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Abstract. Frame duration is an essential parameter to ensure correct application 
of multifractal signal processing. This paper aims to identify the multifractal na-
ture of speech signals through theoretical study and experimental verification. 
One important part of this pursuit is to select adequate ranges of frame duration 
that effectively display evidence of multifractal nature. An overview of multi-
fractal theory is given, including definitions and methods for analyzing and es-
timating multifractal characteristics and behavior. Based on these methods, we 
evaluate the utterances from two different Portuguese speech databases by 
studying their singularity curves (࣎ሺࢗሻ and ࢌሺࢻሻ).We conclude that the frame 
duration between 50 and 100 ms is more suitable and useful for multifractal 
speech signal processing in terms of speaker recognition performance [11]. 

Keywords:  Multifractal Spectrum, Hölder Exponent, Speech Signals, Scaling 
Analysis, Multifractal Characteristics. 

1 Introduction  

In recent years, the use of the multifractal theory as an alternative method for non-
stationary signal modeling has considerably increased. Most traditional approaches 
for signal modeling and analysis are based on the use of short-time spectral approach 
performed by the DFT [1], [2], mainly focusing on the signal’s stationary properties 
[3]. Those traditional methods fail largely to characterize non-stationary behavior in 
signals and therefore are unable to explore the information contained in most of their 
transient and non-stationary parts. In fact, most real world signals and processes, such 
as speech and video, can be better characterized by their non-stationary behavior [4]. 
In literature, there are some works reporting the use of multifractal techniques in 
speech processing. In [3] a multifractal-based approach was employed for characteri-
zation of speech consonants. In [5], [6], fractal parameters were extracted and used as 
new nonlinear feature of speech signals. In terms of analysis of the multifractal nature 
of speech signals, in [7] the geometry of speech turbulence was fractally modeled. In 
[8] [9], the authors concluded that multifractal methods of can be used for signal 
processing such as decomposition, representation and spectrum characterization. In 
[10] the multifractal nature of unvoiced speech signals was studied and demonstrated.  

The current work arises from the necessity of determining the appropriate frame 
duration to perform the multifractal analysis of speech signals. The results of this 
study have provided a solid basis for the design and implementation of the speaker 
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recognition system in [11]. More specifically, multifractal characteristics presented in 
speech signals are studied using multifractal curves including the multifractal spec-
trum ݂ሺߙሻ  and the scaling functions  ߬ሺݍሻ . These curves (also called singularity 
curves) are capable of providing some essential information for speech signal 
processing, such as signal decomposition, representation and characterization, similar 
to that performed by traditional Fourier approaches [8]. Two databases with different 
sampling rates were tested in order to observe and determine the multifractal nature of 
speech signals under different time scaling conditions. 

2 Multifractal Processes 

Multifractal signals, as well as multifractal processes, are usually characterized by 
their highly irregular behavior. In other words, time functions exhibit abrupt and vary-
ing levels of instantaneous transitions in time, also known as singular points, at which 
the time function is non-differentiable. This singularity level measure can be obtained 
through estimation of the Lipschitz exponent, which provides the so-called uniform 
measures of regularity, either evaluating it on small time intervals (neighborhood) or 
at isolated points (pointwise) [12]. In multifractal processes, the Lipschitz exponent, 
also known as the Hölder exponent ߙ௧, is a series of time dependent values. In litera-
ture, there are two widely adopted definitions for "multifractals" in terms of their 
nonlinear characteristics of statistical moments, observed under different time scales, 
measured locally or pointwisely: 

Definition 1.  
The first definition of multifractals can be viewed as a generalization of monofractals 
[13]. Thus, it is said that a process ܺሺݐሻ is multifractal when it obeys the following 
scale relationship ܺሺܿݐሻ  ܿுሺ௖ሻୀୢ ܺሺݐሻ, where ܿுሺ௖ሻ represents the scaling factor with 0 ൏ ሺܿሻܪ ൏ 1 and ܿ>0. The equality operator “  ୀୢ ” indicates equality in statistical 
distribution. For monofractal processes, ܪሺܿሻ ൌ -is a constant which can be charac ܪ
terized by a single scale factor, known as the Hurst parameter. For multifractal 
processes, the generalized Hurst parameter becomes a Hölder exponent.  

Definition 2.  
The second definition of multifractal processes is based on the analysis of local scal-
ing properties of the random paths of the process ܺሺݐሻ, by way of its local Hölder 
exponent, which is roughly defined as follows: |ܺሺݐሻ െ ௡ܲሺݐሻ| ൑ ݐ|ܥ െ  ଴|௛ሺ௧బሻ                                              ሺ1ሻݐ

where ௡ܲሺݐሻ is a Taylor polynomial of ܺ in ݐ of degree ݊, for ݐ sufficiently close to ݐ଴ , The degree ݊  of the polynomial indicates the number of times that the 
tion ܺሺݐሻ is differentiable at ݐ଴. Therefore, ݄ሺݐ଴ሻ provides a measure of the singulari-
ty (or regularity) level at ݐ଴. A complete and more rigorous version of this definition 
can be found in [13]. 
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3 Estimation of Multifractal Characteristics 

This section presents two practical approaches to study the multifractal behavior of a 
time series. The first approach is based on the estimation of the partition function of 
the process using the method of moments, while the second relies on the analysis of 
regularity of the process through its “multifractal spectrum”. 

3.1 The Method of Moments 

The method of moments assumes that the signal holds major characteristics of a mul-
tiplicative cascade process [14]. The basic idea of this approach consists in acquire 
knowledge of the Hölder exponent distribution, by analyzing singularity property of 
the cascade. A procedure widely used for this analysis is the partition function. Let  ሼ ௜ܺሽ௜ୀଵ ଶಿ

 be the time series that represents a level of the cascade with a measure on the 
interval [0, 1] on the scale 1 2ே⁄ . The partition function for the moment of order ݍ is 
defined as [14]: ࣲ௠௑ሺݍሻ ؔ ෍ ቀࢄ௞ሺ௠ሻതതതതതതቁ௤ே/௠

௞ୀଵ                                                    ሺ2ሻ  
where,              

௞ሺ௠ሻതതതതതതࢄ                          ؔ ∑ ሺ௞ିଵሻ௠ା௜௠ࢄ                                                      ௠௜ୀଵ ሺ3ሻ 

where ݉ define the aggregation number for the construction of the cascade 
processes, for instance, process with dyadic partition ݉ ൌ 2, 4, 8 … 2ே. the time series 
elements ࢄሺ௞ିଵሻ௠ା௜௠  represent the aggregate data, generating the new interval of next 
cascade stage for a fixed value of ݉. The scaling nature of the partition function can 
be evaluated by using the scaling function ߬ሺݍሻ as follows, ݈݃݋ ܺ௠௑ ሺݍሻ ൌ ߬ሺݍሻ ݃݋݈ ݉ ൅  ሺ4ሻ                                                   ܥ

where ܥ is constant. For the special case of multifractal processes,  ݈݃݋ ܺ௠௑ ሺݍሻ  ex-
hibits linearity with ݈݃݋ ݉ and  ߬ሺݍሻ is not linear in terms of ݍ. 

3.2 Multifractal Spectrum 

The multifractal spectrum ݂ሺߙሻ is a representation of the distribution of its Hölder 
exponents. The spectral function can be determined using some techniques such as 
coarse graining spectrum, Hausdorff spectrum, and Legendre spectrum. Due to its 
simplicity of the technique, this study focuses on the Legendre spectrum [12] which 
can be obtained by means of the Legendre transform of ߬ሺݍሻ (scaling function) [14], 
as ݂ሺߙሻ ൌ min௤ሼߙݍ െ ߬ሺݍሻሽ. Typically the spectrum of a multifractal process has 
negative concave shape, where the horizontal axis indicates the Hölder exponent val-
ues and the vertical axis the total amount of points with the same exponent value. In 
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particular, when a signal process is monofractal, the scaling function becomes 
as ߬ሺݍሻ ൌ ݍߚ െ 1, which is linear in ݍ  with a constant angular coefficient ߚ .As a 
result, the Hölder exponent holds a unique value graphically represented by a single 
non-zero point or a straight line. 

4 Tests, Results and Discussion 

In this section, we use the theory and procedures described in the previous section to 
study and determine possible multifractal nature and behavior of speech signals.  The 
main purpose is to verify the conditions under which a speech signal reliably reveals 
its multifractal behavior. 

4.1 Description of Speech Signals 

Two speech signal databases were used for this experimental investigation [15]. The 
speech signals of these two databases were collected via a high-quality microphone 
and recorded under a low noise, controlled environment. The speech signals of the 
first database are collected from 30 speakers under the 11.025 kHz sample rate. The 
utterances have an average duration of 2.5 s. The second database, contributed by 71 
speakers, has their speech signal sampled at rate of 22.05 kHz. The average duration 
of each speech utterance is approximately 3 s. Before the speech signals were submit-
ted to multifractal analysis, they underwent a pre-processing procedure which con-
sisted of three operations in sequel: pre-emphasis [16], normalization and elimination 
of silence intervals. 

4.2 Experimental Investigation 

In this subsection, we graphically evaluate the multifractal behavior of the speech 
signals. First, applying the moment method we obtain the partition function and the 
scaling function ߬ሺݍሻ. Then, via the Legendre spectrum, we observe the scaling beha-
vior and any particular event appearing on each speech segment, namely consonants, 
vowel transitions, vowel-consonant pairs.  

Experimental Test 1:The moment method determines graphically the behavior of the 
partition functions in terms of moment order ݍ. In this experiment test we randomly 
selected 30 speech phrases recorded from different speakers (with varying genders 
and ages) of each database. For illustration purpose, Figs. 1.a and 1.c show the curves 
of the partition functions (log ࣲ௠௑  versus log ݉) of two phrases arbitrarily selected 
from the two different databases. In fact, similar graphic behaviors are observed for 
most of the evaluated utterances. Notice that the partition functions exhibit linearity in 
relation to log ݉, despite some soft inflection points, regardless of the sampling fre-
quency and utterance duration. This suggests that speech signals may hold fractal 
behavior or characteristics, presenting different scaling properties that are monofractal 
or multifractal behaviors at different scales. In contrast, the curves of the scaling func-
tion ߬ሺݍሻ, as illustrated by Figs. 1.b and 1.d, show some nonlinearity, what suggests 
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(Fig. 4.a show multifractal behavior on time scales shorter than 20 ms and greater 
than 50 ms, respectively. After detailed analysis and comparison, we found that spon-
taneous speech signals reliably present multifractal behavior on the range between 
50m and 100ms time scales. 

5 Conclusions 

After extensive tests and evaluations performed on speech signals selected from two 
different speech databases, we summarize our conclusions as the following: 

• Speech signals may present either monofractal or multifractal behavior depend-
ing on the time scales under which observation and analysis are performed. Expe-
rimental results show that speech signals composed of some phonetics classes 
(fricatives or taps) present monofractal behavior under short time interval analy-
sis. This same behavior was found for long speech segment for all studied  
signals. However, definitely there is no rigid boundary for fractal behavior classi-
fication, due to fact that speech signal dynamics varies and is highly affected by 
both the speaker's speech rate and the signal’s structure.  

• It was found that, in general, all speech signals reveal multifractal behavior under 
a time frame analysis ranging from 50ms to 100ms. As this time interval includes 
a phone or a phone transition, we believe that this result is independent of the 
language. 

• A new speaker recognition system in [11] that incorporates some multifractal 
features has reported a 3% increase in recognition rate with respect to one using 
only classical Mel-Cepstral features. This implies that multifractal features have 
increased and provided additional pattern discriminating capabilities.  
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