optical flow (red) against varying levels of additive noise. 

The results shown in Fig 2(g, h) indicate that the proposed method performs well 
on the synthetic data. We show ground truth disparity and flow images in Fig 2(b, c) 
and the corresponding example reconstructed disparity map in Fig 2(f, g) when addi-
tive image noise has been introduced to the image as shown in Fig 2(e). It is clear that 
there is good agreement between the ground truth and our results, however, our me-
thod operates only on integer values and therefore cannot match the sub-pixel quality 
of the ground truth. This results is banding of the results visible in the images but  
can be removed with a final subpixel refinement step. The plots in Fig 2(d) show the 
performance of our method against varying levels of noise where the deviation of 
additive noise is normalized in the 0-1 range. 

                                                           
3  http://hamlyn.doc.ic.ac.uk/vision/ 
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3.2 Experiments on Phantom Model Data 

To evaluate the method proposed in this study against phantom model data we used 
the heart model data reported in [5]. The two datasets are of a beating heart phantom 
model with ground truth obtained using dynamic CT scanning to measure the geome-
try of the model. The data does not have temporal connectivity available and therefore 
evaluating the 3D scene flow we compute is not possible for this data. Hence we only 
compare the disparity results obtained with our technique to the ground truth disparity 
at each frame in the video sequences averaged over one cardiac cycle. 

  

Fig. 3. (a) Two example images with seed feature tracks matched in stereo shown in blue and 
temporal tracks shown in green; (b) ground truth disparity images obtained from CT data; (c) 
corresponding disparity images obtained with our method; (d) the flow images corresponding 
to inter-frame motion 

Fig 3 shows example images from the heart phantom with sparse feature tracks 
used to initialize our method overlaid on top of the video. The disparity maps result-
ing at a time frame generated by the proposed technique are shown in Fig 3(c) and 
visibly correspond well to the ground truth data. We ran our technique over both vid-
eo sequences for a full cardiac cycle and the resulting disparity error and deviation are 
overlaid in Fig 3(a). The disparity error for each dataset was measured as 4.5±1.8 
pixels and 3.7±1.2 pixels. The flow information shown has no ground truth but intui-
tively we observe larger motion close to the camera as the heart model simulates a 
cardiac cycle. While our errors are higher than reported in [6] it is important to note 
that we are computing disparity over the entire cycle of heart data and not on a single 
frame. This has a disadvantage because the video and dynamic CT data are not per-
fectly aligned in time and a conversion formula is used (please see the data’s website). 

3.3 Experiments with in vivo Data 

We illustrate the practical value of the method proposed in this article by applying to 
several videos taken in vivo during robotic assisted surgery. The results shown in  
Fig 4 clearly capture the visual appearance of the 3D structures within the scene and 



 Stereoscopic Scene Flow for Robotic Assisted Minimally Invasive Surgery 485 

 

perform well in terms of not mismatching occluded regions even with the presence of 
large instruments in the foreground.  

It is more difficult to visualize the reconstructed 3D motion but qualitatively we 
can see that it corresponds to instrument motion where present and to different tissue 
surface planes in the scene. The motion data is best visualized using the video submit-
ted as supplementary material for this submission. Naturally some errors are apparent 
and in the 3D reconstruction these are usually due to sharp discontinuities meanwhile 
in the motion fields they typically reflect sudden changes in motion direction 

 

Fig. 4. (a, e) Example stereoscopic images from endoscopic beating heart surgery and a robotic 
procedure on the lung; (b, f) disparity images showing the 3D shape and (c, g) flow dynamics 
of the operating field; (d-h) renderings of the recovered 3D geometry of the surgical site with-
out incorporated occluded regions 

4 Discussion 

In this article, we have presented stereoscopic framework for recovering the 3D struc-
ture and motion of the operating field during robotic assisted MIS. The method is 
robust as it uses a growing scheme that rejects outliers and ensures uniqueness and 
symmetry in the resulting disparity and flow estimates. We have shown that the me-
thod performs well against additive image noise on synthetic data and on benchmark 
phantom model data with known ground truth. Qualitative experiments on in vivo 
datasets from robotic assisted surgery also suggest that the method has practical value. 
We believe the method is capable of real-time performance with suitable code optimi-
zation and a hardware implementation utilizing parallelization. Furthermore the ap-
proach can be improved to provide subpixel results with a final refinement step. Our 
future work will focus on improving the computational performance of the technique 
and also on investigating more optimal propagation strategies with learned priors, 
occlusion boundaries and instrument detection. 
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