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Abstract. We discuss several fuzzy models to approximate friction and other 
disturbances in mechatronic systems, especially linear and rotarional electrical 
drives. Some methods of experimental identification of disturbance forces are 
presented. We consider several fuzzy models to compromise between model 
accuracy and complexity. Fuzzy model is used in an adaptive control loop. 
Several adaptive control algorithms are discussed and the influence of fuzzy 
model accuracy on the system performance is investigated.  
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1 Introduction 

It is well recognized that the presence of friction often destructs a performance of a 
precision motion control systems, especially servo drives realizing tracking 
tasks. The friction phenomenon is rather complicated and not yet completely 
understood, so existing friction models are also far from universality and accuracy. In 
this contribution we propose to connect fuzzy modeling with adaptive control. This 
approach allows to connect the simplicity of static friction models with the accuracy 
offered by adaptation to changing conditions, such as a lubricant temperature for 
example. As the experimental information about friction is usually corrupted and 
inaccurate we believe that using a flexible fuzzy model connected with adaptation of 
its parameters is an effective approach. 

We consider the motion dynamics given by  

v
dt

dx =     extfrictione FFF
dt

dv
m −−= . (1) 

where  m is a forcer mass, Fe is a thrust force, Fext is external force, load (usually 
constant or slow-varying) and Ffriction represents all kinds of friction forces. The mover 
speed is v and position x. Although equation (1) is written according to linear motion 
convention, it may be also used for rotational movement description if we read m as a 
moment of inertia and consider torques instead of forces. 

In this paper we shortly present the basic friction models and discuss the problem 
of experimental acquisition of the friction force data. We propose a TSK fuzzy 
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model-based friction estimation structure that can be used for real-time nonlinear 
friction identification. We introduce a procedure to automatically decide the fuzzy 
model rules and starting parameters according to the desired modeling accuracy. 
Finally we apply friction fuzzy model in adaptive backstepping control assuring the 
position tracking stability without exact knowledge of all plant parameters, including 
the control gain coefficient. The presented contribution may be placed among many 
other concerning fuzzy adaptive control in presence of friction [1,2,3], but it develops 
a new and simpler (than for example in [1]) fuzzy model construction procedure and 
investigates new adaptive control approach. 

2 Friction Models 

Several models were proposed for friction forces. An excellent review is provided in 
[4]. As we claim that an approximated model should be connected with adaptive 
control approach, we mention only basic ideas here. Usually it is assumed that friction 
forces are speed dependent and are roughly described by the formula  
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where fs is the level of static friction , fc is the minimum level of Coulomb friction vs is 
the lubricant parameter (so called Stribeck velocity), B - viscous friction parameter 
and δ is an even constant. The function g(v) describing a characteristic of the Stribeck 
curve is only one of possibilities – several other are reported [4]. All parameters of 
this model are unknown and should be determined by empirical experiments, and still 
the model accuracy is doubtful. The simplified version of (2) takes into account only 
Coulomb and viscous friction: 

BvvsignfF cfriction += )( . (3) 

So called LuGre [1] dynamic friction model is supposed to capture most of the real 
friction behaviour, like Stribeck effect, hysteresis, spring-like characteristics, varying 
brake-away force. It is based on ‘elastic bristles’ model of contact surfaces. The 
average deflection z of the bristles is given by 
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where g(v) is a positive function. To describe Stribeck effect g(v) is usually chosen as 
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Friction force is given by 

BvzzFfriction ++= τσ . (6) 

where σ is the equivalent stiffness coefficient  and τ is the equivalent damping 
coefficient of bristles. Several another models (more complicated, with bigger number 
of parameters and more difficult to identify) of friction forces are reported in literature 
[2,3]. As it follows from the above discussion friction and ripple forces are of very 
complicated nature, difficult to analyse and to model. In this paper we suggest 
modelling the sum of ripple and friction forces by a fuzzy inference system. 

3 Acquisition of the Data for Friction Modeling 

It is necessary to conduct some experiments to collect the data for the fuzzy model 
training.  

One of possibilities is so called constant speed test. If we are able to produce a 
constant speed movement, it means that all the forces are balanced. If we are can 
measure or estimate the external force, calculate the thrust force (from measurement 
of motor currents for example), we are able to estimate the friction force. 

Sporadically it is possible to apply a constant external force (from an another drive, 
or from a gravitational load), while the thrust force is zero. In this case we may try to 
tune the friction model parameters by curve fitting comparing measured position 
history with numerical solution of equation (1). 

Both above methods are theoretically straightforward but difficult to implement in 
practice. Another possibility is to use a simple observer described by: 
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where K and Γ are design parameters, mmm Δ+=0  and FFFF exte Δ+−=0  are 

observer parameters assumed instead of real m and exte FF − . If we denote the 

errors frictionestfricFestv FFevve −=−= ,  and we measure vv Δ+  instead of v 

and assuming constFfriction ≠  we get 
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As we see error dynamics is described by a linear system with disturbances. The 
eigenvalues s1, s2 of this system are connected with design parameters: 
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. (9) 

and so we may choose values of s1, s2 to obtain desired observer dynamics. We may 
tune observer parameters 0m  and 0F  to minimize vve estv −= , as we know estv  

and measure v. Equation (7) allows also to estimate the influence of 
dt

dFfriction  and 

vΔ on the estimation error and to plan measurements properly. Special care must be 
taken to minimize vΔ , as it is multiplied by K in (7) and its influence cannot be 
decreased by increasing K. 

As we conclude from the above discussion the obtained triples (position - velocity 
– estimated friction), denoted by 

( ) { }mkfxvxx kkkkk ,...,1, ,2,1 ∈→==  . (10) 

will be corrupted by estimation method error and subject to estimation/measurement 
noise and outliers. We will develop special procedure to extract fuzzy rules to 
construct Takagi-Sugeno-Kang fuzzy model. Figure 1 presents about 300 triples of 
the data collected from an exemplary linear permanent magnet motor.  
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Fig. 1. Friction modelling data Fig. 2. SIFM action curves for the data from 
fig. 1: + position, ٠speed 

4 Fuzzy Model Construction 

The proposed method of fuzzy friction modelling is based on One-dimensional Linear 
Local Prototypes (1dLLP) approach proposed in [5]. First we have to recognize if 
position is an irrelevant input or not. We consider two single-input fuzzy models 
(SIFM) described below: 
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• input - xi (i=1 – position, i=2 – velocity), output - ci, 
• input linguistic categories: { }mkxISx kii ,...,1, ∈ , 

• membership functions:   
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The action curve given by the output ci of this system for the input data - xi,k  
generalises information coded by kki fx →,  i=1,2 and the degree of this 

generalisation depends on membership function parameter a . Recommendations for 
the choice of a and b are given in [5]. The shape of each action curve is robust to 
outliers in the measured data and to the measurement noise. If the i-th input is 
inessential the curve generated by corresponding SIFM will be flat, if it is meaningful 
the curve will cover significant part of the range of { }{ }mkfk ,...,1, ∈ . Fig. 2 depicts 

action curves for position and speed for the data presented in fig. 1. Its visible that in 
this case position was the irrelevant input for friction modelling. 

Selection of membership functions for each input is based on piece-wise linear 
approximation of action curves derived above. Uniform or mean-square approach are 
both applicable. As the result of piece-wise linear approximation for the i-th 
significant input we obtain mi linear local prototypes (LLP) defined on intervals  

( ) { }ijijiji mjxxI ,,2,1, ,max,min, ∈=  (13) 

by linear polynomials 

( ) { }ijijiijiijiiji mjxxxpxpxP ,,2,1,,)( ,max,min,0,1, ∈∈+=  (14) 

for each interval. The design parameter δ , which defines the approximation 
accuracy, governs the number of linear local prototypes. For each j we construct a 
bell-shaped functions )(, xjiμ  spanned over jiI ,  and centred at the middle point of 

jiI , . The choice of the third parameter bi,j  is arbitrary – usually 1.5< bi,j  <2 gives 

good results. The rules for the proposed  TSK fuzzy model will be:  
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{ },,...,2,1,,0,1,, ijiijijiijii mjpxpccTHENISxIF ∈+==μ  (15) 

where starting values of parameters are taken from piecewise linear approximation 
results (14). The model will be trained by any suitable algorithm, we may choose a 
neural representation of the fuzzy system – ANFIS [6] and the appropriate training 
algorithm. Fig. 3 presents linear local prototypes obtained by linear mean-square 
approximation of the curve from fig.2 with δ =0.005 – in this case two “sticks” were 
enough. Smaller δ  will impose bigger number of LLPs and so bigger number of 
rules.  
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Fig. 3. SIFM action curve for speed (solid) 
and piecewise linear approximation (dotted) 
by two LLP 

Fig. 4. Final fuzzy friction model (solid) and the 
data (++) 

 
In this paper we concentrate on the case when the friction is velocity-dependent 

and it was possible to eliminate the position as the inessential input (although the 
procedure of final rule selection and model construction if both inputs are important is 
possible as presented in [5]). So starting from this point we model friction by m 
velocity-dependant rules 

{ },,...,2,1,,0,1 mjpvpFTHENISvIF jjjj ∈+=μ  (16) 

with generalised bell-shaped functions ),,;( jjjjj cbavμμ =  and the output of the 

fuzzy model calculated as: 
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where 
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5 Adaptive Control with a Fuzzy Friction Model 

Several adaptive control techniques may be proposed for motion control of systems 
with friction, depending on details of the model description and the chosen method to 
prove the stability. In this contribution we describe adaptive backstepping position 
tracking. We also assume that the thrust force is proportional to the control variable 
(the motor current)  

)()( titFe ⋅= ϕ , (19) 

and coefficient ϕ is not known exactly. As the external disturbance extF may be 

compensated exactly the same way as the friction, we assume that 0=extF  in 

equation (1). Let us denote the desired smooth position trajectory by dx , actual 

position by x and the tracking error by xxe d −=1 . The velocity will be ‘virtual 

control’ for position tracking. If we choose the desired velocity dv  according to  

11 ekxv dd ⋅+=  , (20) 

where 11 0>k  is a design parameter, we will be able to describe the tracking error 

dynamics as 

2112111 eekeekxxe dd +⋅−=+⋅−−=  , (21) 

vekxvve dd −⋅+=−= 112   (22) 

ϕϕ
m

mFivmvmvmem ofrictiondoodoo =−−⋅=⋅−⋅=⋅ ,
1

2  , (23) 

( )2111 eekkxv dd +⋅−⋅+=  , (24) 
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The control variable i has to compensate function  

frictiondo FvmD
ϕ
1−⋅=  , (25) 

and to assure fast tracking. We will use a model D̂  for D, incorporating the fuzzy 

friction model (17,18). The general structure of D̂  will be given by  

ξATD ˆˆ = , (26) 

where TÂ  is a vector of adaptive parameters and ξ  is known. We have several 

possibilities to choose the number of adaptive parameters, for example: 
 

1 adaptive parameter:           aT ˆˆ =A ,   







+⋅= mdl

N
doN Fvm

ϕ
1ξ  (27) 

where NoNm ϕ, are nominal values of ϕ,om ,  

2 adaptive parameters:          [ ]kmo
T ˆ,ˆˆ =A   
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2m+1 adaptive parameters:          [ ]T
o
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In (27) â  is responsible for general model correction, in (28) om̂  is supposed to 

adapt the changing inertia and k̂  corrects mdl
N

F
ϕ
1

 to the actual value of frictionF
ϕ
1

, 

while in (29) Tϑ̂  corresponds to ],,,,[
11

,0,11,01,1 mm
T pppp 

ϕ
θ

ϕ
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, 
so corrects 

each fuzzy consequents’ parameter separately.  
Without loss of generality we may assume existence of “the best” adaptive parameters 

T*A such that the model ξA
T

D ** =  gives bounded estimation error *FF −=ε , 

|ε| < εmax < ∞ and denote AAA ˆ~ * −= .  
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If we choose the control law according to  

122
ˆ eekDi +⋅+=  (30) 

we get the tracking error dynamics 

1222
~

eekem T
o −⋅−+=⋅ ξε A . (31) 

To investigate the tracking stability we propose Lyapunov function  

( )AΓA
~~

2

1 12
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−+⋅+= T
o emeV . (32) 

with positive definite symmetric matrix Γ . Taking any of the adaptation laws 

ξΓ= 2
ˆ eA , or ΓAA δξ −Γ= 2

ˆ e


 , or ΓAA 2
2

2
12

ˆ eee +−Γ= δξ
. (33a,b,c) 

with small positive δ , we are able to prove that the system derivative of (32) is 

negative outside a certain, bounded set, and so 21,ee  are uniformly ultimately 

bounded. For example with adaptation performed according to (33a) we get 
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and is negative outside 
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Several experiments with various adaptive controllers were conducted with the linear 
motor investigated in the previous sections, with fuzzy model presented in fig. 4 and 
adaptive laws (33a,b,c). All controllers perform correctly. More accurate fuzzy model 
results in smaller control signals. In fig. 5-7 we illustrate the performance of adaptive 
backstepping controller (28) with two adaptive parameters and adaptation law (33c). 

the system was to track sinusoidal position trajectory )
4

8.0sin(4.0)(
π+= ttxd with 

initial condition x(0)=0. Starting values of m0 and ki were subject to about 20% error. 
Adaptation was blocked while the current saturation (the saturation level was 1A) was 
active. As we notice the tracking accuracy is very high - it is limited by the encoder 
performance only. The adaptive gains are bounded and approach the desired values. 
The control input is bounded.  
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Fig. 5. The tracking error history Fig. 6. The tracking error history – an enlarged 
part of fig.5 
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Fig. 7. Adaptive gains Fig. 8. Motor current 

6 Conclusions 

The proposed approach, connecting fuzzy modeling and adaptive control, may be 
used for any motion control problem with friction or other disturbances. The fuzzy 
model is robust against measurement noise and isolated outliers in the modeling data. 
On-line gain adaptation by the adaptive laws allows to use a static friction model and 
to obtain good control performance. The proposed procedure based on linear local 
prototypes allows to build a fuzzy model as simple as possible. The same approach 
may be used if friction is function of position and speed. Some other concepts of 
fuzzy models – for example TSK models with nonlinear consequences were also 
applied by the author with promising results. 
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