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Abstract. This paper presents the application of Neural Networks for the spatial 
and temporal modeling of (critical frequency) foF2 data over Europe. foF2 is 
the most important parameter in describing the electron density profile of the 
ionosphere since it represents the critical point of maximum electron density in 
the profile and therefore can be used to drive empirical models of electron 
density which incorporate foF2 as an anchor point in the profile shape. The 
model is based on radio occultation (RO) measurements by LEO (Low Earth 
Orbit) satellites which provide excellent spatial coverage of foF2 
measurements.  
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1 Introduction 

The ionosphere is defined as a region of the earth's upper atmosphere where sufficient 
ionisation can exist to affect radio waves in the frequency range 1 to 3 GHz. It ranges 
in height above the surface of the earth from approximately 50 km to 1000 km. The 
influence of this region on radio waves is accredited to the presence of free electrons. 

The impact of the ionosphere on communication, navigation, positioning and 
surveillance systems is determined by variations in its electron density profile and 
subsequent electron content along the signal propagation path [1]. As a result satellite 
systems for communication and navigation, surveillance and control that are based on 
trans-ionospheric propagation may be affected by complex variations in the 
ionospheric structure in space and time leading to degradation of the accuracy, 
reliability and availability of their service. 

The uppermost layer of the ionosphere is the F2 region which is the principal 
ionospheric region where electron density maximises and therefore introduces 
significant effects in transionospheric signals (navigation and communication) that 
penetrate the ionosphere. The maximum frequency that can be reflected at vertical 
incidence by this layer is termed the F2 layer critical frequency (foF2) and is directly 
related to the maximum electron density of the electron density profile (see Figure 1). 
The F2 layer critical frequency is therefore the most important parameter in 
characterising the ionospheric electron density profile. The maximum electron density 
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of free electrons within the F2 layer and therefore foF2 depend upon the strength of 
the solar ionising radiation which is a function of time of day, season, geographical 
location and solar activity [2,3,4].  

This paper describes the development of a neural network model which describes 
the temporal and spatial variability of foF2 data over a significant part of Europe. The 
model is based on approximately 53000 LEO satellite foF2 values from RO 
measurements recorded from January 2007 to December 2010. This is the first 
attempt to develop a foF2 model from RO satellite measurements. The significance of 
this model lies in its superior spatial interpolation properties due the fact that is based 
on foF2 measurements of high spatial resolution as a result of the excellent 
geographical coverage provided by the COSMIC satellite mission. This spatial 
resolution is significantly higher than that provided by ionosonde measured foF2 
values which is the traditional method of probing the ionosphere and can also extend 
over the sea where ionosonde radars are impractical to operate for obvious reasons.  

There have been other efforts for the introduction of the spatial aspect, both in the 
direction of long-term prediction and short-term forecasting models of foF2 based on 
ground-based foF2 measurements. Lamming and Cander (1999) [5] attempted to 
incorporate geographical latitude and longitude as model parameters to address the 
interpolation capability of a monthly median foF2 Neural Network model between 
ionospheric stations. over Europe. Kumluca et al. (1999) [6] also explored this idea by 
including more than one ionospheric station to extend the work of Altinay et al. 
(1997) [7]. Oyeyemi et al. (2005) [8] used data from 40 worldwide ionospheric 
stations spanning the period 1964–1986 for training a global Neural Network for 
short-term forecasting of foF2 including geographical latitude and other 
geographically related geophysical parameters as inputs. Oyeyemi et al. (2008) [9] 
extended their previous work by including ground based ionosonde data, from 84 
global stations to propose a global long-term prediction Neural Network model of 
foF2.  
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Fig. 1. Typical electron density altitude profile of the ionosphere 
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2 Measurement of F2 Layer Critical Frequency by Ground-Based 
and Satellite Techniques  

Traditionally measurements of foF2 were conducted by ionosondes which are special 
types of radar used for monitoring the electron density at various altitudes in the 
ionosphere up to the F2-layer peak electron density (corresponding to foF2). Their 
operation is based on a transmitter sweeping through the HF frequency range 
transmitting short pulses. These pulses are reflected at various layers of the 
ionosphere, and their echoes are received by the receiver giving rise to a 
corresponding plot of reflection altitude against frequency which is further analysed 
to infer the ionospheric plasma height-electron density profile (Figure 1). The 
maximum frequency at which an echo is received is called the critical frequency of 
the corresponding layer. Since the F2 layer is the most highly ionised ionosperic layer 
its critical frequency foF2 is the highest frequency that can be reflected by the 
ionosphere.  

 

Fig. 2. Schematic illustrating a ground-based (ionosonde) and a space-based technique (satellite 
RO) for probing the ionosphere 

A constellation of six satellites, called the Formosa Satellite 3-Constellation 
Observing System for Meteorology, Ionosphere, and Climate (COSMIC), was 
launched on April 15, 2006 to improve the global weather prediction and space 
weather monitoring [10,11]. The instrument that is of interest in this paper is the GPS 
receiver which is used to obtain atmospheric and ionospheric measurements through  
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phase and Doppler shifts of radio signals. The Doppler shift of the GPS L-band 
(L1=1575.42 MHz, L2=1227.60 MHz) signals received by a LEO satellite is used to 
compute the amount of signal bending that occurs as the GPS satellite sets or rises 
through the earth’s atmosphere as seen from LEO (Figure 1). The bending angles are 
related to the vertical gradients of atmospheric and ionospheric refractivity which is 
directly proportional to ionospheric electron density above 80 km altitude. Through 
the assumption of spherical symmetry, electron density profiles can be retrieved from 
either the bending angles or the total electron content data (computed from the L1 and 
L2 phase difference) obtained from the GPS radio occultations (RO) [12].We also 
need to emphasise that the RO occultation technique can be applied successfully in 
retrieving the ionospheric electron density profile only under the assumption of 
spherical symmetry in the ionosphere. This assumption is not always satisfied due to 
significant electron density gradients that give rise to horizontal electron fluxes. This 
violates the requirement for electron density profile inversion producing a very 
unrealistic profile. In order to overcome this limitation and concentrate on good 
quality electron density profiles a selection process was applied in order to exclude 
those measurements where the distortion of the profiles was excessive. In this paper 
the Neural Network foF2 model is developed based on a training set of RO 
measurements across a part of Europe (shown by the shaded area in Figure 3) and 
evaluated on a test set of  foF2 values obtained by European ionosondes operating in 
Europe (in locations shown again in Figure 3). 

 

Fig. 3. A map of Europe illustrating the area within which RO measurements were considered 
in the model development and locations of ionosonde stations that provided the testing data sets 
for model evaluation 
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3 Temporal and Spatial Characteristics of the F2 Layer Critical 
Frequency and Model Parameters 

The temporal variability of foF2 at a single location is well established and has been 
thoroughly described in previous papers [13,14] primarily based on ionosonde derived 
foF2 datasets. In short, ionospheric dynamics are governed principally by solar 
activity which in turn influences the electron density of the ionosphere. The electron 
density of the F2 layer exhibits variability on daily, seasonal and long-term time 
scales in response to the effect of solar radiation. It is also subject to abrupt variations 
due to enhancements of geomagnetic activity following extreme manifestations of 
solar activity disturbing the ionosphere from minutes to days on a local or global 
scale. There is also a spatial aspect of these variabilities which is depicted in Figures 4 
and 6 for COSMIC foF2 values obtained at low (35o-43o), medium (43o-51o) and high 
(51o-60o) latitude European regions.  

The most profound solar effect on foF2 is reflected on its daily variation as shown 
in Figure 4. As it is clearly depicted, there is a strong dependency on local time which 
follows a sharp increase of foF2 around sunrise and gradual decrease around sunset. 
This is attributed to the rapid increase in the production of electrons due to the photo-
ionization process during the day and a more gradual decrease due to the 
recombination of ions and electrons during the night. The long–term effect of solar 
activity on foF2 follows an eleven-year cycle and is clearly shown in Figure 5 where 
values of foF2 obtained from ionosonde data over Cyprus are plotted against time as 
well as a modeled monthly mean sunspot number R which is a well established index 
of solar activity. We can observe a marked correlation of the mean level of foF2 and 
modeled sunspot number. Unfortunately using COSMIC foF2 for such a plot was not 
possible as the duration of the mission coincided with an unusually extended period of 
low solar activity that did not allow the correlation between COSMIC foF2 and R to 
clearly apperar. In addition to the effects of solar activity on both parameters 
mentioned above we can also identify a spatial effect on the diurnal variability. The 
spatial aspect of temporal variability is demonstrated in Figure 4 where the diurnal 
variation of foF2 is plotted for three different measurements corresponding to low, 
medium and high latitudes. It is evident from this figure that the variability is 
increased as latitude decreases. This spatial characteristic of diminishing foF2 with 
increasing latitude is also observed in Figure 6 where the seasonal variation of the 
median level of foF2 at noon recorded over the three latitude regimes over Europe 
(low, medium and high) is shown. 

The plots in Figures 4-6 describe the variabilities that typically characterise the 
average temporal behaviour of foF2. The model parameters to describe these 
variabilities have been established in previous papers [13,14] and are annual and daily 
sinusoidal components as well as a modeled sunspot number which describes the 
level of solar activity. In addition to these parameters latitude and longitude are 
introduced as additional model parameters in this paper to express the spatial 
variability of foF2. 
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Fig. 4. Diurnal variability of foF2 at low, medium and high latitudes 

 

 
 
 

Fig. 5. Long-term foF2 and solar activity variation with time over Cyprus 
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Fig. 6. Seasonal variation of foF2 at 12:00 at low, medium and high latitudes 

4 Experiments and Results 

In all experiments the available foF2 values from RO measurements between January 
2007 and May 2010 were used for training the Neural Network and values from 
ionosond and RO measurements between June 2010 to December 2010 were used for 
testing it. The Neural Networks used had a fully connected two-layer structure, with 7 
input, 10 hidden and 1 output neurons. Both their hidden and output neurons consisted 
of hyperbolic tangent sigmoid activation functions. The number of hidden neurons 
was determined by trying out the values 5, 10, 15 and 20. The training algorithm used 
was the Levenberg-Marquardt backpropagation algorithm with early stopping based 
on a validation set created from 20% of the training examples. In an effort to avoid 
local minima five NNs were trained with different random initialisations and the one 
that performed best on the validation set was selected for being applied to the test 
examples. The inputs and target outputs of the network were normalized setting their 
minimum value to -1 and their maximum value to 1. This made the impact of all 
inputs in the model equal and transformed the target outputs to the output range of the 
NN activation functions. The results reported here were obtained by mapping the 
outputs of the network for the test examples back to their original scale. 

The example plots shown in Figure 7 show the ability of the model to approximate 
the diurnal behaviour of  foF2 at various locations over Europe. Apparently for lower 
latitude stations the approximation seems to be worse. 

The obtained Root Mean Squared Error (RMSE) over all data for the model based 
on RO COSMIC measurements is shown for each site in table 1. Also RMSE values 
for a model based on ionosonde data and tested on COSMIC data is also given as a 
comparison model.  
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Fig. 7. Examples of measured (by ionosonde) and predicted (by COSMIC) foF2 values at 
various locations over Europe 

A worth noting result is the plot of RMSE versus latitude given in Figure 8 for the 
model based on COSMIC values which clearly demonstrates the increasing trend of 
RMSE with latitude. This can be possibly attributed to the fact that the ability of the 
algorithm to infer electron density profiles may deteriorate with latitude which was a 
possible suggestion in the literature in the recent past [15]. Another possible reason is 
the increased temporal and spatial variability which characterises lower latitude 
regions because of the complex morphology of the ionosphere in this area. This 
increased variability poses an increased challenge to any effort of modeling any 
ionospheric characteristic such as foF2 even under geomagnetically quiet conditions 
which is reflected on the higher values of RMSE. Another important point to 
comment on is the fact that unlike Total Electron Content (TEC -which is another 
very important ionospheric characteristic) values that are measured from extended 
networks of ground-based GPS stations sampling adequately the European sector in 
space and time, measurements of foF2 from ionosondes do not achieve the same  
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spatial resolution and COSMIC measurements do not achieve the same temporal 
resolution. Therefore techniques that have been applied in the case of interpolating 
TEC data are not necessarily appropriate for foF2 modeling. 
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Fig. 8. RMSE versus latitude 

Table 1. The Root Mean Squared Error (RMSE) of the Neural Network for the case of a 
COSMIC based and an ionosonde based model 

Ionosonde
location 

RMSE (MHz) 
COSMIC 

based 
Ionosond 

based 

Tortosa 0.788 0.779 

SanVito 0.524 0.863 

Rome 0.752 0.796 

Nicosia 0.714 0.799 

Dourbes 0.760 0.647 

Athens 0.740 0.807 

Arenosillo 0.664 1.027 

Pruhonic 0.773 0.645 

Chilton 0.669 0.788 

Juliusruh 0.795 0.639 

5 Conclusions and Future Work 

In this paper we have presented the development of a neural network tool for the 
spatial and temporal modeling of (critical frequency) foF2 data over Europe. The 
model has been developed based on a data set obtained during a period of 
approximately four years from COSMIC satellite mission. The tool has produced a 
good interpolation capability of the gaps in the foF2 data series therefore providing a 
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method to preserve the variability of foF2, a fact which is essential in the 
development of long-term time-series prediction models and procedures. As a next 
step the Neural Network approach to model foF2 based on RO satellite measurements 
will be further extended to cover measurements obtained from other satellite missions 
(CHAMP,GRACE). The high solar activity period that is expected to reach is peak at 
around 2013 is expected to pose an additional challenge to such an effort. We also 
plan to explore the possibility of improving performance by employing more complex 
approaches such as an ensemble of neural networks. 
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