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Abstract. Automatically detecting and tracking the motion of Myxo-
coccus xanthus bacteria provide essential information for studying bac-
terial cell motility mechanisms and collective behaviors. However, this
problem is difficult due to the low contrast of microscopy images, cell
clustering and colliding behaviors, etc. To overcome these difficulties, our
approach starts with a level set based pre-segmentation of cell clusters,
followed by an enhancement of the rod-like cell features and detection
of individual bacterium within each cluster. A novel method based on
“spikes” of the outer medial axis is applied to divide touching (collid-
ing) cells. The tracking of cell motion is accomplished by a non-crossing
bipartite graph matching scheme that matches not only individual cells
but also the neighboring structures around each cell. Our approach was
evaluated on image sequences of moving M. xanthus bacteria close to the
edge of their swarms, achieving high accuracy on the test data sets.

1 Introduction

Myxococcus xanthus is a rod-shaped, Gram-negative soil bacterium that has be-
come a model organism for the study of multicellular development because of
the coordinated collective motion that the bacterial cells exhibit when mov-
ing on surfaces [1]. Understanding the biomechanical interactions of bacterial
cells during movement, such as collisions and cells moving within clusters, will
shed light on the collective motion of cells and ultimately on both the processes
of swarming and multicellular-structure formation. An important step towards
achieving this goal is to track the cell movement and interactions. However,
accurate quantification of cell motion faces a number of challenges, including
low image contrast, intra- or inter-frame intensity variations, and the frequent
clustering and colliding behaviors of multiple cells.

The current cell tracking methods mainly fall into two basic categories:
segmentation-basedmethods and model-based methods. Model-based algorithms
such as the geodesic active contour method [2] have gained popularity in recent

� This work was supported in part by NSF under grant CCF-0916606 and by NIH
under grants R01GM095959 and R01GM100470.

N. Ayache et al. (Eds.): MICCAI 2012, Part I, LNCS 7510, pp. 373–380, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



374 X. Liu et al.

years due to their flexibility in capturing topological changes such as mitosis.
However, such methods cannot avoid merging multiple touching cells, which oc-
cur quite frequently in our images. Segmentation-based methods consist of two
steps: segmenting individual cells in each image frame and mapping segmented
cells between consecutive frames. Once segmented cells are obtained in different
frames, the remaining task in fact becomes a certain matching problem that
could be solved globally by methods such as optimal bipartite graph match-
ing [3], Softassign Procrustes algorithm [4], etc. But, these matching methods
utilize only information of independent cells (e.g., their appearances) as match-
ing criteria, and do not consider relations among different cells, such as the
spatial distribution of cells in a neighborhood. Indeed, the relative positions of
moving cells and their local structures keep changing from frame to frame, which
may not be captured directly by simple graph matching methods (e.g., [5]).

We observed that in image sequences of moving M. xanthus cells, the changes
of relative cell positions are quite moderate, and thus the spatial structures of
cells between consecutive image frames remain relatively similar. Based on this
observation, we propose a new tracking algorithm that considers the neighboring
cells of every target cell in consecutive frames, and captures their similarity
despite of certain changes caused by the cell movement.

In this paper, we present a new method that combines cell shape segmen-
tation and optimal graph matching to overcome the difficulties of tracking M.
xanthus bacteria. First, cell clusters are identified using a level set method. Then
individual cells within clusters are segmented by enhancing the cells’ rod-like
shape features with the eigenvalues of Hessian matrices. Next, false merging of
neighboring cells is separated by an approach based on the structures of the
outer medial axis of the cells. Finally, a non-crossing maximum bipartite graph
matching scheme is applied to compare cell neighboring structures in consecu-
tive frames, producing the frame-to-frame correspondence in image sequences.
Based on the tracking results, we can quantitatively study cell motility mecha-
nisms such as the reversal behavior of the bacteria and how they avoid blocking
in cell motions.

2 Method

2.1 Segmentation of Cell Clusters

The regions of cell clusters in each image frame are first identified by a gradient
based level set approach [6] that maintains the regularity during the level set
evolution (see Fig. 1). To speed up the process, we assign the initial level set
function as a binary image generated as follows. (1) Obtain the shadow area
surrounding each bacterium by the method introduced in Sec. 2.2; (2) apply the
morphological dilation method to the binary image obtained in Step (1) to cover
the entire regions of cells. As shown in Sec. 2.2, the segmentation of cell clusters
helps eliminate false positive cell segmentation errors near the cell clusters.
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(a) (b)

Fig. 1. An example for the level set segmentation of the cell clusters: (a) The initial-
ization of the level set function (in red); (b) the final segmentation

2.2 Segmentation of Individual Cells

The appearance of an M. xanthus bacterium in our images is like a bright rod-
shaped object surrounded by dark shadow area. We propose a method based
on the eigenvalues of the Hessian matrix to detect such distinct shape features
of each individual cell, which are insensitive to inter- and intra-frame intensity
changes. For a 2D image I of bacterial cells, let I(x, y) denote the intensity value
at a pixel of coordinates (x, y). We first obtain a smoothed image L(x, y;σ) by
convolving I(x, y) with a Gaussian kernelG(x, y;σ), where σ is a scale parameter
corresponding to the size of the target object [7]. Then the Hessian matrix of
a pixel at (x, y) is composed of the second order derivatives of L: H(x, y) =[
Lxx Lxy

Lxy Lyy

]
. We can learn the second order local intensity changes by computing

the eigenvalues λ1 and λ2 of H(x, y): λ1,2 =
Lxx+Lyy±

√
(Lxx−Lyy)2+4L2

xy

2 .
If one of the two eigenvalues is close to zero and the other exhibits a high

negative or positive value, then it corresponds to a ridge-like local structure. Let
λS and λL denote the two eigenvalues such that |λS | < |λL|, and let λ = λS−λL.
In our approach, we enhance the image for each pixel that has a high positive
λ value in the rod-like cell regions and a high (absolute) negative λ value in the
surrounding shadow regions. Those regions are then segmented by thresholding.
As shown in Fig. 2(b), a narrow band around each cell cluster also presents
high positive λ values in the enhanced image, which can be eliminated by the
accurate segmentation of the cell cluster boundaries (see Fig. 2(d)). The scale
space based image segmentation algorithm may cause over-partitioning due to
intensity changes inside the cells. These cases, which occurred rather infrequently
in our images, are mostly near the ends of the cells.

2.3 Separation of Touching Cells

The moving bacterial cells frequently touch each other while exhibiting no sig-
nificant intensity changes around the cell boundaries at the touching areas. The
watershed method is commonly used for segmenting touching cells [8]. However,
for objects with elongated shapes such as M. xanthus bacteria, the watershed
method tends to under-segment cell regions and produce too many small frag-
ments. To capture the concavity of the boundary locations where two cells touch,
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(a) (b)

(c) (d)

Fig. 2. Illustrating the cell segmentation approach: (a) An original image; (b) cell
regions segmented by using the eigenvalues of the Hessian matrix (in Sec. 2.2); (c) cell
regions after removing the false positives outside the clusters and separating touching
cells based on the outer medial axis (the outer medial axis is in green and the endpoints
of the outer medial axis spikes in a boxed area are in red); (d) the final segmentation

a method based on the “spikes” of the outer medial axis of the cell regions is
applied to detect the locations of the touching areas [9]. As shown in Fig. 2(c),
the outer medial axis of well separated bacteria is similar to their Voronoi dia-
gram. The “spikes” are the segments of the outer medial axis with one disjoint
endpoint, which are associated with the boundary concavity between touching
cells and actually point at the locations where cell touching occurs.

Fig. 3 illustrates several typical touching cases involving two or more cells
(more complex cases can be viewed as combinations of these basic cases). In our
settings, almost all touching locations are at the ends of the rod-shaped cells:
either two cells merge at two end positions (Fig. 3(a), (c), (d)) or one cell’s end
touches another cell’s body (Fig. 3(b)). After computing the outer medial axis
by an iterative thinning method [10], we prune away the false “spikes” that are
caused by noisy cell boundaries instead of by true cell touching [9]. Then the
endpoints of the remaining spikes are identified and extended along the centerline
directions of the spikes to divide the touching cells. An extension line stops if
it crosses a neighboring extension line (Fig. 3(b), (c)). If it does not cross any
neighboring extension line, then it divides the cell region by itself (Fig. 3(a)).

2.4 Tracking Cells Based on Non-crossing Maximum Matching of
Neighborhood Structures

Once individual cells are segmented, we map cells in consecutive frames and
establish their correspondence throughout an image sequence. For each cell C
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(a) (b) (c) (d)

Fig. 3. Examples of separating touching cells based on the outer medial axis: (a) End-
to-end touching of two cells; (b) end-to-body touching of two cells; (c) end-to-end
touching of multiple cells; (d) a difficult case of end-to-end touching with no spikes
presented on the outer medial axis. The outer medial axis is marked in blue and the
arrow markers correspond to the endpoints of spikes of the outer medial axis.

in a frame It, we find its corresponding cell C′ in frame It+1 by comparing
the neighboring cells of C in frame It with those of C′ in frame It+1, which
we model as a bipartite matching problem based on their order around C (and
C′). The neighbors of a cell C in a frame are those bacteria whose Voronoi
regions share a common edge with the Voronoi region of C. Note that since
moving cells may enter or leave the neighborhood (i.e., the set of neighbors)
of a cell C in consecutive frames, C’s neighborhood in It may be somewhat
different from C’s neighborhood in It+1. For a cell Ci in It and a candidate cell
Cj of Ci in It+1, let Ni and Nj denote their neighborhoods in It and It+1 in
(say) clockwise cyclic order around Ci and Cj , respectively. We build a bipartite
graph G = (U, V,E) with weighted edges, where U = {u1, u2, . . . , uni} is for
Ni and V = {v1, v2, . . . , vnj} is for Nj. To capture the similarity between Ni

and Nj that may contain some common cells, we apply a non-crossing bipartite
matching algorithm [11] that aims to preserve the order of the neighboring cells
while finding a matching with the maximum total edge weight. A non-crossing
matching in the graph G = {U, V,E} is a subset of edges M ⊆ E such that
for any two edges (ua, vb) and (uc, vd) in M , either (a < c and b < d) or
(c < a and d < b) holds. In our problem, it is crucial to obtain a non-crossing
maximum matching (instead of just a maximum matching) because an edge
crossing corresponds to a wrong order of the matched neighbors which may not
reflect the correct neighboring structures. The algorithm in [11] takes O(m log n)
time, where n = |U |+ |V | and m = |E|.

Our cell mapping algorithm for an image sequence takes the following steps:

1. For the cells in every binary image frame, compute their outer medial axis [10]
and associate each cell with its corresponding Voronoi region.

2. In every frame It, for each cell Ci, identify its neighborhoodNi = {C1
i , C

2
i , . . .,

Cni

i } in clockwise cyclic order around Ci (the Voronoi region of every Ck
i

shares a common edge with that of Ci). For a candidate cell Cj of Ci in
frame It+1, let its neighborhood Nj = {C1

j , C
2
j , . . . , C

nj

j } (see Fig. 4).

3. For each pair (Ck
i , C

l
j) of Ci and Cj , build a bipartite graph Gkl = {U, V,E},

with U = {Ck
i , C

k+1
i , . . . , Cni

i , C1
i , . . . , C

k−1
i } (when k = 1, U = {C1

i , C
2
i , . . .,

Cni

i }), and V = {Cl
j , C

l+1
j , . . . , C

nj

j , C1
j , . . . , C

l−1
j } (when l = 1, U = {C1

j , C
2
j ,

. . . , C
nj

j }). An edge in E connects two vertices u ∈ U and v ∈ V if the two
corresponding cells satisfy some constraints on their relative distance, their
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(a) (b) (c) (d)

Fig. 4. Illustrating the non-crossing maximum matching between two sets of neighbor-
ing cells: (a) An original image; (b)(c) segmented cell regions and their outer medial
axes (in green) in frames It and It+1, with the center cell in the red region and the
neighboring cells in the blue regions; (d) the cells in the non-crossing maximum match-
ing of the two neighboring sets (in the yellow regions)

length difference, and their orientation difference with respect to Ci and Cj ;
its edge weight w(u, v) is defined by the similarity between the two cells of
u and v, w(u, v) = (c − MHD(u, v))/c, where MHD(u, v) is the modified
Hausdorff distance between the two cells of u and v, and c is a constant that
is two times the maximum cell width. Then we compute the non-crossing
maximum weight matching M∗

kl in Gkl using the algorithm in [11]. Find
the matching M∗ with the largest weight among all such graphs Gkl for Ci

and Cj . Add the similarity value w(Ci, Cj) for the cells Ci and Cj to the
weight of M∗, which is the “best” match weight W (Ci, Cj) for Ci and Cj .
If W (Ci, Cj) is smaller than a threshold, then ignore the pair (Ci, Cj).

4. Repeat Step 3 for every possible candidate cell Cj of Ci in frame It+1.
5. For every two frames It and It+1, sort the remaining “best” match pairs

(Ci, Cj) based on their “best” match weights W (Ci, Cj). Scan the sorted list
of “best” match pairs starting from the largest one. Assign correspondence
between the paired cells (Ci, Cj) in frames It and It+1. Once a cell Ci (Cj)
for It (It+1) is assigned a matched cell, all other pairs containing Ci (Cj) in
It and It+1 are removed from the list. After the scan, all unmatched cells
are viewed as “single” cells (e.g., new cells entering the frames).

3 Experimental Results

Swarms of M. xanthus are made on agar plates as detailed in [12]. Time-lapse
microscopy is performed either on the swarm plates or on specially designed
imaging chambers that are similar to the submerged agar chambers (SAC) de-
scribed in [13]. The image size is 512 by 512. The pixel size is 0.14*0.07 μm.
The cells move approximately 10-25 pixels in two consecutive frames. The time
interval between two consecutive image frames is 15 seconds.

The experiments were performed on 4 image sequences containing 384 cells in
total. Cells were visually tracked in the sequences and compared with the output
of our algorithm. The tracking result of one moving cell is considered as correct if
the cell is segmented correctly in each frame and the correspondence throughout
the entire image sequence is correctly maintained. Incomplete trajectories and
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(a) (b)

Fig. 5. Two examples of tracked trajectories of cell centroids in frame stacks, with
frame 1 positioned at the z = 0 plane. Different cells are distinguished by colors.

(a) (b) (c) (d)

Fig. 6. Consecutive frames of tracking results

Table 1. The tracking accuracy of cell trajectories

Independent tracking With neighborhood Number of cells

Seq1 76.9% 89.2% 65
Seq2 71.7% 87.1% 124
Seq3 77.7% 92.2% 103
Seq4 78.3% 89.1% 92

wrong trajectories are all considered as errors. Fig. 5 shows two examples of
tracked cell traces in 3D spatio-temporal space. Fig. 6 is another example of
the frame-by-frame correspondence in a magnified region. The tracking errors
are mostly due to incorrect segmentation in regions that are blurred when the
focal plane of the microscope is being adjusted. Table 1 lists the accuracy of cell
trajectories measured in the 4 sequences. It shows our method achieved higher
accuracy comparing to the method without utilizing the neighboring structures,
which has met the requirement of the current biological application.
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4 Conclusions

We present new algorithms for segmenting and tracking M. xanthus bacteria
that are moving and closely interacting. One of our major contributions is a
non-crossing maximum matching method to track moving cells based on their
neighborhood structures. The experiments showed high accuracy of tracking cell
trajectories by our algorithm. Our approach is applicable to other tracking prob-
lems with the assumption that the cell movement is moderate between consec-
utive image frames, so that the neighboring structure around each cell does not
change too substantially from frame to frame (otherwise, it may be meaningless
to incorporate the neighboring cell information into the tracking process).
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