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Abstract. Image quality of four dimensional cone-beam computed to-
mography (4D CBCT) is limited by streaking artifacts due to insuffi-
cient projections after respiratory sorting. In this paper, a framework is
proposed to combine improved motion and stationary regions of CBCT
together to enhance the final reconstructed image. Firstly, streaking ar-
tifacts are decreased in the 4D CBCT by directional interpolation for
additional cone-beam projections. Secondly, motion is estimated through
deformable image registration of the 4D CBCT and motion proportional
weights are assigned to each voxel. Finally, the weighted combination
of the 3D and an interpolated 4D image is calculated. The proposed
method is validated by both phantom and clinical data. Experiments
demonstrate this method decreases streaking artifacts as well as image
blur, and then improves image quality.

Keywords: 4D CBCT, directional interpolation, phase-correlated re-
construction.

1 Introduction

Cone-beam (CB) computed tomography (CT) is used to obtain patient images im-
mediately before radiotherapy delivery. For patients with lesions in the thoracic
and upper abdominal region, respiratory induced organ motion degrades recon-
structed image quality. Phase-correlated four dimensional (4D) CBCT [1,2,3,4]
was introduced to decrease respiratory induced blur and obtain time-resolved im-
age information. These methods sorted acquired projections into nearly motion-
free subsets according to a respiratory signal, and reconstructed each subset with
FDK algorithm [5]. Since view-aliasing artifacts emerged due to insufficient num-
ber of projections after sorting, slowing gantry rotation [4] and multiple rotations
[3] schemes were introduced to acquire more projections and improve image qual-
ity. McKinnon et al. [6] incorporated forward projection step to increase sampling
projection number, while Bergner et. al. [7] introduced AAPC to distinguish the
motion between respiratory and gantry-rotation on projection data, and applied
a projectionwise phase-dependent weighting function. Then a phase-correlated
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4D CBCT was reconstructed by combining high temporal resolution regions with
strong motion and motionless regions with improved image quality. On the other
hand, Betram et al.[8] employed directional interpolation to calculate intermedi-
ate views in 3DCBCT for skull imaging. Directional interpolation uses a structure
tensor to estimate the local orientation of extracted sinograms, and interpolates
pixels by applying the orientation. This method increases the number of projec-
tions and improves the reconstructed image quality. A complete comparison of
different 4D methods is discussed in the paper [9].

In this paper, we introduce and evaluate a strategy called motion weighted 4D
CBCT reconstruction. We firstly sort all projections into subsets according to
respiratory signal after image acquisition. Directional interpolation is applied to
each subset to increase projection number. All acquired original projections are
reconstructed to a 3D CBCT, and both interpolated and acquired projections
are reconstructed to an interpolated 4D CBCT. Finally, according to the motion
estimation results on this 4D data, we combine the 3D and 4D image by a
weighting function. The proposed method is evaluated on both phantom and
patient data.

2 Methods

The flow chart of our method is depicted in Fig.1. Directional interpolation is
to reduce view aliasing artifacts and thus increase the image quality of 4D data.
Motion estimation distinguishes moving and stationary anatomy in 4D CBCT.
Finally, a new CBCT is generated based on the 3D CBCT reconstructed from
all the original acquired projections for the stationary part, and based on the
4D interpolated reconstruction for the moving part.

Fig. 1. Flow chart of our method. Rectangles are data and dashed rectangle means
combining data from different source. The dark rectangles are main processing steps.
FDK [5] is for 3D or 4D reconstruction (after sorting).
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2.1 Respiratory Signal Extraction and Projection Sorting

Phase-correlated 4D CBCT reconstruction requires a respiratory signal to sort
projections into subsets according to the respiratory phase. This signal is ex-
tracted from the series of acquired original CB projections through image pro-
cessing following the diaphragm motion [4]. According to the phase of respiratory
signal, we sort the projections into ten phase bins. In each bin, we collect a subset
of projections which from the same respiratory phase. This process is illustrated
in Fig.2.(a) where the bigger dots in phase graph represent the projections from
the same phase bin.

2.2 Sinogram Directional Interpolation

Directional interpolation [8] is used to increase projection number. After projec-
tion sorting, all projections from the same phase bin are stacked together as a

Fig. 2. (a) Selected cone-beam projections according to the respiratory signal. (b)
The projections are stacked together and the sinogram is extracted. (c) The inter-
polated weight calculation. The dotted arrow represents the interpolated orientation
θ(u′,ω′)→(u,ω), and the line arrows indicate the estimated orientations θ(u, ω). (d) 4D
deformation vector fields.
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cube C(u, v, ω) (Fig.2.(b)), where u and v represent the detector panel coordi-
nate axes, and the axis ω is perpendicular to plane (u, v) representing the gantry
angle. Then a slice is extracted to form a sinogram. Since the respiratory motion
is minimized by projection sorting, the projection pixel motion distance |u| is
larger than |v| (|u| is from gantry rotation and |v| is from respiratory motion).
Therefore, the 2D sinogram (u, ω) is adequate to implement interpolation. The
local orientation of the sinogram is defined as the directional axis which has
the minimum pixel value variation in a local region. This direction is sought by
calculating the eigenvectors of a structure tensor. Mixed-orientation-parameters
[10] are used to detect multiple orientations, and a final single orientation is gen-
erated by setting threshold. A more detailed description on its implementation
is introduced in paper [10].

Different weights {η(u, ω), (u, ω) ∈ Ω} are given to neighboring original pixels
(u, ω) ∈ Ω according to the orientation results. Ω is a region of all the neigh-
boring pixels contributing to the interpolated pixel. Then the interpolated pixel
value is calculated as

i(u′, ω′) =

∑
(u,ω)∈Ω η(u, ω) · i(u, ω)
∑

(u,ω)∈Ω η(u, ω)
. (1)

The weight η is from η(u, ω) = ε · [cos(Δθ)]4 · λ. Fig.2.(c) illustrates our inter-
polation weighting strategy. In this figure, (u′, ω′) is the interpolated location,
(u, ω) is the neighboring pixel position, and Δθ = θ(u, ω) − θ(u′,ω′)→(u,ω). The
difference between estimated and interpolated orientation is quantified by Δθ.
When Δθ is closer to 0, the interpolated pixel is closer to the local orientation,
and higher weight is given to this neighbor pixel. We use cos(Δθ) to smooth the
weighting distribution in a none-linear shape. An indicator ε is introduced as

ε(x) =

{
1 if cos(�θ) ≥ 0

0 otherwise
(2)

to eliminate these neighbor pixels where cos(Δθ) is negative. This means the
local orientation and interpolation direction are quite different. λ = (1− e1/e2)
is a ratio to specify local single orientation accuracy, and it means that the
orientation estimation is more accurate when λ is closer to 1. e1 and e2 are two
eigenvalues from local orientation estimation [10] and e1 < e2.

The interpolation function (1) also strongly depends on the interpolation
neighborhood Ω. The size of Ω is defined by d = (s1 · Ψ)/(m · 2π), where s1
is the object motion distance along direction u (Fig.2.(b)), Ψ is total acquisition
rotation angle, and m is total acquired projection number for interpolation. Dur-
ing a full rotation acquisition, it is assumed that Ψ = 2π, s1 equals to detector
size. Then the average motion distance between adjacent projections is s1/m.
In Fig.2.(c), the neighborhood size N = d/0.16 pixels, and 0.16 cm is detector
pixel size.
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2.3 Motion Estimation

The motion estimation algorithm analyzes the deformation between each phase
of a 4D CBCT. The peak-inhale phase 3D CBCT is chosen as the reference,
and other phases are registered to the reference. For the phantom data, local
rigid registration by a shaped region of interest around a moving insert is used.
For clinical data, an optical flow motion estimation method [11] was applied
to calculate deformation vector fields (DVFs) between the reference image and
other phase image. Then a 4D DVF is generated to express the respiratory
motion of each voxel in a respiratory cycle.

2.4 Motion Weighted 4D CBCT Reconstruction

Our motion weighted reconstruction utilizes the 4D DVF to distinguish the
moving and static part in the 4D CBCT, and combines these parts together
according to the motion weight. From the 4D DVF, we calculate the displacement
βi =

√
υ2
i1 + υ2

i2 + υ2
i3 for each voxel. υi1, υi2, υi3 are the motion in left-right

(LR), cranial-caudal (CC) and anterior-posterior (AP) directions. In the 4D
DVF, we find the largest displacement Bj = max(βi) in current phase j, and
the motion weighted 4D CBCT is defined as t(i, j) = (1−ωi) · ts(i)+ωi · t′(i, j),
where ts is the 3D CBCT, t′ is the interpolated CBCT, j is current phase number,
and ωi = βi/B.

3 Experiments and Results

3.1 Data and Image Analysis

In our experiments, the Dynamic Thorax Phantom (CIRC, Norfolk, USA) was
scanned over an arc of 200◦ with the acquisition times of 2, 4 and 8 minutes. The
phantom had a 3 cm diameter solid water sphere moving with 2 cm peak-to-
peak amplitude in the CC direction and 4s period within lung density equivalent
material. For the clinical study, a patient with respiratory tumor peak-to-peak
amplitude of 1.1 cm in CC direction was scanned in 1 and 4 minutes. CB pro-
jections were acquired by a Synergy CBCT scanner (Elekta Oncology Systems,
Crawley, UK). The flat imager has the specifications: 5.5 fps, 40.962 cm2, 10242

pixels; source-to-isocenter distance: 100 cm, and source-to-panel distance 153.6
cm. For computation efficiency, CB images were downsized to 2562 pixels 0.162

cm2. CBCT volumes were reconstructed by FDK [5] with a resolution 0.23 cm3

in a grid 1283. All voxel values were approximately normalized to Hounsfield
Unit (HU).

For image analysis, a shaped region of interest (ROI) was manually defined
from a 3D planning CT in phantom data, and the CBCT scan was subse-
quently registered to the planning CT. To assess streaking artifacts, root-mean-
square-error (RMSE) between CBCT and planning CT was calculated as E =√

1
n

∑
(tk − t′k)2, where k ∈ Ω1, tk was a voxel from reconstructed CBCT, t′k
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Fig. 3. Sagittal central slices of reconstructed images. (a)-(d) Phantom 4 min acquisi-
tion time. (e)-(h) Patient with 1.1 cm tumor motion, 4 min acquisition time. (a)-(h)
Phase of 30% inhale-exhale cycle for the different time resolved reconstruction methods.

was a voxel from CT after it was resampled to the the grid of CBCT, and n
was the total voxel number inside Ω1. Ω1 was a manually segmented mask with
setting threshold [1000, 1100] (HU) and erosion post-processing, and it com-
prised homogenous voxel values. The voxels from 3D CBCT (or each phase of
4D CBCT) were extracted in Ω1, and RMSE was calculated. Furthermore, im-
age blur was defined in an extracted region Ω2 > 1300 (HU) of CT. Then Ω2

was mapped to the CBCT through image registration, and the average voxel
value t = 1

k

∑
tk, k ∈ Ω2 was calculated. Region Ω2 contained high-contrast ob-

jects, and the decrement of t suggested the increment of image blur. For clinical
study, the patient’s gross tumor volume (GTV) was rigidly registered from CT
to CBCT (or each 4D CBCT phase). After registration, the correlation ratio
[12] in GTV was used to quantify the image similarity of planning CT and re-
constructed CBCT. FDK and MKB [6] were implemented to compare to our
methods. 3D CBCT was reconstructed from full acquired projections by FDK.
4D CBCT and 4D interpolated CBCT were sorted into 10 respiratory bins.
MKB was implemented by only one forward projection step and two backward
projection steps.

3.2 Results

Fig.3 displays the sagittal slice of reconstructed CBCT by 4 minutes image
acquisition time. 4D MKB (Fig.3 is blurred by forward interpolation.(a)(e)).
Fig.3.(b)(f) belong to phase-correlated 4D CBCT and streaking artifacts are
obvious, because only about 10% of the projections are used to reconstruct each
phase. Interpolated 4D CBCT decreases streaking artifacts but induces image



Directional Interpolation for Motion Weighted 4D CBCT 187

Fig. 4. (a) Streaking artifacts of phantom. (b) Image blur of phantom. (c) Correla-
tion ratio of patient in GTV. Error bars are standard deviation calculated from 10
correlation ratios between 4D images and CT.

blur. And finally motion weighted 4D CBCT preserves the sharpness of motion-
less bony structure and decreases the streaking artifacts.

The quantitative results are depicted in Fig.4, and the results of 4D images
are the mean value of all 10-phase images. In Fig.4.(a), streaking artifacts are
compared between different acquisition protocols and methods. Interpolated and
motion weighted 4D CBCT decrease the artifacts caused by undersampling of 4D
CBCT. For highly undersampled 2 min scan, the streaking artifacts reduction
is most pronounced. Image blur induced by interpolation is reduced by motion
weighting strategy (Fig.4.(b)). Finally, Fig.4.(c) illustrates the correlation ratio
of patient data. Since tumor motion is small, the correlation ratio between 3D
CBCT and CT is close between different scanning times. The correlation ratio
between interpolated and motion weighted CBCT is similar, but the decrease of
standard deviations (error bars in Fig.4.(c)) suggests the improved image quality.

4 Discussion and Conclusion

In this paper, we have presented a motion weighted 4D CBCT reconstruction ap-
proach to cope with streaking artifacts and image blur. Streaking artifacts from
undersampling were decreased by directional interpolation in sinogram space.
MKB can be considered as an interpolation from all acquired projections, and
our methods only utilize adjacent projections. Interpolation by more projections
causes more image blur, and MKB has more blur than our method. Image blur-
ring is a common phenomenon after interpolation, and depends on either the
interpolation filter size or weights. Consequently, MKB and our method blur
both interpolated projection and reconstructed images. The balance between
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image blur and streaking artifacts should be made according to the clinical pur-
pose. Under the condition of sparse angle acquisition, our method boosts the
interpolation filter to generate more discriminative weights, which is a effec-
tive strategy to decrease image blur and preserve the sharpness. Meanwhile, our
method depends on 4D motion estimation accuracy. Our interpolation strategy
decrease noise ratio and improves 4D motion accuracy. However, severe streak-
ing artifacts can still possibly perturb 4D motion estimation and decrease the
image quality of high-contrast objects such as bones and fiducial markers.

We have proposed a method with directional sinogram interpolation of res-
piratory correlated imaging, feeding into motion estimation in reconstruction
space and motion estimation based weighting of 3D and interpolated 4D data
sets. This method can decrease artifacts due to undersampling and constrains
image blur after interpolation.
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