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Abstract. This work explores a fully-automated algorithm for estima-
tion of the uptake of radio-pharmaceutical in brain MR-PET imaging.
The algorithm is based on a model of the pharmaceutical uptake cou-
pled with probabilistic models of the PET and MR acquisition systems.
In contrast to algorithms that attempt to correct for the Partial Vol-
ume Effect (PVE), the problem is tackled here in the reconstruction by
means of a probabilistic model of the pharmaceutical uptake. We make
use of Hybrid Bayesian Networks to describe the joint probabilistic model
and to obtain an efficient optimisation algorithm. We describe solutions
adopted in order to mitigate the effect of local maxima and to reduce the
sensitivity to the initialisation of the parameters, rendering the algorithm
fully automatic. The algorithm is evaluated on simulated MR-PET data
and on the reconstruction of clinical PET FDG acquisitions.

1 Introduction

Uncertainty in Emission Tomography is dominated by photon count statistics.
It is therefore essential to adopt a probabilistic model of the emission and in-
teraction of the Gamma photons in order to use optimally the information at
hand for the quantification of the uptake of the radio-pharmaceutical. Given a
generative probabilistic model of the emission imaging system (outlined here in
Sec. 2.1), the spatial density of radio pharmaceutical can be estimated by Maxi-
mum Likelihood (ML) [1]. However, due to the acquisition being photon-limited,
the information about the pharmaceutical density is scarce, thus determining an
infinity of equally likely solutions (ill-posedness). Furthermore, optimisation of
the likelihood can only be treated currently with greedy optimisation algorithms
because of the high dimensionality of the unknown pharmaceutical density, and
yet the unknowns (pharmaceutical density in each voxel) are strongly corre-
lated due to the measurement of line integrals by the emission imaging system.
For these reasons, algorithms for the optimisation of the likelihood present slow
convergence rates, practically never reaching convergence, posing the unsolved
problem of establishing a stopping criterion [2]. A smoothing prior is typically
adopted in order to obtain a convergent algorithm; PET images obtained under
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the assumption of smoothness, however, when overlaid on an intra-subject MR
image, present the problem of partial volume or spill out effect: an observer can
distinguish certain regions in common between the two images, but the PET
image is smoother than the MR image, giving the observer the impression of
spill out of the pharmaceutical. The partial volume effect, which is nothing else
but the bias of the estimate of the pharmaceutical density, highlights how it is
problematic to quantify the uptake of pharmaceutical in a region of interest ob-
tained by segmentation of the MR image. Partial volume correction algorithms
attempt to deconvolve the PET image in order to estimate the dose in one or
more regions of interest by introducing certain assumptions about uniformity
of the uptake in each region. However, since partial volume is due to the pho-
ton count statistics, the problem cannot be solved in the domain of the PET
image for the reason that the PET reconstruction is a point estimate of the
high dimensional likelihood function that describes the uncertainty of the mea-
surement (and the photon counting process does not admit sufficient statistics).
Though a number of partial volume correction algorithms have been proposed
and are sometimes considered state of the art, concerns about the efficacy of
such algorithms are starting to be raised [3].

In this paper we extend the work proposed by [4], which replaces the assump-
tion of smoothness with a parametric model of the pharmaceutical uptake. Here
we extend and improve on both the stability and convergence of the pharmaceu-
tical uptake model of [4], making it suitable for clinical usage. Full automation
is obtained by means of integration of population-based prior information, by
the use of a local contextual model and by improving the robustness to inten-
sity inhomogeneity of the MR image. To the best of our knowledge, this paper
presents the first algorithm that combines models of the MRI and PET acqui-
sition systems, pharmaceutical uptake, MRI intensity inhomogeneity correction
and local contextual information in a unified framework.

2 Generative Model of the Pharmaceutical Uptake in
Brain Tissue

This section will first introduce the Poisson model of the PET acquisition system
(Sec. 2.1), followed by the hidden-state model of the pharmaceutical uptake (Sec.
2.2) and the hidden-state model of the MR acquisition system (Sec. 2.3). Sec.
2.4 will describe the joint model and Sec. 2.5 the algorithm for optimisation of
the joint probability distribution.

2.1 Model of the PET Acquisition System

The rate of emission of Gamma rays is a continuous function over the spatial do-
main of the patient’s body and proportional to the local density of radio-
pharmaceutical. Assuming that photon counts zd for the lines of response (LOR)
indexed by d = 1, . . . , Nd, are caused only by the radiation emitted by the radio
pharmaceutical and approximating the continuous emission rate by a discrete set
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MR image:
x = {xb}; b = 1, . . . , Nb; xb ∈ R

+

Pharmaceutical density:

y = {yb}; b = 1, . . . , Nb; yb ∈ R
+

Photon counts:
z = {zd}; d = 1, . . . , Nd; zd ∈ N

Hidden states:
k = {kb}; b = 1, . . . , Nb; kb ∈ {e1, .., eN}

Tissue-specific parameters of MR image:
θx = {μxn , σxn}; n = 1, . . . , N ; μxn , σxn ∈ R

+

Parameters of the pharmaceutical uptake model:

θy = {μyn , σyn}; n = 1, . . . , N ; μyn , σyn ∈ R
+

Coeff. of the polynomials for bias field correction:
c = {cj}; j = 1, . . . , J; cj ∈ R

Parameters of the spatial dependence of k:
θk = Gi; i = 1, . . . , N2; gi ∈ R

Population-based multinomial prior distrib. of k:
π = πbn; n = 1, . . . , N ; πbn ∈ (0, 1);

∑
n πbn = 1

Nb: num. of voxels; Nd: num. of lines of response;
N : num. of classes; J: num. of basis functions;
en: unit vector of length N , n-th element is 1.

Fig. 1. Hybrid Bayesian Network model of the pharmaceutical uptake for the MR-PET
imaging system. Observed and assumed quantities are shaded. The MR image intensity
xb and the pharmaceutical density yb are assumed to be independent conditionally to
the hidden tissue state kb. Hidden states are drawn from a MRF with first order
neighbourhood structure and have a spatially dependent multinomial prior probability
distribution πb, obtained from population data. A: PET acquisition system; B: MR
imaging system. The optimisation algorithm iteratively updates variables S1 and S2.

of point sources y = yb, b ∈ {1, . . . , Nb} displaced on a regular grid of voxels, the
model of the imaging system is expressed graphically by Fig. 1-A. Letting pbd be
the probability that a photon emitted in b is detected in d, by the sum and thin-
ning properties of the Poisson distribution, denoted by P , and observing (from
the d-separation property of the graph) that zd′ ⊥ zd|y, ∀ d′ �= d, the probability
to observe photon counts z when activity is y, is expressed by (see [1]):

p(z|y) =
Nd∏

d=1

P
(∑Nb

b=1 pbdyb, zd

)
(1)

The system matrix pbd encompasses the characteristics of the imaging system
(location, size, sensitivity, spatial resolution of the Gamma detectors, eventual
collimators) and the attenuation of Gamma radiation through the patient, which
can be approximated with a simple generic phantom of the brain or estimated
from the MR image for the patient under examination Patient specific estimation
of the attenuation coefficients from the MR image, however, is out of the scope
of this paper.

2.2 Steady-State Model of the Pharmaceutical Uptake

It is assumed that there exist a finite number of tissue types and that, in a given
type of tissue, the pharmaceutical uptake is to some extent predictable. The
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expectation and the extent of variation of the uptake within each type of tissue
are captured by a parametric finite mixture model.

The hidden tissue states k = {k1, . . . , kNb
} are modelled as the realisation

of a random process with parametric probability distribution p(k|θk), where
kb = en for some value n, 1 ≤ n ≤ N , with N being the number of tissue types
and en a unit vector of length N with n-th component equal to 1. The density
of radio-pharmaceutical yb in a voxel b belonging to class n is assumed to be
normally distributed around a certain mean μyn , with variance σ2

yn
, grouped in

θyn = {μyn , σ
2
yn
}:

p(yb|kb = en) = G (yb;μyn , σyn) (2)

θy = {θy1, . . . , θyN} are the parameters of the pharmaceutical uptake model,
describing the expectation and the extent of variation of the uptake in each type
of tissue.

2.3 Model of the MR Acquisition System

The MR imaging system is described by a parametric voxel-based finite mixture
model commonly employed for classification of tissue types by means of MR im-
ages [5]. It relates the observed image intensities to the underlying finite hidden
tissue states. The log intensity xb of a voxel b that belongs to class n is assumed
to be normally distributed around a certain mean μxn , with variance σ2

xn
. The

smoothly varying bias due to inhomogeneity of the magnetic field is modelled by
a linear combination of J polynomial basis functions φj(X), where X denotes
the 3D coordinates. Intensity is log transformed, as suggested in [5], in order to
treat the bias field, which multiplicates the intensity, as an additive term:

p(xb|kb = en) = G
(
xb −

∑J
j=1 cjφj(Xb);μxn , σxn

)
(3)

where Xb are the coordinates of the voxels b. The model of the MR imaging
system (3) is represented by the Bayesian Network in Fig. 1-B. The set of pa-
rameters are the bias field coefficients c = {c1, . . . , cJ} and the mean and spread
of the (log) intensity for each class, grouped in θx = {μxn , σ

2
xn
}, n = 1, . . . , N .

2.4 Joint Model

The hidden tissue states are considered the unique underlying cause of mutual
dependence of the two images (as expressed by the arrows of the graph in Fig.
1). The hidden state in each voxel is related to the intensity of the MR image
and to the pharmaceutical density (which is also a hidden variable) by the para-
metric models of Sec. 2.2 and Sec. 2.3. Such models are local, expressing the
probability of the hidden state in voxel b only as a function of the MR inten-
sity and pharmaceutical uptake in the voxel. The model is made more robust
by adding contextual information in the form of spatial dependence of the hid-
den labels. Not only kb depends on xb and yb, but on kb′ , b

′ �= b elsewhere. For
computational convenience, the spatial dependence of k is modelled with a joint
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distribution of the variables kb which factorises on the first order neighbourhood
structure of the image lattice (Markov Random Field - MRF): kb is assumed
to be conditionally independent from all other states if its 6 nearest neighbours
are known. The dependence of state kb upon its neighbours Nb is expressed by
the following Potts model p(kb|Nb, θk), parametrised by θk, which corresponds
(Markov-Gibbs equivalence) to the joint density of the hidden states p(k|θk):

p(kb|Nb, θk) =
e−kT

b Gθk
gb

∑N
n e−kT

b Gθk
gb

p(k|θk) = e−
∑Nb

b −kT
b Gθk

gb

Z
(4)

where gb counts the labels of each class between the neighbours, Gθk is a [N×N ]
matrix of parameters of the Potts model that expresses the affinity of all pairs
of states and Z is the partition function, not involved in the maximisation of the
joint probability.

Finally, the probability of voxel b being in state n depends a priori on the
location of b. Such prior distribution is expressed by a multinomial probability
distribution πbn,

∑N
n πbn = 1. The use of the spatially varying multinomial prior

probability of the hidden states is key to automating the algorithm, as otherwise
the parameters of the mixture models converge to different tissue classes non
predictably.

2.5 Greedy Optimisation Algorithm

The joint probability distribution is optimised with the Iterated Conditional
Modes (ICM) optimisation algorithm, consisting of iterating the optimisation
of two subsets of the unknowns: S1 and S2 in Fig. 1. Iteratively, the algorithm
computes S1 that increases the conditional probability distribution p(S1|S2),
given the provisional estimate of S2, then it computes a new value of S2 that
increases p(S2|S1). The choice of the two subsets corresponds to the existence of
Generalised Expectation Maximisation (GEM) formulations for the optimisation
of p(S1|S2) and p(S2|S1). The GEM algorithm to update S1 involves 4 steps (i.i,
i.ii, i.iii, i.iv); while the One Step Late EM algorithm to update S2, involves
a single step: ii. Derivation of the update formulae for the subsets S1 and S2

is described in [4] and [5], whose notation we maintain here; we report in the
following the algorithm, which consists in iterating in order i.i, i.ii, i.iii, i.iv, ii:

i.i Estimate the probability pbn that tissue state in voxel b is n. This step is
necessary for the successive steps and arises from the GEM formulation [5].

p
(m+1)
bn ≡ p(yb|kb = en; θ

(m)
y )p(xb|kb = en; θ

(m)
x )p(kb = en|p(m)

Nb
; θk)πbn

N∑

n=1

p(yb|kb = en; θ
(m)
y )p(xb|kb = en; θ

(m)
x )p(kb = en|p(m)

Nb
; θk)πbn

(5)

where the spatial dependence term p(kb = en|p(m)
Nb

; θk) is approximated from the
previous estimate of pbn by the Mean Field approximation [5]:



294 S. Pedemonte et al.

p(kb = en|p(m)
Nb

; θk) =
e
−Uθk

(en|p(m)
Nb

)

∑N
n′=1 e

−Uθk(en′ |p(m)
Nb

)
Uθk(en|p(m)

Nb
) = kTb Gθk g

(m)
b

(6)

g
(m)
b being the vector of length N with elements g

(m)
bn =

∑
Nb

p
(m)
bn . i.ii Update

the tissue-specific parameters of the MR imaging system:

μ(m+1)
xn

=
1

Nb

∑Nb

b=1 p
(m+1)
bn xb

πbn
σ2(m+1)

xn
=

1

Nb

∑Nb

b=1 p
(m+1)
bn (μ

(m+1)
xn − xb)

2

πbn
(7)

i.iii Update the parameters of the pharmaceutical uptake model:

μ(m+1)
yn

=
1

Nb

∑Nb

b=1 p
(m+1)
bn yb

πbn
σ2(m+1)

yn
=

1

Nb

∑Nb

b=1 p
(m+1)
bn (μ

(m+1)
yn − yb)

2

πbn
(8)

i.iv Update the bias field parameters:

⎡

⎢⎣
c
(m+1)
1

c
(m+1)
2

. . .

⎤

⎥⎦ =
(
AT diag w

(m+1)
b A

)−1

AT diag w
(m+1)
b

⎡

⎢⎣
x1 − x̃

(m+1)
1

x2 − x̃
(m+1)
2

. . .

⎤

⎥⎦ (9)

where A is the geometrical matrix of the bias field model, each of its columns
evaluating the polynomial basis function φj at voxel coordinates Xb and

w
(m+1)
b =

N∑

n=1

w
(m+1)
bn w

(m+1)
bn =

p
(m+1)
bn

σ2(m+1)

xn

x̃
(m+1)
b =

∑N
n=1 w

(m+1)
bn μ

(m+1)
xn∑N

n=1 w
(m+1)
bn

ii Update the estimate of the pharmaceutical density (One Step Late EM algo-
rithm for the Poisson model - see [1]):

y
(m+1)
b = y

(m)
b

1
Nd∑

d=1

pbd +

N∑

n=1

p
(m+1)
bn

y
(m)
b − μ

(m+1)
n

σ2
xn

Nd∑

d=1

pbd zd
Nb∑

b′=1

pb′d y
(m)
b′

(10)

3 Results

Synthetic MR-PET FDG: Uptake of FDG was simulated by assign-
ing typical average values observed in PET FDG scans to the BrainWeb
(http://mouldy.bic.mni.mcgill.ca/brainweb/) ground truth tissue model:
4 parts uptake in the gray matter, 1 part in white matter, 0 in CSF. One hot and
one cold spherical lesions of 14 mm diameter were simulated by augmenting the
activity by 30% in the hot lesion and reducing it by 50% in the cold lesion. 30
PET scans with 150M counts were simulated with the PET-Sorteo simulator

http://mouldy.bic.mni.mcgill.ca/brainweb/
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Fig. 2. Synthetic MR-PET FDG imaging data (see-through volume-rendering of 5mm-
thick sagittal slices). From left to right: T1-weighted MR image, activity phantom,
MLEM reconstruction, reconstruction with the proposed pharmaceutical uptake model
using 6 classes from the MNI-152 brain statistical atlas.

Fig. 3. PET FDG reconstructions obtained with MLEM (left) and with the proposed
pharmaceutical uptake model (right) using 6 classes from the MNI-152 brain statistical
atlas. See-through volume-rendering of 5 mm-thick sagittal slices.

and adding Poisson noise. The attenuation map was simulated by aligning
non-rigidly a clinical CT-derived attenuation image to the Brainweb MR image
with Normalised Mutual Information cost function. The 30 sinograms were then
pre-corrected for scatter by energy thresholding and reconstructed with MLEM
[1] and with the proposed algorithm. The number of classesN was set to 6: White
Matter, Internal Gray Matter, External Gray Matter, External CSF, Internal
CSF, everything else. The statistical atlas for the 6 classes was obtained from
the MNI-152 atlas by splitting manually internal and external regions for the
Gray Matter and CSF classes and aligning rigidly the MNI-152 T1-weighted MR
template to the MR image with NMI cost function. The off-diagonal elements of
the N × N parameter matrix θk were set to 0.1 and the diagonal elements to 0,
penalising equally all transitions except for the transition to the identical class
(more sophisticated parameter selection criteria are reported in [5]). The order of
the polynomial for bias field correction J was set to 4. For simplicity both MLEM
(non-convergent) and the proposed (convergent) algorithm were terminated after
50 iterations. Fig. 2 reports a sagittal slice of the reconstructions obtained for one
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of the 30 noise instances. The table in Fig. 2 reports the coefficient of recovery
(COR) and signal to noise ratio (SNR) of the mean uptake in 8 regions of interest
including the two lesions. The results highlight that the pharmaceutical uptake
model yields measurements with less noise and less bias when the uptake is
consistent with the model, producing remarkably truthful estimates. It is also
remarkable that the lesions are well reconstructed even though they are outliers
of the model (there isn’t a class that captures the lesions), presenting overall
improved SNR. This fact can be explained with the strong inter-correlation of the
unknowns in emission imaging due to the line-integral measurements: improving
the estimate everywhere outside of the lesion already improves the estimate in
the lesion. Execution time on a Xeon E5430 equipped with NVidia GTX285
GPU is approximately 3 minutes for MLEM and 12 min for the Bayesian uptake
model.

Clinical Data: The algorithm has been applied to clinical PET FDG using the
same 6 classes that were employed in the synthetic PET FDG study. The emission
data and the MR images were acquired on separate machines: the pharmaceuti-
cal density was estimated initially with MLEM, aligned with the MR image by
rigid registration with NMI cost function and reconstructed again with the up-
take model. Reconstructions are reported in Fig. 3.

4 Conclusion

In this paper we have extended the pharmaceutical uptake model presented by
[4], making it fully automated. Robust estimation is achieved by 1) adopting
a population-based statistical atlas to initialise and drive the optimisation of
the parameters of the pharmaceutical uptake model and of the MR acquisition
system model; 2) adding contextual information in the form of a Markov Random
Field over the hidden tissue labels; 3) capturing the MR image bias field. We
have evaluated the algorithm in a synthetic study, showing that it improves the
quantification of the pharmaceutical uptake when the simulated data reflects
the assumptions of the model and, remarkably, that the uptake estimate may
improve also in regions that do not obey to the model. Validation with real
data remains an open problem as it would require large sets of imaging data,
possibly labelled with long term clinical outcome for specific imaging tasks. To
this extent, automation of the reconstruction algorithm is crucial.

Source code of the synthetic experiment: http://niftyrec.sourceforge.net
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